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Abstract  
Background 
PDZ domains mediate protein-protein interactions involved in important biological processes 

through the recognition of short linear motifs in their target proteins. Two recent independent 

studies have used protein microarray or phage display technology to detect PDZ domain 

interactions with peptide ligands on a large scale. Several computational predictors of PDZ 

domain interactions have been developed, however they are trained using only protein 

microarray data and focus on limited subsets of PDZ domains. An accurate predictor of 

genomic PDZ domain interactions would allow the proteomes of organisms to be scanned for 

potential binders. Such an application would require an accurate and precise predictor to 

avoid generating too many false positive hits given the large amount of possible interactors in 

a given proteome. Once validated these predictions will help to increase the coverage of 

current PDZ domain interaction networks and further our understanding of the roles that PDZ 

domains play in a variety of biological processes. 

Results 
We developed a PDZ domain interaction predictor using a support vector machine (SVM) 

trained with both protein microarray and phage display data. In order to use the phage display 

data for training, which only contains positive interactions, we developed a method to 

generate artificial negative interactions. Using cross-validation and a series of independent 

tests, we showed that our SVM successfully predicts interactions in different organisms. We 

then used the SVM to scan the proteomes of human, worm and fly to predict binders for 

several PDZ domains. Predictions were validated using known genomic interactions and 

published protein microarray experiments.  Based on our results, new protein interactions 

potentially associated with Usher and Bardet-Biedl syndromes were predicted.  A comparison 
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of performance measures (F1 measure and FPR) for the SVM and published predictors 

demonstrated our SVM’s improved accuracy and precision at proteome scanning. 

Conclusions 
We built an SVM using mouse and human experimental training data to predict PDZ domain 

interactions. We showed that it correctly predicts known interactions from proteomes of 

different organisms and is more accurate and precise at proteome scanning compared with 

published state-of-the-art predictors. 

Background  
Many protein-protein interactions in eukaryotic signalling systems are mediated by conserved 

modular protein recognition domains, which are organized in different ways to form larger 

proteins. The PSD95/DlgA/Zo-1 (PDZ) domain is a protein recognition domain that is found 

in increasing abundance in yeast to metazoans with 250 encoded in the human genome [1]. 

They are often found in scaffolding proteins and interact with ion channels, adhesion 

molecules, and neurotransmitter receptors in signalling proteins to maintain cell polarity, 

facilitate signal coupling and regulate synaptic development [2]. Furthermore, studies have 

shown that the disruption of PDZ domain mediated interactions are associated with diseases 

such as human papillomavirus, cystic fibrosis and schizophrenia [3-5]. 

 

The PDZ domain consists of 80-90 amino acid residues folded into five to six β strands and 

two α helices. Canonical interactions occur through the recognition of hydrophobic C 

terminal tails of target proteins binding in a groove formed between strand β2 and helix α2. 

Early studies grouped PDZ binding specificity into two classes focusing on residues at 

position 0 and -2 of the ligand [6] (position numbering counted backwards from the 0 C 

terminal position). However, it is now known that the PDZ binding pocket can interact with, 
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and is highly specific to, as many as seven target C terminal residues enabling the recognition 

of a diverse set of ligands [7, 8]. A wealth of knowledge about PDZ domain interactions is 

now available from various sources. Some focus on select family members while recent high 

throughput experiments study many domains from across the entire family [7-9]. 

 

The biological importance of PDZ domains, their simple modes of target recognition and the 

availability of experimentally determined interactions have prompted the development of 

PDZ domain interaction prediction methods by multiple groups.  Such methods are based on 

established techniques, which have been used with success to predict interactions for SH2 

and SH3 domains, protein serine–threonine kinases and major histocompatibility complex 

(MHC) molecules [10-14].  Position weight matrices (PWMs) contain in each cell the 

probability of observing an amino acid at a given ligand position and are commonly used to 

compute a score describing the binding preference of a PDZ domain for a given peptide. 

Tonikian et al., used PWMs to predict human PDZ interactions and identify viral proteins 

that mimicked domain specificities [7]. Stiffler et al., developed a variant of the PWM that 

contained weights describing the relative preference for amino acids at positions in the ligand 

compared to the other domains they modelled [9].  Another method by Eo et al. used a 

machine learning method called a support vector machine (SVM) to predict PDZ domain 

interactions, though limited to those involving G coupled proteins [15]. While these methods 

can predict PDZ domain interactions, their common limitation is that they were trained to 

ideally predict interactions for specific or limited subsets of PDZ domains. Recently, Chen et 

al., used an additive model to predict interactions for the entire PDZ domain family using 

data from Stiffler et al. [16]. They also demonstrated the predictor’s ability to predict mouse 

genomic interactions and to a lesser extent genomic interactions in other organisms. This 
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predictor was validated on a limited data set, thus it is not clear if it can be used to accurately 

and precisely predict interactions given a large set of possible interactors. 

