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Global protein expression profiling can potentially uncover perturbations associated with

common forms of heart disease. We have used shotgun MS/MS to monitor the state of

biological systems in cardiac tissue correlating with disease onset, cardiac insufficiency and

progression to heart failure in a time-course mouse model of dilated cardiomyopathy.

However, interpreting the functional significance of the hundreds of differentially expressed

proteins has been challenging. Here, we utilize improved enrichment statistical methods and

an extensive collection of functionally related gene sets, gaining a more comprehensive

understanding of the progressive alterations associated with functional decline in dilated

cardiomyopathy. We visualize the enrichment results as an Enrichment Map, where signif-

icant gene sets are grouped based on annotation similarity. This approach vastly simplifies

the interpretation of the large number of enriched gene sets found. For pathways of specific

interest, such as Apoptosis and the MAPK (mitogen-activated protein kinase) cascade, we

performed a more detailed analysis of the underlying signaling network, including experi-

mental validation of expression patterns.
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1 Introduction

Heart disease is a leading cause of death, accounting for

430% of all deaths in 2005 in the US alone [1]. In parti-

cular, heart failure stemming from diverse etiologies,

including hypertension, long-term consequences of

myocardial infarction, viral infection and genetic disorders,

is an emerging epidemic [2]. Although treatable, heart fail-

ure is often referred to as a silent killer since patients are

diagnosed at an end-stage when it is too late to reverse the

pathology. Finding molecular signatures to detect heart

failure at an early, treatable stage prior to clinical presenta-

tion is vital to improving long-term survival outcomes.

However, uncovering the causative mechanisms and

predictive biomarkers remains a daunting task [3, 4] due to

the complexity of disease development.

MS/MS-based proteomic profiling is a promising

approach for characterizing protein perturbations associated

with cardiac disease [5, 6]. In dilated cardiomyopathy

(DCM), the ventricle walls stretch and thin out causing the

heart to enlarge and fail. In a recent study of a mouse

phospholamban transgenic mutant model (PLN-R9C) of

DCM [7], we used exhaustive shotgun sequencing to

examine quantitative changes in global protein expression
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patterns in cardiac ventricular tissue at distinct time

points representing discernible clinical phenotypes (early,

mid-, and end stages) along the trajectory to overt cardiac

failure. A generalized linear model identified 593 proteins

significantly differentially up- or down-regulated across

three time points in PLN-R9C mice relative to normal

control littermates. This list was reflective of a shift in

energy metabolism, and activation of specific cellular stress

response cascades that lead to apoptotic signaling [8–10].

However, by focusing on the most differentially expressed

proteins across all time points simultaneously, only a partial

list of the strongest biological signals was detected. New

analysis methods are required to study stage-specific

differences in expression accompanying disease progression

and weaker, but still important, signals.

Transcriptomic datasets are traditionally analyzed by

scoring gene expression differentiality (e.g. between disease

and healthy states) after normalization of the raw mRNA

expression data using statistical methods that consider

technical noise and biological variability [11]. Candidate

genes are then defined by setting a threshold on some

measure of differential expression [12]. Since biological

responses tend to be functionally coherent, over-repre-

sentation analysis (ORA) can be used to detect statistically

significant differential expression of functionally related

‘‘gene sets’’ [12]. A ‘‘gene set’’ is a collection of genes

defined a priori that share some attribute or feature such as

annotation to a common pathway (e.g. cell cycle or insulin

signaling). The resulting list of affected gene sets is often

biologically more intuitive than the larger lists of differential

genes. Numerous software tools are available to perform

ORA [12], including FunSpec [13], GoMiner [14], FatiGO

[15], DAVID [16], BiNGO [17] and ErmineJ [18]. Most ORA

tools typically only use Gene Ontology (GO) annotation [19]

as a convenient source of gene sets, though some are being

adapted to exploit more detailed network-level information

(i.e. gene–gene interactions) that is increasingly available

[12, 20].

