Some Issues of Statistical Design & Analysis in RNA-seq Experiment

S. Bashir

University Health Network

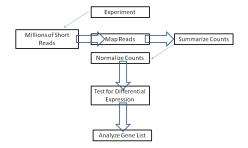
November 27, 2012

- Sequencing Experiment
 - Experimental design
 - Biases
 - Read Mapping
- 2 Analysis
 - Normalization
 - Statistical Analysis

High-Throughput Gene Expression Assays

- Burgeoning field of so-called next-generation sequencing (NGS)/second-generation sequencing/ultra-high-throughput sequencing (UHTS).
- Platforms:
 - Illumina/Solexa's Genome Analyzer, HiSeq systems, MiSeq etc.
 - Applied Biosystems' SOLiD,
 - Roche's 454 Life Sciences.
 - Helicos BioSciences' HeliScope,

RNA Sequencing Pipeline

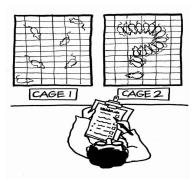


Data Types

- Sequencing assays provide digital measures of sequence abundance, i.e., read counts.
- In contrast, microarrays provide analog measures of sequence abundance, i.e., fluorescence intensities.
- Short sequence reads are aligned against reference sequence, e.g., genome, transcriptome.

Designing your experiment before you start

- How to avoid Confounding sources of variation in the data.
- While it would be nice to be able to partition various sources of technical variation (such as labeling, RNA extraction), it often is too expensive to perform such a design.
- 3 fundamental principles of experimental design, i.e., replication, randomization & blocking



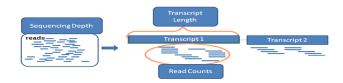
Despite the clear difference between the treated and control groups, something made him question the data.

Design Considerations

- Biological comparison
- Paired end vs single end reads
- Read length & depth
- Replicates
- Pooling

Terminology

- Sequencing Depth or Coverage: Total number of reads mapped to the genome/transcriptome, aka Library size/Sample size.
- Transcript/Gene length: Number of bases.
- Read counts: Number of reads mapping to that gene/transcript (expression measurement).



Illumina's Sequencing Technology

- One Flow Cell: Eight lanes
- Up to eight samples are hybridized to an eight-lane flow cell, one lane is often used for the control sample.

Illumina's Sequencing Technology

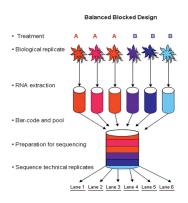
Multiplexing

- A way to save money by sequencing multiple samples on a single unit (an illumina's flow cell)
- offers the flexibility to construct balanced blocked designs for the purpose of testing differential expression.
- Barcoding: To separate inputs, can have many barcodes in a single unit
- 12 different samples can be indexed with unique subsequences and loaded onto each lane. In total, 96 samples can be sequenced per run.
- and the output can be deconvoluted to individual samples.

Illumina's Sequencing Technology : Balanced Block Designs

- All the samples of RNA are barcoded & pooled into the same batch and then sequenced in one lane of a flow cell.
- Any batch effects are the same for all the samples, and all effects due to lane will be the same for all samples.
- This can be achieved barcoding the RNA immediately after fragmentation
- Sequencing lanes can also serve as blocks when bar-coding during library preparation

Illumina's Sequencing Technology: Bar Coding



© Auer and Doerge 2010

Biological Replicates

- If you have limited resources, it is generally far better to have biological replication (independent biological samples for a given treatment) than technical replication
- Biological replicates essential for differential expression analysis
- Technical replicates useful for trouble shooting only, not needed as low technical variation in the technology
- For a sufficient number of biological replicates certain designs can accommodate lane and/or flow cell as blocking factor.