 

A practical application of a reliable PDZ domain interaction predictor would be to use it to 

scan the proteomes of organisms for potential binders of PDZ domains. The results would 

help direct future experiments to increase the coverage of current PDZ domain interaction 

networks and expand our knowledge of the roles that PDZ domains play in different 

biological processes. In this paper we present a primary sequence based predictor of genomic 

interactions involving PDZ domain family members using a SVM. Unlike published 

predictors, our SVM is trained using data from two independent high throughput studies 

using protein microarray and phage display technologies, which makes it more general. Since 

the phage display data consists of only positive interactions, we have overcome a major issue, 

which has up to now prevented its straightforward use for predictor training. We addressed 

this by developing a method for the generation of artificial negative interactions from data 

consisting of positive interactions only. This method generates more biologically meaningful 

negatives compared to other commonly used methods that use randomization or shuffling. 

Through independent testing with published genomic data sets, we showed the SVM’s ability 

to accurately predict interactions in multiple organisms [16]. We then used the SVM to scan 

human, worm and fly proteomes to predict binders for different PDZ domains. We validated 

the predictions using known genomic interactions from PDZBase and protein microarray 

experiments [16, 17]. Finally a comparison of proteome scanning performance, which 

depends on minimizing the number of false positives generated, showed the SVM’s improved 

accuracy and precision compared to published predictors. Predicted interactions made by our 

SVM matched a significant number of known protein-protein interactions and were enriched 
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in known and novel biological processes, suggesting that many more predictions are likely to 

be correct. 

Methods 
Training Data 
We trained our predictor using data from mouse protein microarray and human phage display 

experiments [7, 9]. Interactions were collected in the form of domain-peptide sequence pairs, 

where domains were represented by their binding site and peptides were five residues in 

length. For both mouse and human PDZ domains, we omitted those whose binding site did 

not align well with other PDZ domains [16]. Human domains that lacked adequate data (less 

than 10 interactions), or were difficult to generate artificial negative interactions for, were 

also not used. This left 82 out of 85 mouse and 31 out of 54 human PDZ domains. Since 

phage display data may contain non-genomic interactions and we were interested in building 

a genomic predictor, we filtered the human phage display data to create a data set enriched in 

genomic-like interactions. First, an interaction was considered to be genomic-like if the last 

four residues of the interacting peptide matched a human protein tail (defined by genome 

assembly Ensembl:GRCh37.56), otherwise it was defined as non genomic-like. Then, 

domains were categorized as genomic-like, non genomic-like, dual or non-specific, 

depending on the number of unique genomic-like or non genomic-like interacting peptides 

they bound to (Table 1). To enrich for genomic-like interactions we did not use any data from 

non genomic-like domains and removed all non genomic-like interactions from the dual 

domains. Domains with less than 10 unique genomic-like peptides after this filtering were not 

used. Finally, data from genomic-like and non specific domains (that had a combined total of 

≥10 peptides) were used without any filtering. This resulted in a small number of non 

genomic-like interactions being included, but allowed us to increase the amount of phage 
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display data usable for training. In total, data for 20 human and 82 mouse domains were used 

for training (Table 2).  Please see additional file 1: Supplementary Information for more 

details about how the data sets were created.  

Artificial negative interactions for phage display  
Since we considered the prediction of PDZ domain interactions as a binary problem (i.e. 

binds or does not bind), training an effective predictor required both positive and negative 

interaction data. We generated artificial negative interactions for the human phage display 

data since they only contained positive interactions. Based on previous research the proper 

selection of artificial negatives is important for successful predictor training and evaluation 

[18, 19]. Random and shuffled peptide sequences have been commonly used, but since these 

negatives do not resemble real sequences, they have been shown to produce predictors with 

lower accuracy when predicting real negative interactions [19]. We generated artificial 

negative interactions for training based on positive interactors (peptide ligands) modelled 

using PWMs. Therefore a PWM for a given PDZ domain was used to select likely negative 

interactors for that domain from a set of unique real interactors for all domains. For a given 

domain, negative interactors are those peptides with low PWM scores and low redundancy 

with other selected peptides. We set the score cut off to be the minimum score among all the 

PWM scores computed for the positive interactors (see additional file 1: Supplementary 

Information for more details). For the 20 human phage display domains, a total of 745 

artificial negative interactions were generated (Table 2). The number of positive and negative 

training interactions was balanced using a weighted cost support vector machine. 

Primary sequence based feature encoding 
Each domain-peptide sequence pair was encoded as a vector of numeric values representing 

features of a positive or negative interaction. Values were scaled to lie between 0 and 1 [20]. 
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We used the ‘contact map’ encoding method described in Chen et al. A contact map contains 

information about contacting residues in the domain binding site and peptide derived from a 

protein structure of a PDZ domain complexed with a peptide ligand [16]. In total, 16 domain 

binding site positions found to be in contact (< 5.0 angstroms) with the last five peptide 

positions were used, based on the 3D structure of mouse α1-syntrophin in complex with a 

heptapeptide. This corresponded to 38 contacting domain and peptide position pairs. Each 

amino acid residue pair was numerically encoded as a binary vector of length 400 

representing a 20 x 20 binary matrix to capture all possible amino acid pairs. The final 

encoding consisted of a binary vector of size 15200 (38 x 400). Contact maps for other 

domains were constructed via a multiple sequence alignment [16]. 