While we used ORA previously to find alterations in

stress responses and metabolism that may underlie tissue

remodeling and fibrosis in our DCM model, we only

considered the most differentially expressed gene products

and hypothesize that we have overlooked a wealth of addi-

tional more subtle and stage-specific biologically interesting

patterns. To address this, we used the Gene Set Enrichment

Analysis (GSEA) method [21] to perform ORA on all of the

available expression value changes. GSEA analyzes a rank-

ing of gene products according to a differentiality statistic

(e.g. ratio of expression in disease versus control). Gene sets

are then tested to see if members lie more toward the top or

bottom of the ranking than expected by chance alone (i.e.
majority of members of a gene set are coordinately up- or

down-regulated). Thus, we expect to uncover additional

biological trends in our PLN-R9C data using this method

because it considers all genes, not just the top most differ-

ential, and can find significant and coordinated expression

patterns at the gene set level even if the expression of the

genes within the set is weak.

To aid in the interpretation of our GSEA analysis, we

developed a method, Enrichment Map, to intuitively visua-

lize and compare the results across time

points. In comparison with our initial published

study [7], adoption of a more powerful enrichment test

together with a simplified graphical organization

of the results enabled the identification of additional

biologically relevant perturbations associated with DCM. For

pathways of specific interest we performed a more

detailed analysis, explicitly considering the underlying

signaling network and experimentally validating expression

patterns.

2 Materials and methods

2.1 Protein samples and quantification

We used proteomics data from our previously published

PLN-R9C DCM study [7]. Briefly, this data was collected

from cardiac protein extracts collected from pooled ventricle

tissue obtained from two distinct strains of mice, one a

transgenic model expressing a dominant Arginine to

Cysteine point mutation at position 9 in the phospholamban

protein, which results in the presentation of DCM pheno-

typically similar to the human condition [22], and the other

healthy littermates (strain FVB/N) as a control. Three time

points were profiled, representing early-stage (8 wk), mid-

stage (16 wk) and end-stage (24 wk) disease [7]. Six thousand

one hundered and ninety high stringency proteins were

identified by nanoelectrospray LC-MS/MS and quantified by

spectral counting [23]. The spectral count mapping to a

particular protein was summed to generate a total count per
protein per sample. We supplemented our original data with

1072 proteins that were detected by MS but previously

discarded because they were detected with only a single

unique high confidence peptide. This re-analysis was moti-

vated by the discovery that most of these represent small,

but biologically important proteins (e.g. brain natriuretic

peptide, a 121 amino acid protein that is a validated

biomarker of heart failure [24]). This resulted in a list of

7262 proteins used for the current analysis. To correct for

length bias, i.e. larger proteins produce more peptides and

so tend toward higher counts, the counts were divided by the

number of expected tryptic peptides in a similar fashion as

described by Lu et al. [25]. Protein counts were further

normalized across all experiments using local polynomial

regression fitting (Lowess) to adjust for residual differences

[7]. As we now account for protein length during normal-

ization by dividing spectral counts by the expected number

of observable peptides for each individual protein, the

weight of proteins with a larger than expected number of

observable peptides was relatively reduced and those from

smaller proteins increased. This allowed us to apply more
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sensitive filters to low molecular weight proteins that are

nevertheless important in signal transduction and other

pathways that may be perturbed during the development of

DCM.

2.2 GSEA analysis

We used GSEA [21] to compute gene set enrichment after

ranking proteins by differential expression in disease versus
control. Traditional transcriptomics analysis uses various

statistical tests to compare the two phenotypic classes

including ‘‘signal-to-noise,’’ ‘‘t-test’’ and ‘‘ratio of classes,’’

but these standard tests assume the data are normally

distributed whereas our R9C proteomics data are not, due to

the under sampling nature of MS/MS spectral counting [26].

We also wanted to use a statistic that indicates directionality,

i.e. whether the protein is up- or down-regulated. Thus, we

used the non-parametric KS test to rank the proteins

because it makes no assumptions as to the underlying data

distribution and is signed. Using this statistic, 164 proteins

were significantly (p-valueo0.05) differentially expressed at

the early stage (8 wk), of which 69 proteins were putatively

up-regulated and 95 proteins were down-regulated, while

652 proteins were significantly affected at the mid-stage

(16 wk), of which 495 proteins were putatively up-regulated

and 157 proteins were down-regulated. However, all

proteins are ranked and input into GSEA.

GSEA was run using gene sets from diverse public

sources (described below). Small (o5 15 genes) gene sets

were removed because these are more likely to appear

significant by chance alone. Large (4500 genes) gene sets

were removed because they are typically too general to

usefully interpret. Filtering has the added benefit of redu-

cing the problem of false discovery by multiple testing. For

each analysis, 1000 gene set permutations were used to

compute a false-discovery rate.

