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Abstract

Background: Intrinsically disordered regions are widespread, especially in proteomes of higher eukaryotes.
Recently, protein disorder has been associated with a wide variety of cellular processes and has been implicated in
several human diseases. Despite its apparent functional importance, the sheer range of different roles played by
protein disorder often makes its exact contribution difficult to interpret.

Results: We attempt to better understand the different roles of disorder using a novel analysis that leverages both
comparative genomics and genetic interactions. Strikingly, we find that disorder can be partitioned into three
biologically distinct phenomena: regions where disorder is conserved but with quickly evolving amino acid
sequences (flexible disorder); regions of conserved disorder with also highly conserved amino acid sequences
(constrained disorder); and, lastly, non-conserved disorder. Flexible disorder bears many of the characteristics
commonly attributed to disorder and is associated with signaling pathways and multi-functionality. Conversely,
constrained disorder has markedly different functional attributes and is involved in RNA binding and protein
chaperones. Finally, non-conserved disorder lacks clear functional hallmarks based on our analysis.

Conclusions: Our new perspective on protein disorder clarifies a variety of previous results by putting them into a
systematic framework. Moreover, the clear and distinct functional association of flexible and constrained disorder
will allow for new approaches and more specific algorithms for disorder detection in a functional context. Finally,
in flexible disordered regions, we demonstrate clear evolutionary selection of protein disorder with little selection
on primary structure, which has important implications for sequence-based studies of protein structure and
evolution.

Background
Many proteins include extended regions that do not fold
into a native fixed conformation. These are referred to
as being intrinsically unstructured or disordered. A pos-
sible utility of such regions was first suggested over 70
years ago by Linus Pauling, who speculated that their
flexibility aids in antibody creation [1]. Recent advances
in computational prediction of disordered regions in
amino acid sequences have greatly expanded our aware-
ness of the widespread occurrence of disordered regions
and the number of proteins whose structure is

dominated by such regions (intrinsically disordered pro-
teins or IDPs). Interestingly, protein disorder is more
prevalent in complex organisms, accounting for 33% of
the residues in the human proteome, but only a few per-
cent of residues in Escherichia coli, suggesting it may
play a major role in the evolution of complexity [2].
Protein disorder is a diverse and complex phenom-

enon. On a biophysical level, there exists a continuum
of structure and disorder in the proteome. At one
extreme, there are proteins that are almost entirely
unstructured and natively form a coil; some may fold
upon binding a ligand, and thereby undergoing a disor-
der to structure transition. Other proteins that are
structurally more constrained, but still considered disor-
dered, adopt a molten globule conformation [3]. Highly
structured proteins, which conform to the classical
model of protein structure, occupy the other extreme
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on this spectrum, but even they often possess locally dis-
ordered regions [3]. On a functional level, there are
numerous and varied roles with which IDPs have been
associated, including signaling, cellular regulation,
nuclear localization, chaperone activity, RNA and DNA
binding, protein binding and dosage sensitivity [4,5], anti-
body creation [6], and splicing [7]. Also, IDPs have been
implicated in a variety of diseases, including cancer [8],
and neurodegenerative and cardiovascular diseases [6].
While the importance and widespread occurrence of

IDPs is undisputed, a mechanistic understanding of the
specific structural and functional roles of disorder is still
lacking. Here, we systematically analyze and structure
the different functions of disorder through the use of
genetic interactions (GIs) and comparative genomics.
We use two different, but related, concepts to partition
disordered regions into three categories. Our analysis
partitions what is currently only generally characterized
as ‘disorder’ into several fundamentally different phe-
nomena with distinct properties and functions.

Results
Genetic interaction hubs tend to have more disordered
residues
Despite the apparent importance of disorder in mediat-
ing important protein functions [4], our knowledge is
still limited in terms of its specific functional roles. The
yeast GI network offers a new opportunity for global
insights into the role of disorder in protein function [9].
Briefly, GIs are defined as pairs of genes whose com-
bined mutation or deletion leads to an unexpected dou-
ble mutant phenotype. Here we limit our attention to
negative interactions; these are interactions in which the
double mutant is significantly less fit than would be pre-
dicted by the fitnesses of the single mutants. Interest-
ingly, it has been observed that the number of GIs of a
gene (GI degree) is correlated with the percentage of
disordered regions in the gene product [9] (Figure 1a).
GI degree is also correlated with different measures of
multi-functionality (number of gene ontology (GO)
annotations, phenotypic capacitance [10] and chemical-
genetic sensitivity [11]), suggesting that the presence of
disordered regions may underlie the highly pleiotropic
roles of some proteins.
The relationship between disorder and multi-function-