Support vector machine 
A support vector machine is a machine learning method that makes binary predictions [21, 

22]. Given interaction training data (x1,y1),…,(xm,ym) where xi is a feature vector for domain 

di and peptide pi and y is a class label such that yi = {-1, +1}, a binary predictor assigns a 

class label of +1 if a given interaction feature vector encodes a positive interaction or -1 

otherwise. SVMs evaluate the following decision function to make binary predictions: 

 

where sgn(0) = +1, otherwise -1. The margin w and bias term b describe a maximum margin 

hyperplane separating positive and negative training points and are solutions to the following 

optimization problem: 
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are Lagrange Multipliers and C is a cost parameter that penalizes training errors. The radial 

basis function (RBF) kernel was used here and is defined as: 

€ 

K(x i,x j ) = e−γ x i −x j
2
 

Locally optimal values for γ and C were determined using grid search. We used weighted 

costs according to C+ = (n+/n-) C-, where n+ is the number of positive training interactions and 

n- is the number of negative training interactions. LibSVM was used to build the SVM [23]. 

Predictor performance evaluation 
Multiple cross validation strategies were used to estimate the SVM’s ability to extrapolate to 

unseen interaction data. We used 10 fold cross validation by partitioning the training data into 

10 randomly selected interaction sets, independently holding out each set for testing against a 

predictor trained using the remainder of the data, and averaging the performance across all 10 

runs. For comparison purposes, we also followed the procedure of Chen et al. [16], to 

estimate the predictor’s ability to generalize to different unseen data by holding out 8% of the 

domains, 12% of the peptides and both 8% of the domains and 12% of the peptides and 

testing on the rest, again repeated 10 times. 

 

We compared different predictors, through testing using independent genomic data sets in 

worm, fly, mouse and human collected from different sources (Table 3). In particular, we 

used data from Chen et al. [16], which included interactions from protein microarray 

experiments for fly, worm and mouse orphan domains. Mouse orphan domains were those 

from the original mouse protein microarray experiment that did not interact with any of the 

peptides tested. In Chen et al., a subset of interactions involving these domains were retested 

using fluorescence polarization to identify false negatives which were then corrected to be 

positive interactions [16]. We also used known human interaction data from PDZBase [17].  
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We computed the following statistics to measure predictor performance: 

• True positive rate (TPR) or Recall: #TP/#P 

• False positive rate (FPR): #FP/#N 

• Precision: #TP/(#TP + #FP) 

• F1 Measure: 2 (Precision x Recall) / (Precision + Recall) 

where #TP is the number of true positives, #P is the number of positives, #FP is the number 

of false positives, #N is the number of negatives. The overall performance was summarized 

by computing the area under the ROC and PR curves (AUCs) [24, 25]. 

Results  
Estimating support vector machine performance 
The SVM achieved high AUC scores from multiple cross validation testing. The highest 

ROC and PR AUCs of 0.939 and 0.896 respectively were obtained when 10% of interactions 

were held out for testing. For tests that involved holding out all interactions for a given 

domain, the AUC scores were lower. In particular, the leave 12% of domains out test yielded 

ROC and PR AUC scores of 0.851 and 0.764 and the leave 12% domain and 8% peptides out 

yielded ROC and PR AUC scores of 0.87 and 0.794 (Figure 1). In contrast, the leave 8% 

peptides out yielded higher ROC and PR AUCs of 0.893 and 0.838. This suggests that the 

SVM’s ability to accurately predict a given test domain depends on its level of similarity to 

the training domains. To determine the degree of this dependency we performed leave one 

domain out cross validation and divided the AUC scores according to the binding site 

similarity of the held out domain to that of its nearest training neighbour. We repeated this 

using a simple nearest neighbour predictor (NN) and compared the results. The results 

showed that, indeed, the SVM achieves a higher performance for domains that are more 
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similar to the training set. The SVM was on average better than the nearest neighbour method 

for testing domains with over 60% sequence similarity to their nearest training neighbour 

(Figure 2 top). Presumably, this means the SVM learned non-trivial patterns in the data 

features instead of simply indentifying similarities in the sequences as the NN predictor did. 

For tested peptides, this dependence was not as apparent, which indicates that the SVM’s 

performance is more dependent on domain sequence similarity than peptide sequence 

similarity (Figure 2 bottom). For more details about nearest neighbour predictor see 

additional file 1: Supplementary Information. 

Performance evaluation on a series of independent tests across organisms 
We next validated our choice of data and methods for three major parameters affecting 

predictor performance: training data, feature encoding and artificial negatives. We examined 

each parameter independently by comparing our SVM to other SVMs built using different 

values for the parameter of interest while holding the other two parameter values fixed. 

Predictor performance was assessed using data for mouse, worm and fly from independent 

protein microarray experiments, which all contain positive and negative interactions [16]. 