2.3 Gene set collection

GO annotation was collected from the August 2008 down-

load of the org.Mm.edGO2ALLEGS Bioconductor package.

GO annotation was up-propagated so that all genes anno-

tated to children terms were also assigned to the parent

terms and genes were mapped to Entrez Gene identifiers.

All available GO annotations were used to maximize gene

coverage. To further improve gene coverage, we also

collected all available BioPAX formatted pathways from

Reactome [27], HumanCyc [28], National Cancer Institute

Pathway Interaction Database [29], Integrating Network

Objects with Hierarchies Pathway Database (www.inoh.org),

Biocarta (www.biocarta.com), Cellmap (cancer.cellmap.org)

and Netpath (www.netpath.org). BioPAX is a standard data

exchange format for pathway information (www.biopax.org).

Additional curated gene sets were collected from the Mole-

cular Signatures Database [21], the comprehensive Resource

of Mammalian protein complexes [30] and Disease Hub

(http://zldev.ccbr.utoronto.ca/�ddong/diseaseHub/). Since

the pathway resources, except Reactome, provide human

pathway information only, putative mouse homologs were

cross-mapped based on orthology (ftp://ftp.informatics.jax.-

org/pub/reports/HMD_HGNC_Accession.rpt). Conversion

tables for RefSeq and Uniprot to human Entrez Gene were

downloaded from Biomart [31].

2.4 Enrichment Map analysis

To increase the power and coverage of our analysis, we

collected gene sets from multiple independent sources (see

above). Unfortunately, this also increases the number of

redundant or similar gene sets, which complicates inter-

pretation of results. To overcome this challenge, we devel-

oped a novel visualization approach, Enrichment Map,

which organizes gene sets in a more intuitive way and

which is implemented as a plugin for the Cytoscape network

analysis environment [32]. Enrichment Map places similar

gene sets near each other, which results in a more concise

global view of enriched biological functions (many gene sets

related to the same function are grouped, which simplifies

their display). This map is a network of gene sets in which

the nodes (circles) represent statistically significant terms

and the links (edges) the degree of gene set overlap (i.e.

multiple gene sets containing the same genes). An auto-

mated layout algorithm is used to place connected (i.e.

similar) gene sets close together as clusters of terms

describing related pathways, cellular processes or functions.

Gene sets are linked if their overlap coefficient is 40.5 (i.e.

gene sets share 50% or more genes). Software to construct

and browse Enrichment Map is freely available (http://

www.baderlab.org/Software/EnrichmentMap) (Merico, D.,

Isserlin, R., Stueker, O., Emili, A., Bader, G. D., Enrichment

Map: A network-based method for gene-set enrichment

visualization and interpretaion. 2010, submitted).

3 Results

3.1 Differentially expressed gene sets in DCM

preceding heart failure

The PLN-R9C mutant heart has a calcium flux imbalance

due to the mutant (R9C) form of phospholamban which

constitutively inhibits the SERCA ATPase responsible for

calcium ion transport from the cytosol into the sarcoplasmic

reticulum in muscle [22], which eventually leads to heart

failure. In an effort to gain clinically useful insights into the

causative basis of heart failure from the diverse proteomics

patterns generated as part of our ongoing DCM profiling

initiative [7, 33–35], we developed a computational analysis

workflow for interpreting global protein abundance data that
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Figure 1. Enrichment analysis workflow. Outline of the processing of information from MS/MS data to Enrichment Map. First, spectral

counts measured for each identified protein at two time points (early and mid-stage) in the PLN-R9C cardiovascular disease model and the

healthy (wild-type) control [7] were normalized and ranked by p-value. The ranked protein list was then examined for significant over-

representation of gene sets using the threshold-free technique of Gene Set Enrichment Analysis (GSEA). Gene sets were collected from a

diverse set of public databases. Finally, the enrichment results were visualized to enable easy manual detection of global trends and

hypothesis generation. A node in the Enrichment Map represents a gene set. Node color intensity represents the enrichment significance

and the hue (blue/red) indicates whether a particular gene set is up- or down-regulated. Node size represents the gene set size and line

thickness shows the degree of overlap (shared genes) between the two gene sets it connects. Two different enrichment experiments were

simultaneously visualized to compare the enrichment results of the early- and mid-disease stages by mapping early-stage results to the

node center (inner part) and mid-stage results to the node border (outer part).
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combines a statistically principled gene set based enrich-

ment analysis with an efficient graphical summary display

for exploratory visualization (Fig. 1).