ality appears to depend on whether a gene is a hub in
the GI network (that is, the gene is associated with a
large number of GIs). Specifically, within the set of the
GI hubs (> 90 percentile in GI degree), disorder of the
gene product is a strong predictor of multi-functionality
(r = 0.22, P < 10-12; Figure 1b), suggesting it is able to
distinguish highly functionally versatile GI hubs from
genes with more limited functional roles that simply
exhibit a large number of GIs. However, this trend is

absent on the set of non-GI hubs (< 50 percentile in GI
degree) where there is no significant correlation between
the amount of disorder and the number of annotated
functions (r = -0.02, P > 0.3). This stark difference sug-
gests that disorder plays a highly functional role on the
set of proteins that have many GIs while disorder out-
side these genes is either less functional or simply of a
markedly different nature. A similar distinction can be
observed for protein-protein interactions: disorder is sig-
nificantly correlated with protein-protein interaction
degree on GI hubs (r = 0.16, P < 3 × 10-3; Figure S1 in
Additional file 1) while no such correlation holds on
non-GI hubs (r = -0.01, P > 0.5). Thus, the GI network
appears to provide a clear means of defining a set of
proteins where the disorder plays a key functional role.
Despite their seeming functional importance, disor-

dered regions of proteins have previously been asso-
ciated with swiftly evolving, less conserved sequences,
presumably because of lower structural constraint [12].
We were intrigued by this property because, in general,
GI hubs exhibit significantly lower rates of evolution
(for example, measured by the dN/dS ratio) and tend to
be conserved more broadly across species [9]. Indeed,
we found that even among GI hubs, disordered proteins
have significantly elevated rates of evolution. This trend
is consistent outside the hubs as well (Figure 1c). How-
ever, disordered GI hubs are just as conserved phylogen-
etically as measured by their appearance across the yeast
clade (Figure 1d). Thus, while the amino acid sequences
tend to evolve faster for disordered GI hubs, they appear
to be as phylogenetically constrained at the gene level as
other GI hubs. Interestingly, outside of GI hubs, this is
not true: non-GI hubs that are disordered tend to be
less conserved across the yeast clade compared to their
structured counterparts (Figure 1d). These observations
relating disordered proteins to the GI network raise an
interesting paradox. While the presence of disordered
regions appears to be directly connected to their impor-
tance in the genetic network, there appears to be little
evolutionary sequence constraint on these regions.

Many disordered residues are conserved across species
The counter-intuitive evolutionary pressure on disor-
dered proteins motivated us to undertake a comparative
analysis of disordered regions across the yeast clade. We
hypothesized that functionally important disordered
regions, such as those present in GI hubs, would be
conserved as disorder across species (that is, also disor-
dered, even if the underlying amino acid sequence was
different) independent of rate of evolution. We therefore
assessed the conservation of disorder on the residue
level, which was also recently addressed by Chen et al.
[13,14]. Specifically, we predicted which residues were
disordered for all Saccharomyces cerevisiae genes and
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their orthologs in the 23 species of the yeast clade using
DISOPRED2 [2], an algorithm that has been shown to
predict disordered regions reliably [15]. For each disor-
dered residue, we defined a measure of conserved disor-
der as the percentage of orthologs in which that residue

is disordered as well (Figure 2). We operationally define
conserved disordered residues as those with greater than
50% of disorder conservation.
Consistent with the general observations by Chen and