Genomic-like phage display training data 
We first validated our use of mouse protein microarray and human genomic-like phage 

display data for training. We compared our SVM to those built using data from single 

experimental data types (mouse/protein microarray or human/phage display), both 

experimental data types (mouse/protein microarray and human/phage display) and both 

experimental data types but with human phage display data enriched in genomic-like or non 

genomic-like interactions. For all SVMs, contact map features were used to encode the data 

and PWMs were used to generate artificial negatives. A comparison of predictor performance 

showed that our SVM was better than the other predictors for the worm and fly tests (Figure 
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3). All predictors had lower scores for the mouse orphan test. To explain the latter 

observation, for each test we computed the binding site similarity of each testing domain to 

its nearest training neighbour. We found that the mouse orphan domains were on average 

65% similar to their nearest training neighbours, while the worm and fly testing domains 

were on average 80% and 87% similar to their nearest training neighbours respectively. 

Therefore the observed pattern of performance was consistent with our earlier observation 

that predictor performance decreased as the similarity between testing domains to their 

nearest training neighbours decreased. These results validate our use of both mouse protein 

microarray and human genomic-like phage display interactions for SVM training. 

Contact map feature encoding 
We next validated our choice of using the contact map feature encoding. We compared our 

SVM to those built using binary sequence or physicochemical property-based encodings. All 

predictors used mouse protein microarray and human genomic-like training data and PWMs 

to generate artificial negatives. For the binary sequence encoding, binary vectors were 

created using a vector of length 20 with each element representing an amino acid and initially 

set to zero. A single residue was represented by placing a one in the position representing that 

residue. A binary vector was created for each residue in a domain-peptide interaction pair, 

with the final vector of length 20 aa x (length of domain binding site sequence + length of the 

peptide sequence). For physicochemical features, a vector of five real numbers describing 

over 500 different physicochemical properties for each amino acid residue was created for a 

domain-peptide interaction sequence [26]. Thus, final vectors were of length 5 x (length of 

the domain binding site sequence + length of the peptide sequence). The predictor 

performance comparison showed that except for the mouse orphan test, our SVM had the 

highest scores (Figure 3). We again attributed the low performance on the mouse orphan test 
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to the dissimilarity of the test domains to the training domains. Those predictors with better 

mouse orphan test performance did not generalize to the worm or fly tests, supporting the 

conclusion that the mouse test is not ideal. These results indicate that the contact map feature 

encoding for SVM training is better compared to binary and physicochemical property based 

encodings. 

PWM selected negative interactions for phage display data 
Finally, we validated the use of PWMs for generating artificial negatives for the phage 

display training data. We compared our SVM to those built using random, shuffled, and 

randomly selected artificial negatives. All predictors used mouse protein microarray and 

human genomic-enriched phage display training data encoded using contact map features. 

Random negatives were created using random residues concatenated into peptides of length 

five. Shuffled negatives were created by shuffling residues in the positive peptides. 

Randomly selected negatives were created by randomly selecting peptides from the same set 

of peptides used to select negatives in the PWM method. We created 100 different artificial 

negative data sets from the phage display data and measured the mean predictor performance. 

Over all the tests, the average SVM ROC and PR AUC scores were 0.71 and 0.60, 

respectively, which were slightly higher than the over all average ROC and PR scores for the 

other predictors (Figure 3). Specifically, the average ROC and PR scores were 0.70 and 0.58 

for random negatives, 0.70 and 0.59 for shuffled negatives and 0.69 and 0.58 for randomly 

selected negatives. Although the scores were similar for all predictors within each test, the 

average ROC and PR scores for mouse, worm and fly tests showed that all predictors 

performed poorly for the mouse orphan test but were better for the worm test. For the fly test 

however the predictor using PWM negatives was in general better. This suggests that the 

PWM negatives are a reasonable choice for artificial training negatives with its importance 
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for improving predictor performance more evident in cases where the testing domain is 

highly similar to the training domains. 

SVM prediction of PDZ domain interactions by proteome scanning 
We used the SVM to scan the human proteome (defined by genome assembly 

Ensembl:GRCh37.56) [27] to predict binders for 13 human PDZ domains with available 

validation data in PDZBase. In total, 41,193 unique transcript tails of length five, out of 

77,748 transcripts corresponding to 23,675 genes from the human proteome, were scanned. 

We also scanned the worm and fly proteomes (defined respectively by genome assemblies 

Ensembl:WS200.56 and Ensembl:BDGP5.13.56) [27] for binders for six and seven PDZ 

domains respectively, with known genomic interactions from Chen et al. [16]. For worm, 

19,864 unique transcript tails of length five, out of 27,533 transcripts corresponding to 20,158 

genes, were scanned. For fly, 14,691 unique transcript tails of length five, out of 21,309 

transcripts corresponding to 20,158 genes, were scanned.  In all cases, very few known 

genomic interactions (on average 2.2 human, 4.2 worm and 9.8 fly) were available for 

validation of the domains tested making accurate assessment of predictor performance 

difficult. Nonetheless, the results reported here serve as a reasonable performance estimate. 

SVM predictions are available at http://baderlab.org/Data/PDZProteomeScanning. 