To generate ranked lists of differentially expressed

proteins between the disease (i.e. PLN-R9C) and healthy

(i.e. wild-type) hearts for analysis using our workflow, we

normalized and scored our previously published mouse

heart tissue protein abundance profiles, measured as spec-

tral counts mapped with high confidence to cognate

proteins by MS/MS (see Section 2). We then applied GSEA

[21] to find gene sets that are enriched in differentially

expressed proteins (see Section 2). To maximize protein

coverage, we collected curated gene sets from 11 public

repositories containing gene function annotations, path-

ways, protein complexes and disease signatures (Table 1).

We focused our analysis on the patterns of differential

protein expression at the two earliest time points available

(8 and 16 wk) to uncover early- (i.e. pre-symptomatic) and

mid-stage (i.e. clear evidence of cardiac functional defects

but minimal morbidity) effects. This is in contrast to our

original linear model analysis [7],] which resulted

a set of proteins differentially expressed across all three time

points at once. Our re-analysis resulted in a marked

improvement in both the variety and amount of significant

gene sets that was returned compared to our original study

[7]. We found 266 enriched gene sets (p-valueo0.01, false-

discovery rateo0.1) for the early and mid-stages, compared

to the 27 reported in the original paper (p-valueo0.01) [7].

This tenfold increase is presumably due to the

increased number of gene sets used, the analysis of each

time point separately (different enriched gene sets resulted

at each time point) and the ability of GSEA to identify gene

sets with weak, but coordinated, expression patterns [21].

The original analysis identified an increase in

cytoskeleton processes, muscle development, ER stress,

protein degradation, unfolded protein response and apop-

tosis and a decrease in aerobic respiration and

heart development, matching the DCM phenotype [7]. Our

analysis found all of these processes and many more, some

of which are differentially perturbed at only one time

point, including cell growth, immunity, translation, RNA

processing, and more detailed views of metabolism and

signaling.

3.2 Enrichment Map visualization of global

perturbations

To define a more concise picture of the pathways that are

induced during the disease course, we visualized the early

and mid-stage results as an Enrichment Map (see Section 2).

A single integrated Enrichment Map was used to display the

enrichment analysis results for both early- and mid-stage

disease allowing direct comparison of the time points

(Fig. 2) (Enrichment Map Cytoscape session available in

Supporting Information at http://www.baderlab.org/Data/

R9cEM). The node center (inner circle) color represents the

enrichment obtained for the early time point, while the node

border (outer circle) color reports the results for the mid-

time point. From this diagram, it was easy to identify both

similarities in the two time points, such as the uniform up-

regulation of the actin remodeling machinery and protein

translation (completely red circles) together with uniform

down-regulation of the citric acid cycle (completely blue

circles), and differences, such as the strong up-regulation of

apoptosis, proteasome and RNA processing/splicing appa-

ratus at the mid-stage (circles where one part is white and

the other is colored). These differences likely represent a

physiological response of the cardiomyocytes during the

disease progression. For instance, the changes in energy

metabolism (glycolysis, citric acid cycle and NADH dehy-

drogenase) shows evidence of a known shift in energy usage

from more efficient aerobic respiration at early stage to less

efficient anaerobic respiration at later stages, reminiscent of

the Warburg effect seen in fast growing cancer cells [36].

This also shows a limitation of our analysis, as energy

Table 1. Publicly accessible curated gene set sources used in this study

Source URL Version

Reactome http://www.reactome.org Version 27 (December 2008)
Cancer Cell Map http://cancer.cellmap.org/cellmap May 22, 2006
Net Path http://www.netpath.org April 29, 2008
Integrating Network Objects with

Hierarchies (INOH)
http://www.inoh.org November 28, 2007

BioCyc http://biocyc.org March 9, 2009
NCI Pathway Interaction Database http://pid.nci.nih.gov/PID/index.shtml October 20, 2009
NCI Biocarta http://pid.nci.nih.gov/PID/index.shtml June 1, 2004
Molecular Signal Database (MSigDB) -

c2 (pathways)
http://www.broad.mit.edu/gsea/msigdb Version 2.5 (April 7, 2008)