Pooling & Balanced Designs

- Limited RNA obtainable
- Complete Pooling: All samples from one treatment group are pooled
 - No replication for one treatment. This approach does not provide an estimate of variability and therefore can not be used for statistical analysis.
- Sub-Pooling: Subsets of samples are randomly selected and pooled but there are still multiple replicates within each group.
- Multiple pools per group required
- Better power than complete pooling
- Equal pooling with replicates in the same pool contributing equally has better power
- Balanced designs have better statistical power

Modes of Sequencing

- Single-end Read: One read sequenced from one end of each cDNA insert
- Paired-end Read: two reads sequenced from each cDNA sample insert (one from each end)
- The reads are typically 30 400 bp, depending on the DNA-sequencing technology used.
- The costs of paired end sequencing are higher than single end sequencing

Technical Effects

- Sequence eight samples simultaneously in the eight lanes in one flow cell in illumina, variation from one flow cell to another resulting in flow cell effect.
- In addition, there exists variation between the individual lanes within a flow cell due to systematic variation in sequencing cycling and/or base-calling.
- The flow cell and lane effects are relatively small.
- Blocking design can be used to eliminate the flow cell and lane effects
- Among these sources of variation, the library preparation effect is the largest.

Technical Effects

- RNA-seq Biases
 - Sequencing depth
 - RNA composition effect,
 - Differences in the counts distribution among samples.

Read Mapping

- Following sequencing, the resulting reads are either aligned to a reference genome (fasta file) or reference transcripts, or assembled de novo without the genomic sequence to produce a genome-scale transcription map that consists of both the transcriptional structure and/or level of expression for each gene
- An important summary statistic is the number of reads in a class; for RNA-Seq, this read count has been found to be (to good approximation) linearly related to the abundance of the target transcript.
- Open source Tuxedo suite comprising Bowtie, TopHat, & Cufflinks
- SAM/BAM files

Data

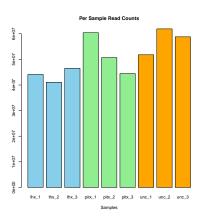
- The count data are presented as a table which reports, for each sample, the number of reads that have been assigned to a gene.
- Analogous analysis also arise for other assay types, such as comparative ChIP-Seq.
- Interest lies in comparing read counts between different biological conditions, i.e., differential expression analysis.
- A gene is declared differentially expressed if an observed difference or change in read counts between two experimental conditions is statistically significant,

Data

	Transc	lhx1	lhx2	lhx3	pit x 1	pitx2	pitx3	unc1	unc2	unc3
_	1	0	0	0	0	0	0	1	1	0
	2	0	0	0	0	0	0	1	2	0
	3	0	0	0	0	0	0	0	1	0
	4	0	0	0	0	0	0	1	0	2
	:	:	:	:	:	:	:	÷	:	:

© Pearson, B.

Library Size



Some Normalization Methods

Minimize the technical biases by normalizing counts data.

- Proportion of reads: number of reads (n) mapping to an exon (gene) divided by the total number of reads (N), n/N.
- RPKM: Reads Per Kilobase of exon (gene) per Million mapped sequence reads, 10⁹n/(NL), where L is the length of the transcriptional unit in bp (Mortazavi et al., Nat. Meth., 2008)
- FPKM (Trapnell et al., 2010): Instead of counts, Cufflinks software generates FPKM values (Fragments Per Kilobase of exon per Million fragments mapped) to estimate gene expression, which are analogous to RPKM.

Normalization Methods Cont'd

- TMM (Robinson and Oshlack, 2010): Trimmed Mean of M values.
 - For seq data, gene-wise log-fold change are : $M_g = \log_2 \frac{Y_{gk}/N_k}{Y_{gk'}/N_k'}$
 - Absolute Expression levels as $A_g = \frac{1}{2} \log_2 \{ Y_{gk} / N_k, Y_{gk'} / N_k' \}$
 - Trim both observed M values (30%) & A values (5%) (defaults)
 - ullet Take the weighted average of M_g values, using inverse of the approximate variance as weights
 - Normalization factors across several samples calculated taking one sample as reference & calculating TMM for the others
 - The RNA seq data themselves do not need to be modified, but normalization factors incorporated into statistical methods for differential expression

$$\log_2(TMM_k) = \frac{\sum\limits_{g \in G^*} w_{gk} M_{gk}}{\sum\limits_{g \in G^*} w_{gk'}}$$

Normalization Methods Cont'd

- Upper-quartile (Bullard et al., 2010): Counts are divided by upper-quartile of counts for transcripts with at least one read.
- Conditional Quantile Normalization, as in microarray normalization (Hansen et al., 2012). This combines the robust generalized regression to correct for GC-bias & quantile normalization