 

For human, over 85% of PDZBase interactions for 10 of the 13 human domains were 

predicted by the SVM. Of the three remaining domains, MAGI2-2 and MAGI3-1 had no 

PDZBase interactions correctly predicted, but these domains had only one known interaction 

each. Two other domains (PDZK1-1 and SNTG1-1) also had only one known interaction 

each however the SVM correctly predicted the single interaction for these domains. Further 

experimental validation and more detailed literature searches should be carried out to obtain a 
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more reliable assessment of SVM performance for these domains. For the last domain 

(MLLT-4), only one out of six known interactions was predicted, however compared to the 

other domains tested, this domain was the most dissimilar to its nearest training neighbour 

with a similarity of 0.68. It also had no homologs in the training data making it a challenging 

test case.  

 

For worm and fly, 25% and 37% of protein microarray interactions respectively were 

predicted. Although this is much lower than the human proteome scanning result, the false 

positive rates are both quite low at approximately 4%. In particular, in worm and fly, none of 

the known interactions were predicted for DSH-1 despite it having a reasonable number of 

known interactions (11 and 3 respectively) and being very similar to its nearest training 

neighbour (over 0.8). In fly, the SVM did not make any predictions for PAR6-1 even though 

it too was very similar to its nearest training neighbour (1.0). Through further analysis, we 

found that in each case, the nearest training neighbours DSH-1 and PAR6B-1 in mouse had 

only three and two training interactions respectively. This suggests the possibility that 

predictor performance might also depend on the abundance of nearest neighbour training 

data. However, a single exception to this is that the SVM did not predict any known 

interactions for PATJ-2, which had a reasonable amount of validation data (7 interactions) 

and was very similar to its nearest training neighbour (over 0.81), which also had adequate 

data (16 interactions). Thus, in general, the SVM is more likely to correctly predict 

interactions for domains that are well represented in the training data in terms of sequence 

similarity and interaction abundance. 

Comparison of predicted and experimental binding specificities 
Since known interactions are limited, we compared the predicted and experimental binding 
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specificities to determine if the set of SVM predictions was consistent with their 

corresponding set of experimental binders, at a high level. Four of the human domains had 

adequate genomic-like binders from phage display experiments (10 or more), which were 

used to create PWMs to summarize their binding specificities. These were then graphically 

represented as sequence logos. For worm and fly, PWMs were created for five and three 

domains, respectively, that had five or more binders determined from protein microarray 

experiments. We then created PWMs using the corresponding predicted binders and 

computed the similarity between the predicted and experimentally determined binding 

specificities. The average PWM similarity was 67% and the predicted binding specificities 

corresponded to known PDZ domain binding classes I and II (Figure 4). Two domains (DSH-

1 from worm, PATJ-2 from fly) had binding specificity similarities much lower than the 

average (less than 60%), however these results were not unexpected, given the poor results 

for these two domains shown above.   

 

Although the experimental and predicted binding specificities were generally consistent, 

there were some discrepancies. For example the human phage display sequence logos show a 

clear preference for T at p-2 and V at p0 while this preference is not as strong for the 

predicted sequence logos. This is because phage display experiments only find optimal 

binders. However, such binders may not exist in the proteome, leading to the domain 

preferring a less optimal binder. This may be biologically advantageous as weak binders may 

allow for easier interaction regulation. To determine whether this was the case in our data, we 

scanned the human proteome with the optimal phage display PWMs and created genomic 

sequence logos with the top 1% of binders. The predicted sequence logos were all more 

similar to the genomic phage display sequences logos than they were to the optimal phage 
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display sequence logos (see additional file 1: Supplementary Information Figure S2). 

Therefore, some discrepancies between experiment and predicted logos are not unexpected. 

Overall, these results show that the SVM predicted binding specificities are generally 

consistent with those that are experimentally determined. 

Protein-protein interaction support for predicted interactions 
To provide additional support for our predictions, we calculated how many corresponded to 

known protein-protein interactions (PPIs). Specifically, we scanned the human proteome for 

potential binders for 213 human PDZ domains with known PPIs in the iRefIndex [28], which 

is a database integrating PPIs from different databases including BIND, BioGRID, CORUM, 

DIP, HPRD, IntAct, MINT. If the protein containing the given domain was found to interact 

with another protein whose C terminal tail matched the predicted binder, the prediction was 

considered to correspond to a known PPI. The SVM successfully predicted interactions 

corresponding to known PPIs for 75 of the 213 PDZ domains with an average of 19% of 

known PPIs successfully predicted per domain (see additional file 1: Supplementary 

Information Table S9). The number of PPIs successfully predicted per domain was 

significant (p < 0.05) for all but 19 domains. Significance testing was performed using 

Fisher’s exact test, which asked whether the observed number of PPIs predicted for a given 

domain could be achieved at random.  Since PDZ domain containing proteins may contain 

multiple PDZ domains, it is not possible to uniquely assign a PPI to a PDZ domain. This 

could result in erroneous false negative or true positive statistics for the above tests, thus they 

should be regarded as a rough estimate of predictor performance. There were not enough PPI 

data in iRefIndex to carry out the same analysis for worm and fly domains. SVM predictions 

are available at http://baderlab.org/Data/PDZProteomeScanning. 
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SVM performance compared to published predictors 
Cross validation and a series of independent tests show that our SVM can accurately predict 