co-workers [13,14], we found that there is a surprisingly
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Figure 1 Genetic interactions distinguish different roles of disorder. (a) Percentage of disordered residues of yeast proteins by their
number of GIs. (b) Multi-functionality (see Materials and methods) for disordered and structured GI hubs and non-hubs. Hubs are genes in the
top 90th percentile (above 90 interactions) of GIs while non-hubs are in the bottom 50th percentile (below 15 interactions). (c) Evolutionary
constraint on sequence (dN/dS ratio) on hubs and non-hubs. In both cases disordered proteins have a significantly higher dN/dS than structured
proteins. (d) Evolutionary constraint measured by the presence of orthologs in other yeast species (phylogenetic persistence). While disordered
non-hubs are less conserved than structured non-hubs, the disordered hubs are as conserved as structured hubs. P-values were computed with
a Wilcoxon test, and error bars represent boot-strapped 95% confidence intervals.
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high rate of conservation of disordered regions: over
50% of disordered regions are conserved through 90% of
the orthologs considered. Notably, disorder is conserved
in many regions even where the specific amino acids are
not conserved in the same regions, which explains the
elevated dN/dS that has been previously associated with
disorder [12] (Figure 2). However, consistent with the
stability of disorder across the yeast clade, we find that
changes of amino acids in disordered regions are biased
towards hydrophilic residues associated with disordered
regions and away from hydrophobic residues (Figure S2
in Additional file 1). This result suggests that, despite a

high evolutionary rate at the sequence level, there is
substantial evolutionary pressure to keep these regions
disordered.

Disorder can be systematically classified
Regions in which disorder is highly conserved across the
yeast clade exhibit a wide range of amino acid conserva-
tion rates (Figure 3). We reasoned that the degree of
constraint on the precise underlying sequence (as
opposed to the more general property of disorder)
might highlight distinct subclasses of functional disor-
der. To test this hypothesis, we divided conserved
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disordered regions into those where the underlying
amino acid sequence is also conserved (’constrained dis-
order’), and the regions where there appears to be selec-
tion on the structural property of disorder itself rather
than the specific sequence (’flexible disorder’; Materials
and methods; Figure 2). Disordered residues that were
not conserved across the yeast clade were considered as
a separate, third class (’non-conserved disorder’; Figure
S3 in Additional file 1). It is important to note that
these results do not depend on the disorder predictor
algorithm and core results were qualitatively replicated
using DisEMBL [16] instead of DISOPRED2 (Figure S4

in Additional file 1). Furthermore, the three classes also
appear to be robust to various perturbations of the par-
ticular parameter choices of the method (Figures S5, S6,
S7, and S8 in Additional file 1). In addition, flexible dis-
order was more robust to random simulated mutations
(Figure S9 in Additional file 1), which is notable given
the general fragility of disorder to mutation reported by
[17].
The three classes of disorder exhibit widely different

properties (Figure 2b). First, while disorder is generally
thought to be important in proteins with regulatory and
signaling functions, we find that this is true only for
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flexible disorder. For instance, proteins enriched in flexible
disorder have high phenotypic capacitance and are multi-
functional. Moreover, they exhibit low-expression coher-
ence, that is, are connectors in the cellular network,
consistent with a regulatory role [18]. Finally, flexible dis-
order is highly correlated with occurrence of linear motifs
and GI degree, also consistent with signaling or regulatory
roles. The respective associations for all the above proper-
ties with either constrained or non-conserved disorder are
much weaker and, in most cases, not significant, suggest-
ing that the regulatory properties of disorder are best cap-
tured by flexible disorder. Secondly, disordered proteins
have recently been found to be expressed at a low level
and have tightly controlled expression [4]. We find this
only true for proteins enriched in flexible disorder: flexible
disorder is negatively correlated with gene expression
level, while constrained disorder shows either a positive or
no correlation depending on the inclusion of ribosomal
proteins (Figure 4; Figure S7 in Additional file 1). Also,
while genes enriched in non-conserved disorder appear to
be expressed at a low level, there appears no evidence for
tighter expression control as measured by half-life.
Thirdly, a recent study found disordered proteins to exhi-
bit high dosage sensitivity [5]. We again find that this is a
hallmark of flexible disorder (Figure 4), whereas con-
strained disorder is only weakly associated with this prop-
erty. Non-conserved disorder shows little or much weaker
association with most of these features, suggesting that the
functional hallmarks of this class are less obvious. Indeed,
we find that proteins enriched for non-conserved disorder
have less confident disorder as scored by DISOPRED2