Gene Ontology (GO) http://www.bioconductor.org/packages/2.5/
data/annotation/html/org.Mm.eg.db.html

August 2008

Disease Phenotypes http://www.utoronto.ca/zhanglab/index.html
Corum Mips Complexes http://mips.gsf.de/genre/proj/corum February 13, 2008
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metabolism is post-translationally regulated by many

factors, including intracellular calcium, which is increased

in PLN-R9C. Some of the changes (citric acid cycle) are

expected, whereas others require more follow-up (initial

glycolysis down-regulation, NADH and ATP synthase up-

regulation). Up-regulation of many processes, including

protein translation and RNA processing/splicing, are

consistent with compensatory cardiomyocyte growth,

associated with cardiac distension. By mid-stage, the effects

of these stress responses appear to become detrimental,

with the PLN-R9C mouse displaying extensive thinning of

the ventricular wall, presumably due to an extensive loss of

cardiomyocytes [7].

A novelty compared to our previous study is the differ-

ence in time-behavior of multiple processes, such as cytos-

keleton control pathways. Changes in the sarcomere

structure, the main contractile apparatus of the myocyte, are

known to be preceded by actin remodeling [37]. Actin-based

cytoskeletal mobilization ultimately leads to cardiac remo-

deling [38], which is clinically evident as an enlarged
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Figure 2. Processes perturbed in early- versus mid-stage DCM. Enrichment Map representation of the GSEA results obtained for the PLN-

R9C transgenic mouse model of DCM versus wild type littermate controls at an early stage (8 wk, pre-symptomatic) and mid-stage (16 wk,

reduced cardiac function but minimal morbidity) of heart disease. The inner circle is colored according to early stage onset, and the outer

circle according to mid-stage disease. Node color and shading intensity represents the statistical significance of enrichment of a particular

gene set.
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heart size with a distended shape and contractile dysfunc-

tion (reduced fractional shortening and contraction force)

[38]. From the Enrichment Map, we see a consistent up-

regulation of actin remodeling machinery at early- and mid-

stage disease, whereas microtubule and sarcomeric up-

regulation is only present at mid-stage disease. This high-

lights a potential difference in timing or coordination

of these remodeling processes. Thus, the Enrichment Map

significantly eases visual comparison of global trends

in major cellular systems as a function of disease

progression.

3.3 Exploring the apoptotic network

The enrichment map clearly showed apoptosis as a key

element in the transition from an early-stage compensatory

hypertrophy response (i.e. enhancing cardiac output) to mid-

stage dilation, which precedes fibrosis and ultimately heart

failure [8]. Since many of the enriched gene sets originally

came from pathway databases, which curate detailed protein

interaction relationships, we were able to create a network

view of the enriched apoptosis gene set from the Reactome

pathway database, showing differential protein expression,

using Cytoscape [32] (Fig. 3). Given that the transgenic PLN-

R9C model has disrupted calcium flux within myocytes, an

interesting active molecule in the pathway, gelsolin, stood

out (Fig. 3). Gelsolin is a well-studied calcium regulated

mediator of actin filament assembly and disassembly that

was previously identified as a target of caspase-3-mediated

apoptosis [39] and has previously been implicated in human

DCM [40]. Given that loss of gelsolin in a knockout mouse

line [41] results in reduced apoptosis in response to

myocardial infarction (artery ligation), which normally

induces severe hypertrophy and dilation, the up-regulation

of gelsolin (and other functionally related proteins) we

Figure 4. Signaling cluster and integrin signaling. Zoom-in of the Enrichment Map gene set cluster representing signaling pathways

enriched at the early and mid-stages of heart failure. A summary description of the cluster was visualized as a ‘‘term cloud’’ using Wordle

(http://www.wordle.net/) derived from the text descriptions of all gene sets. Term size indicates its frequency; thus, large terms best

summarize the cluster (i.e. signaling pathways). Specific terms related to the integrin pathway are highlighted within this cluster and in

the network.
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detect suggests a causal connection to both the ventricular

remodeling that precedes dilation (Fig. 2) and the increased

apoptosis observed during disease progression [7]. Gelsolin

is one of many factors downstream of caspase-3 that are

progressively up-regulated from early to mid-stage.