PDZ domain-peptide interactions, however, a major issue with most predictors used to scan a 

proteome is the generation of too many false positives. We thus compared the proteome 

scanning performance of our SVM and published prediction methods - the multidomain 

selectivity model (MDSM) by Stiffler et al. and the additive model by Chen et al. which are 

both state-of-the art and trained using mouse protein microarray data in their original 

publications [9, 16]. We also developed an ensemble of PWMs, one per domain, built using 

the same data used to train the SVM. The PWM corresponding to the nearest training 

neighbour for a given test domain, as measured by binding site similarity, was then used to 

scan the proteome for the top 1% of PWM scoring binders. This predictor represented our 

baseline for comparison. We used the F1 measure to compare predictor performance since it 

summarizes the precision/recall performance of a predictor and is used in document retrieval 

where the recovery of relevant documents from a large number of possibilities is critical. For 

all predictors, the majority of F1 measures are low (less than 0.1). This is likely due to the 

high level of incompleteness in the benchmark used to validate the predictions. However, the 

results show that the SVM achieves a higher average F1 measure (0.037) than the other 

predictors demonstrating its improved accuracy and precision. In comparison, the average F1 

measures were 0.02, 0.005 and 0.016 for the MDSM, additive model and PWM predictor 

respectively. For fly and worm domains, we computed the false positive rate and found it to 

be approximately 4% and substantially (over 4 times) lower than the FPRs of the other 

predictors (Figure 5).  

 



 - 19 - 

The performance of the MDSM and SVM was close and the SVM’s improved performance 

may be due to its use of a larger training data set (both phage display and microarray). To 

more directly compare these two predictors, we trained an SVM with only mouse microarray 

data and compared the performance. The results show that no predictor method is clearly 

better than the other. The MDSM's performance is not consistent as shown by the fly test 

results, which has similar testing and training data sets, and is expected to be an easy test (see 

additional file 1: Supplementary Information Figure S3 left). On the other hand, the 

performance of the SVM trained only using microarray data is more consistent, but has a 

higher false positive rate compared to the MDSM (see additional file 1: Supplementary 

Information Figure S3 right). These results suggest that our predictor performance 

improvement is likely due to our use of more training data. It may be possible to modify the 

MDSM method to accept phage display data as training, though the SVM method naturally 

accepts this data without method modification – a clear advantage in terms of flexibility. 

Overall, these results demonstrate the SVM’s improved performance over other published 

predictors for proteome scanning of PDZ domain interactions. For more details about the 

predictors used for comparison please see additional file 1: Supplementary Information. 

Furthering our understanding of PDZ domains and the biological processes they 
mediate  
To demonstrate how our predictions can be used to further our understanding of PDZ 

domains and the biological processes they mediate, we performed GO biological process 

term enrichment analysis of the predicted binders using the BiNGO (Biological Network 

Gene Ontology tool) software library [29]. The hypergeometric test was used to compute a p-

value assessing the GO term enrichment for a given set of predicted genes. Multiple testing 

correction was performed using the Benjamini and Hochberg False Discovery Rate (FDR) 

correction. While we did not have enough information to perform the analysis with worm and 
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fly, almost all human PDZ domain binder lists were statistically enriched (p < 0.05) for 

known PDZ domain processes such as ion transport and localization (see additional file 1: 

Supplementary Information Table S10). Interestingly, the biological process ‘photoreceptor 

cell maintenance’ was found enriched only among the predicted genes for the PDZ domain 

containing protein PDZK1-1. These genes include those that encode proteins associated with 

Usher (USH1G, USH2A) and Bardet-Biedl syndromes (BBS10); both are genetic human 

diseases of the cilia with wide ranging symptoms including retinal degeneration [30].   

Although disruption of PDZ mediated interactions are known for Usher syndrome, such a 

disruption involving PDZK1-1 has not been reported for either.  Since the validity of our 

predicted binders is supported by the successful prediction of known interactions in PDZBase 

and iRefIndex (1 out of 1 and 4 out of 24 respectively), with experimental validation, these 

potential PDZ domain mediated interactions may provide further insight into the molecular 

mechanisms underlying Usher and Bardet-Biedl syndromes. 

Discussion  
We have presented a predictor, which can be used to more accurately and precisely scan 

proteomes of organisms for potential binders of PDZ domains. We focused on the application 

of proteome scanning. The results of our predictor can help prioritize biological experiments. 