(Figure S10 in Additional file 1). However, our inability to
identify functional roles for non-conserved disorder does
not preclude the possibility of its functionality.
Because of their recognized importance for signaling

pathways, we next turned our attention towards phos-
phosites and linear motifs. It has been noted previously
that phosphosites and other recognized linear motifs
often appear in disordered regions of proteins [19]. As
these motifs are crucial for signaling pathways, their
occurrence in these regions certainly has strong func-
tional consequences. In a detailed analysis at the residue
level, we find that disorder conservation is strongly cor-
related with the placement of phosphosites (Figure 5a).
In particular, we find that the relative density of phos-
phosites increases dramatically for residues with higher
disorder conservation (Figure 5b). Conversely, the corre-
lation of phosphosite density with amino acid conserva-
tion is weak (Figure 5c). Likewise, we find similar results
for linear motif placement (Figure S11 in Additional
file 1). In both cases, the partial correlation with con-
served disorder, when controlling for amino acid conser-
vation, remains strong, while the partial correlation
between amino acid conservation and phosphosite or
linear motif density disappears when controlling for
conserved disorder. Conversely, neither linear motifs
nor phosphosites show enrichment in residues that exhi-
bit non-conserved disorder, which suggests that non-
conserved disorder may not be functionally relevant in
this context.
Given our comparative genome-based classification of

disorder, we revisited our earlier observation regarding
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the correlation between protein disorder and multi-
functionality on GI hubs. As described earlier, we
observed that within the set of the GI hubs (> 90 per-
centile in GI degree), disorder of the gene product is a
strong predictor of multi-functionality (r = 0.22, P < 10-
12; Figure 1b) while this trend does not hold on the set
non-GI hubs (< 50 percentile in GI degree). Thus, we
reasoned that the disorder present in GI hubs may exhi-
bit different abundances across our classes. Indeed, we
did find evidence that disordered regions tend to be sig-
nificantly more conserved among GI hubs than non-
hubs (P < 10-6; Figure S12 and Table S1 in Additional
file 1). Furthermore, flexible disorder appears to account

for the correlation between disorder and multi-function-
ality observed among the GI hubs since controlling for
flexible disorder destroys the correlation (P > 0.5), while
a strong correlation is maintained when controlling for
the level of constrained disorder (r = 0.15, P < 0.01).
Interestingly, the set of highly disordered GI hubs is

also significantly enriched for protein interaction hubs
that bind temporally disparate partners (singlish inter-
face hubs as defined in [20]) when compared with disor-
dered non-hubs or non-disordered hubs (P < 10-5;
Figure S13 in Additional file 1). In fact, the distinction
between flexible and constrained disorder can be used
to differentiate between singlish-interface hubs and the
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so-called multi-interface hubs, which typically bind their
partners simultaneously (as defined in [20]): singlish
hubs have more flexible disorder than multi-interface
hubs (P < 10-13), while there is no significant difference
in terms of constrained-disorder (P > 0.1; Figure 6).

Flexible and constrained disorder show different
functional associations
The above results indicate that flexible disorder and
constrained disorder are markedly different phenomena
based on a variety of physiological and phenotypic data.
On the one hand, flexible disorder corresponds to what
we refer to as ‘classic disorder’: these are intrinsically
unstructured regions, which evolve rapidly and present
short linear motifs to signaling domains or protein
kinases. Flexible disorder is thus a central player in sig-
naling, which is confirmed by a GO enrichment analysis
- all top enriched terms are related to regulation, includ-
ing transcription factors, chromatin modifiers, and sig-
naling pathways and DNA binding proteins (Figure 7;
Table S2 in Additional file 2).
In contrast, proteins with a high level of constrained

disorder exhibit dramatically different functional charac-
teristics. Constrained disordered proteins are enriched
in genes involved in ribosome biogenesis or function,
RNA binding and protein chaperone activity (Figure 7;
Table S2 in Additional file 2). Some of these functions
have been previously associated with conserved disorder
[14], but our analysis suggests they are even more speci-
fically associated with regions that are under tight
sequence constraint, which is not generally true of

regions that have properties characteristic of ‘classic’
disorder.
Given the dichotomy in functions arising from the

presence or lack of sequence constraint, we explored the
positions of these regions with respect to predicted
domains. We find that flexible disordered residues rarely
reside inside structured domains, consistent with the
idea that they would localize to loops to present highly
flexible linear motifs to their signaling partners. Conver-
sely, constrained disordered residues lie within domains
significantly more frequently than flexible residues,
though occurring well below the level of the genomic
background (Figures S14 and S15 in Additional file 1).
The particular domains in which constrained disorder
residues are enriched confirmed the location of these
regions within RNA-binding ribosomal proteins and
protein chaperones (GroEL-like chaperone, ATPase,
Translation protein SH3-like, AAA ATPase, core; Table
S3 in Additional file 2).
The highly distinct functional and positional charac-