Conversely, negative apoptosis related signaling factors

appeared to be down-regulated. Most notable is an initial

up-regulation at early stage, followed by down regulation at

mid-stage, of the ubiquitin-protein ligase XIAP, a well-

known inhibitor of apoptosis [42] (Fig. 3). Again, this is

consistent with the overall gene set output showing a

progressive increase in apoptosis during tissue remodeling

and dilation.

Linked to apoptosis in the Enrichment Map is another

large cluster representing up-regulation of the cell cycle at

mid-stage disease. Although the gene set names are indi-

cative of cell cycle events (i.e. Reactome_APC/C-Mediated

degradation of cell cycle proteins), examination of the genes

indicates this cluster is dominated by the proteasome

complex, which is involved in multiple processes (including

apoptosis and cell cycle). The ubiquitin-proteasome

machinery is involved in the targeted cleavage and degra-

dation of signaling proteins and has been linked to apoptotic

cell death and the unfolded protein response previously seen

in R9C [43]. There are, however, conflicting reports as to

whether the proteasome is up- or down-regulated in cardiac

dysfunction [43]. From our current analysis, we see a clear

up-regulation of proteasome levels at mid-stage disease

connecting to apoptosis in the Enrichment Map. The rela-

tionship between these two processes can be better gleaned

from a more detailed mechanistic representation of the

underlying gene sets.
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Figure 5. Reduced mortality

and decreased MAPK activa-

tion with propanolol. (A)

Cardiac cellular lysates from

16-wk-old mice were collec-

ted and analyzed for MAPK

pathway activity (indicated

by JNK expression and

phosphorylation of p38 Map

kinase), and versus a control

(GAPDH). MAPK pathway is

overactive in PLN-R9C mice.

(B) Treating mice with

propanolol reduces activity

of MAPK pathway at 16 wk in

PLN-R9C mice compared to

wild type. (C) Sixteen-wk-old

mice were subjected to M-

mode echocardiography and

left ventricular end diastolic

dimension (LVEDD), left

ventricular end systolic

dimension (LVESD) and

fractional shortening (FS)

were assessed. Propanolol

treatment reduces LVEDD,

LVESD and fractional short-

ening to wild type levels. (D)

WT and PLN-R9C mice were

treated with/without propa-

nolol (0.5 g/L in drinking

water) starting at 8 wk of age.

Mortality was monitored in

all groups at 16 wk. Cardiac

lysates and tissues were

obtained and analyzed as

previously described [7].

Antibodies used: phospho-

p38 – BD ]612281 from BD

bioscience and SAPK/JNK –

mAb ]9258 from Cell Signal-

ing.
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3.4 Uncovering novel signaling pathways

A more sparsely connected cluster of multiple regulatory

processes was found to be up-regulated to varying degrees at

early- and/or mid-stage disease (Fig. 4). This grouping

represents an assortment of interlinked pathways originat-

ing from different annotation databases. Integrin signaling

is one of the more enriched pathways (highlighted in Fig. 4),

with representations from three independent data sets

linked via a focal adhesion term, which is consistent with

the role of integrins as cell-adhesion receptors [44]. Integrins

also play a key role in sensing and transmitting mechanical

load in cardiomyoctyes [45], connecting the extracellular

matrix to intracellular signaling and the contractile appara-

tus (as can be seen by the connections between integrin

signaling and actin cytoskeleton regulation in the enrich-

ment map). In DCM, this process is involved in modifying

the core contractile machinery to compensate for impaired

calcium handling [45].

The MAP kinase signaling cascade is also prominently up-

regulated at mid-stage and represented by multiple terms,

including ‘‘Signaling to ERKS’’ (REACT_12058.1), ‘‘Prolon-

ged ERK activation events’’ (REACT_12005.1) and ‘‘MAPK

signaling’’ (KEGG:HSA04010) (Fig. 4). The MAPK (mitogen-

activated protein kinase) signaling pathway, and more speci-

fically up-regulation of p38 (MAPK14) [46] in rat myocytes,

has been shown to induce heart dilation. Similarly, the down-

regulation of the p38 [47] or JNK (MAPK8) [48] catalytic

subunits in transgenic mouse models followed by stress

induced through aortic banding has been previously shown to

induce cardiac hypertrophy leading to heart failure. In-depth

analysis of the components in the MAPK signaling gene set

from KEGG revealed that a handful of significantly up-regu-

lated proteins and many additional weakly up-regulated

factors were obtained by proteomic profiling. We therefore

decided to focus on this group for targeted follow-up experi-

ments since members of the pathway, such as p38 and JNK,

have been previously linked to either hypertrophy or dilation

depending on the direction of their differential expression. We

examined the activation levels of the two key downstream

effectors of the MAPK pathway, p38 and JNK, as indicators of

pathway activity. As predicted from the GSEA results, both

p38 and JNK show elevated activity in 16-wk-old PLN-R9C

mutant mice as compared to wild-type controls (Fig. 5A), even

though these proteins were not significantly up-regulated as

measured by the KS statistic.