In addition, since our predictions are predicted in vitro interactions, they can also be used as 

input to computational methods aiming to predict likely in vivo interactions by including 

multiple lines of evidence, such as co-expression and binding site conservation [31, 32]. In 

both cases our predictions will be useful for substantially reducing the number of candidates 

that need to be considered for more focused analyses.  Given the success of our proteome 

scanning results we also expect the predictor to perform well in organisms which are closely 

related to human, worm and fly. 
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An interesting result from our work is that binding site sequence information at contacting 

positions in the domain was the most effective feature encoding method among the ones we 

tried. The poor performance obtained by the other encoding methods (flatly representing 

binary sequence or physicochemical properties) suggest that by explicitly encoding 

contacting domain and peptide position pairs, sequence information need only be used to 

obtain good predictor performance. While we showed that this results in a predictor that 

relies to some degree on binding site sequence similarity, we also showed that this 

dependence only exists for the domain and not the peptide. We established a sequence 

similarity threshold of 60% for testing domains, which may act as a rough indicator of the 

limits of our predictor and can be used identify poorly characterized PDZ domains in current 

data sets. 

 

The use of PWMs to generate artificial negatives was motivated by previous work that 

showed the importance of training with artificial negatives, which resemble real negative 

interactions. In one study, predictors were trained using random and shuffled negatives to 

show that this resulted in predictors with lower accuracy when real sequences were used for 

testing [18, 19]. In other work, artificial negatives were generated by pairing proteins with 

different co localizations or randomly pairing proteins known to not interact. It was shown 

that this created a constraint on the distribution of the negatives making it easier for the 

predictor to distinguish between positive and negative interactions. This led to biased 

estimates of predictor performance when cross validation was used [18]. Since our PWM 

negatives were selected from peptides involved in real positive interactions, they are 

biological sequences and we expect their distribution to be closer to biologically meaningful 
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interactions. We also believe that this results in a more realistic learning problem for the 

predictor and may reduce the bias in predictor accuracy estimation and benefit predictor 

performance in practice. However, we realize that PWMs may have high false positive rates 

due to limitations such as their inability to model dependencies between ligand positions. 

These shortcomings may be responsible for the modest improvement in independent testing 

performance between predictors trained using PWM generated and other negatives. 

 

Although many of our proteome scanning predictions were validated using known 

interactions, the lack of a complete benchmark of genomic PDZ domain interactions 

contributes to our low F1 measures (most are less than 0.1). This may be addressed to some 

degree by using more validation data from experiments or literature searches, which we 

expect to help improve the accuracy of the F1 and FPR measurements. In the case of two fly 

domains LAP4-2 and LAP4-3, the SVM did achieve higher F1 measures of 0.17 and 0.25 

respectively. The SVM predicted many known interactions but also predicted a very small 

number of fly proteins as potential binders (34 and 8 respectively). In general, the SVM made 

far less positive predictions than the other predictors, which raises the question of whether the 

SVM is simply more conservative (by making fewer predictions) or actually more precise (by 

making fewer and more accurate predictions) compared to other predictors. Again, this 

cannot be fully answered without more validation data, however the SVM’s higher F1 and 

lower FPR scores are strong evidence supporting the latter case. 

 

In genomic tests, predictor performance was consistently poor for the mouse orphan test, 

which consisted of domains that were highly dissimilar to the training domains. Based on our 

finding that predictor performance depends on the similarity between testing and training 
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domains, this result was not unexpected. However, even if the similarity between testing and 

training domains is similar, predictor performance can still be poor. This was discovered 

while scanning the fly proteome for binders of PATJ-2. We found that the nearest training 

neighbour for this domain according to binding site sequence similarity did not correspond to 

its known human homolog, which was present in the training data. This highlighted a 

limitation generally faced by sequence based predictors: if the training domains best 

representing a given testing domain do not share similar sequence features, the correct 

binding specificity may not be properly learned. This may occur for two domains with 

structurally or physicochemically similar binding sites encoded with very different amino 

acid sequences. This may be the reason for the SVM’s inability to predict any known 

interactions for PATJ-2. Exploring structural domain features useful for SVM training may 

determine if this is the case. 

 

While our SVM performs better than published methods on proteome scanning, it can clearly 

be improved. One way to do this is to consider additional relevant features, such as 

information related to protein structure. For example, it has been shown that entropic and 

thermodynamic features of PDZ domain binding can vary considerably across PDZ domains 

and even for the same PDZ domain bound to different ligands [33, 34]. Therefore, including 

dynamic features such as electrostatic or non-polar contributions between contacting residues 

may be used to help improve SVM performance. Another approach would be to use an SVM 

with a structure based kernel for PDZ domains. Indeed, recent work showed that an SVM 

using a structure based kernel was successful in the more general problem of predicting 

protein-protein interactions [35]. The main challenge for both these approaches is that 3D 

structures are not available for the majority of PDZ domains and homology modelling would 



 - 24 - 

be needed to increase the number of domains available for training and testing. A structure-

based approach may also be used to generate more accurate biologically meaningful artificial 

negatives for training. Thus, until larger training datasets are available, we may require a 

combination of strategies to predict PDZ domain interactions, involving both sequence and 

structure-based methods, to maximize coverage and prediction performance. Nonetheless, 

here we have shown that sequence similarity is an important feature for accurately predicting 

PDZ domain interactions and it will be interesting to see how general this feature is for other 

domains. 