Statistical Distributions

- For microarray normal distribution based methods are most common
- Sequencing data is counts, transformation of count data is not well approximated by continuous distributions, especially in the lower count range and for small samples
- Statistical distributions for discrete data are used
- Relevant distributions are
 - Binomial distribution
 - Poisson distribution
 - Negative binomial distribution

Poisson Distribution

- The read counts were first modelled using a Poisson distribution.
 - Poisson distribution is used for count data
 - It has only one parameter, i.e., mean
 - It assumes that mean and variance are the same
 O to ...
- RNA seq data represent overdispersion (i.e., variance of counts larger than mean).
- Biological variability of RNA-seq count data cannot be captured using the Poisson distribution
- Negative Binomial (NB) distribution takes into account overdispersion; hence, it has been used to model RNA-seq data

Statistical Model

 The expression quantification problem can be framed in terms of generalized linear models (GLM),

$$ln(E[y_{gi}|N_i]) = log N_i + x_i^T \beta_g,$$

where

- y_{gi} : read count for the gth gene in the ith sample
- x_i : is the vector of covariates
- $(log N_i)$: offset, e.g., the total number of mapped reads
- β_g is the vector of regression coefficients
- and possibly other technical effects
- Information sharing among genes (Bayesian gene-wise dispersion estimation)

Negative Binomial Distribution

- The negative binomial distribution is common when count data has variance significantly greater than its mean (overdispersed)
- The NB distribution has mean μ and variance $\mu + \alpha \mu^2$; as α goes to 0, the distribution goes to a Poisson
- It is used to model biological replicates
- The number of replicates in data sets of interest is often too small to estimate both parameters, mean and variance, reliably for each gene.
- For edgeR, Robinson and Smyth assumed that mean and variance are related by $\sigma^2 = \mu + \alpha \mu^2$, with a single proportionality constant α that is the same throughout the experiment and that can be estimated from the data.

Negative Binomial Distribution: Hypothesis

- The count for a given gene in sample i come from negative binomial distributions with the mean μ_{gi} and variance $\sigma^2 = \mu_{gi} + \alpha \mu_{gi}^2$, with a single proportionality constant α
- The experimental condition r has no influence on the expression of the gene under consideration:

$$H_o: \mu_{g1} = \mu_{g2}$$

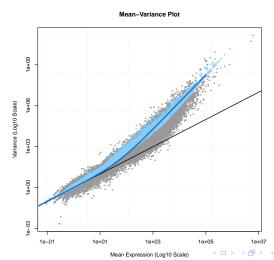
Test Statistic

Dependent on the software

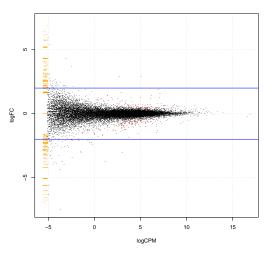
- Exact test statistic (Robinson and Smyth., 2008)
- Log-likelihood ratio (LLR) statistics based on log-linear regression models

Model Fitting

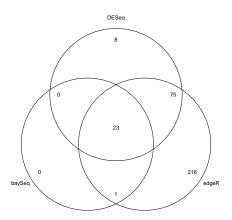
▶ Go to



Smear Plot



Venn Diagram



Some Bioconductor and R packages

- library(DEGseq) (Wang et al., 2010): MA-plots based methods (MATR and MARS), assuming Normal distribution for M&A.
- library(edgeR) (Robinson et al., 2010): Exact test based on Negative Binomial distribution or GLM for multi-factor designs followed by Empirical Bayes method to evaluate the differences across transcripts.
- library(DESeq) (Anders and Huber, 2010): Exact test based on Negative Binomial distribution and a shrinkage estimator for the distribution's variance
- library(baySeq) (Hardcastle et al., 2010): Estimation of the posterior likelihood of differential expression (or more complex hypotheses) via empirical Bayesian methods using Negative Binomial distributions.

Message

- Design the experiment properly, i.e., try to reduce all technical sources of variability
- The best way to ensure reproducibility and accuracy of results is to include independent biological replicates
- Proper use of multiplexing
- Balanced Block Designs are better than, their unblocked counterparts in term of power and type I error and are far better when batch and/or lane effects are present

Thank You