To further investigate the role of the MAPK pathway in

mediating the progression to heart failure, we administered

the beta blocker propanolol to PLN-R9C mice, which is

commonly used clinically for treating heart failure [49] and

can result in the reduction of MAPK-dependent pathway

activation [50]. Beta blockers function initially as negative

ionotropic agents, decreasing the strength of muscle

contraction thereby reducing energy requirements and wall

stress [50]. As demonstrated in Fig. 5B, both p38 and JNK

returned to near wild-type levels at 16 wk after administra-

tion of propanolol starting at 8 wk. Further, phenotypic

examinations (Fig. 5C) and the mice survival curves

(Fig. 5D) also confirmed nearly complete rescue of PLN-R9C

defect upon treatment with propanolol. These results imply

causal participation of MAPK signaling, whose activation

was missed in our initial proteomic assessment based on

simple ORA analysis [7].

4 Concluding remarks

Like other groups, we have been investigating the causal

basis for progressive DCM using an integrative profiling

approach incorporating data from multiple relevant

sources to generate a thorough, yet concise picture of the

underlying functional disturbances over time. By applying

GSEA to the early and mid-time points of DCM progression

using a large and diverse set of pathways and functional

annotations with an Enrichment Map display, we demon-

strated how proteins ranked by relative expression in cardiac

tissue in our PLN-R9C mouse model can be converted into a

global view of processes changing over the course of heart

disease progression, starting from pre-symptomatic pathol-

ogy to DCM. These additional analyses have revealed novel

functional connections, both between individual gene

products and across biological pathways and broader

systems, that were missed previously using simple ORA

analysis [7]. Our new method also more clearly shows

processes affected in common, or uniquely, at the early- and

mid-disease stages. These ranged from widespread effects

on central metabolism and cytoskeletal remodeling to more

specific perturbations in apoptotic, integrin and MAPK

signaling.

While many of the gene sets, such as metabolism and

actin remodeling, have been previously recognized in heart

disease studies, there are still unanswered questions as to

their mechanistic contributions to cardiac disease [51]. The

biological significance of the metabolism shift is suggested

by recent publications indicating that it leads to a critical

tipping point in the heart where energy reserves are not

sufficient to maintain function which ultimately leads to

failure [52]. Our re-analysis highlights an early increase in

energy demands by the heart manifested in the up-regula-

tion of NADH Dehydrogenase and ATP synthase. This up-

regulation is only detectable at an early stage when there is

minimal phenotypic indication of any contraction defect,

but disappears at mid-stage disease once the heart has

already begun to fail, adding additional weight to the above

tipping point interpretation.

The power of our method is that it can quickly identify

general processes that are interesting and then enables a

more detailed study, as can be seen from our analysis of

apoptosis and MAPK signaling. This approach is flexible

and can be applied to other datasets. As other high-

throughput studies of DCM are conducted and gene set

curation efforts continue, a more complete network will be
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generated, providing improved understanding of the

underlying molecular basis for progressive heart failure in

human patient populations. On-going efforts to improve the

coverage of pathway data, encompassing transcriptional

regulation by microRNAs and transcription factors [53–55],

will likely provide the basis for more robust and informative

computational analysis at the gene set and gene-interaction

level. Increased protein coverage by MS and more sensitive

methods will further expand the number of enriched

gene sets, which may otherwise be missed due to too few

differential proteins being present. The framework proposed

here constitutes an ideal staging ground for more advanced

computational tools supporting visualization, analysis and

hypothesis generation for protein expression data. Although

challenging, using pathway analysis to decipher the

mechanism of a complex disease such as DCM facilitates

the development of a more coherent molecular under-

standing of DCM etiologies and potentially other cardio-

vascular diseases that lead to heart failure.
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