Conclusions  
We describe a SVM for the prediction of genomic PDZ domain interactions. Our method 

uses training data from two independent high throughput experiments from mouse and 

human, for the first time, which improves performance. We showed that compared to 

published state-of-the-art predictors, our predictor can be used to more accurately and 

precisely scan proteomes for potential binders of PDZ domains. These predictions can be 

used to increase the accuracy and coverage of PDZ domain interaction networks and further 

our understanding of the roles that PDZ domains play in a variety of biological processes. 

Ideally, we would construct predictors like this one for all peptide recognition domains and 

use them to help map protein interactions in the cell. 

Availability and Requirements 
Project name: PDZ Proteome Scanning 

Project home page: http://baderlab.org/Data/PDZProteomeScanning 

Operating systems: Platform independent 

Programming language: Java 1.5 
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License: Source code is freely available under the GNU Lesser Public General License 

(LPGL). 
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Figures 

Figure 1 - SVM performance estimation using cross validation  
SVM performance measured using 10 fold (red), leave 12% of domains out (blue), leave 8% 

of peptides out (green), leave 12% of domains and 8% of peptides out (black) cross 

validation. 

Figure 2 - SVM performance dependence on testing and nearest training neighbour 
sequence similarity 
Using leave one domain out cross validation (top), domain specific ROC and 

Precision/Recall AUC scores for SVM (blue) and nearest neighbour predictor (black) were 

grouped according to a given testing domain's similarity to its nearest training neighbour. The 

same was done for peptides using leave one peptide out cross validation (bottom). The 

similarity between two domains was calculated as the percentage of matched residues 

between their binding site sequences. The similarity between two peptides was calculated as 

the percentage of matched residues. Numbers in parentheses indicate the number of domains 

or peptides in each boxplot. 
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Figure 3 - Comparison of independent genomic test performance of different SVMs 
Blue x denotes data or method used by our SVM in all panels. (Top Row) A comparison of 

SVMs trained using data from one experiment: mouse from Chen et al. (magenta) or human 

from Tonikian et al. (light blue), from two experiments: mouse and human (green) and from 

two experiments with data enriched in genomic-like or non genomic-like human data: mouse 

and genomic-like human (blue) and mouse and non genomic-like human (red). (Middle Row) 

A comparison of SVMs trained using data encoded using different feature encodings: binary 

sequences (red), physicochemical properties (green), contact map (blue). (Bottom Row) A 

comparison of SVMs trained using different methods for generating artificial negatives for 

phage display: random peptides (red), shuffled peptides (green), randomly selected peptides 

(magenta), PWM selected peptides (blue). One hundred different SVMs trained using 

different random, shuffled and randomly selected peptides were built. 

Figure 4 - Comparison of SVM predicted and experimental binding specificities 
A comparison of phage display determined and predicted PDZ domain binding specificities 

for the last five terminal binding positions visualized as sequence logos. For human, only 

domains with 10 or more peptides from phage display experiments by Tonikian et al. were 

compared. For worm and fly, domains with an adequate (five or more) number of peptides 

from protein microarray experiments by Chen et al. were compared. 

Figure 5 - Comparison of proteome scanning performances for SVM and published 
predictors 
A comparison of predictor performance evaluated using F1 measures and FPRs for 13 human 

(blue), 6 worm (green) and 7 fly (black) PDZ domains. Three different predictors were 

compared: MDSM, additive model and a PWM predictor. PDZBase interactions were used to 

validate human predictions. Protein microarray interactions from Chen et al. were used to 

validate fly and worm predictions. The median is denoted by the red circle. No FPRs were 
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calculated for human predictions since there are no negative human validation interaction 

data. MDSM and the additive model were trained in their original publications using mouse 

protein microarray data only. The PWM predictor was trained using the same mouse and 

human data as the SVM.  

Tables 
Table 1 – Domain category definitions based on the number of unique interacting 
genomic-like and non genomic-like peptides 
Category # Unique 

genomic-like 
peptides 

# Unique non 
genomic-like 
peptides 

Genomic-like ≥ 10 < 10 
Non genomic-like < 10 ≥ 10 
Dual ≥ 10 ≥ 10 
Non specific < 10 < 10 

 

Table 2 - Summary of the training data 
  Domains Interactions 
Organism Source # Pos # Neg # Pos # Neg 
Mouse Protein microarray 82 72 643 1324 
Human Phage display 20 - 363 - 
Human Artificial negatives - 20 - 745 
 Total 102 92 1006 2069 

 

Table 3 - Summary of data for independent genomic testing and prediction validation 
  Domains Interactions 
Organism Source # Pos # Neg # Pos # Neg 
Fly Protein microarray 7 7 34 106 
Worm Protein microarray 6 6 59 88 
Mouse (Orphan) Protein microarray 11 19 52 74 
Human PDZBase 13 - 38 - 

 

Additional files 
Additional file 1 – Supplementary Information 
File name: HuiBader2010-BMC-SupplementaryInfo.pdf 
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File format: pdf 

Title of data: Supplementary Information 

Description: This file contains more details about the data and methods discussed in this 

paper. 