teristics associated with these two classes of disorder
suggest that they are very different phenomena. On the
one hand, flexible disorder is closest to what is canoni-
cally understood as protein disorder, that is, these are
structurally flexible, fast evolving sequences with invol-
vement in signaling. A good example of flexible disorder
is found in the serine-arginine protein kinase Sky1
(YMR216C), similar to human SRPK1, which regulates
proteins involved in mRNA metabolism and cation
homeostasis. The region containing residues 712-737,
conserved for disorder across orthologs but not
sequence, is located at the end of the kinase (Figure S16
in Additional file 1). This carboxy-terminal disordered
loop interacts with the activation loop of the kinase [21]
and is likely involved in the regulation of kinase activity.
Likewise, the corresponding region exhibits flexible dis-
order in many of the related cyclin-dependent kinases
[22]. For example, in Bur1, this region contains flexible
disorder and also harbors multiple phosphosites and lin-
ear motifs, underlining its importance in signaling (Fig-
ure S17 in Additional file 1).
On the other hand, our results suggest that con-

strained disorder can often adopt fixed conformation.
As has been previously suggested, some disordered pro-
teins are likely to undergo disorder-to-order transitions
upon binding of their targets [3], and we speculate this
is a hallmark of the constrained disorder class. In the
case of ribosomal biogenesis and RNA-binding struc-
tural proteins, they become structured upon binding
RNA. This imposes a high degree of local structural
constraint on them, which results in elevated constraint
on the actual amino acid sequence. For instance, in Rpl5
a region of constrained disorder can be observed imme-
diately before an alpha helix that forms the carboxy-
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terminal end of the amino acid sequence (Figure S18 in
Additional file 1). The role of this region was specifically
investigated in [23], and they report strong evidence for
a disorder-to-order transition of this region upon the
binding of Rpl5 to 5S rRNA. We also found an enrich-
ment for constrained disorder among protein chaper-
ones, where disordered regions appear to be involved in
the binding of client proteins. For example, the HSP90
heat shock protein (HSC82/HSP82) contains long

regions of constrained disorder (Figure S19 in Addi-
tional file 1). In particular, the constrained disordered
region from 590-600 is conserved throughout the bac-
terial kingdom, is localized at the inner surface of the
barrel-shaped protein and has been directly implicated
in the chaperone activity of this protein. It has been pre-
viously speculated that this disordered region may play a
role in entropy transfer and the refolding of clients
through a disorder-to-order transition [24]. However,
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there is little direct experimental evidence about the
precise role of disorder in chaperone function. We
hypothesize that, in general, the tight sequence conser-
vation of constrained disorder is required in regions that
assume a structured conformation, even if this confor-
mation is only assumed in a transient fashion as in the
case of HSP90 or more permanently as in the case of
Rpl5.

Discussion
In this work, we show that protein disorder can be parti-
tioned into three biophysically and biologically distinct
phenomena. The first two, flexible and constrained disor-
der, capture different functional characteristics: flexible
disorder appears to be strongly associated with signaling
and regulation while constrained disorder is associated
with chaperones and ribosomal proteins. Flexible disor-
der appears to be largely responsible for many of the
characteristics traditionally associated with disordered
regions. On the other hand, non-conserved disorder does
not seem to have obvious functional hallmarks by our
analysis. While we discovered these categories using a
comparative genomics approach that exploits evolution-
ary signatures, they ultimately are likely to correspond to
biophysically different phenomena. In a similar fashion,
modern secondary prediction methods make use of evo-
lutionary information in the form of sequence profiles,
while they discover biophysical properties.
Several classification schemes for protein disorder

have been described in previous studies, including cate-
gorizations based on structural descriptions [3,25],
molecular function [26], or data-driven unsupervised
partitions [27]. In particular, the functional characteriza-
tion put forth in [26] (Figure S24 in Additional file 1)
has an interesting overlap with the flexible and con-
strained categories defined here. Tompa [26] first makes
a distinction between proteins whose disordered regions
perform a purely mechanical function (for example,
entropic chains) from those that have the capacity to
bind other proteins or small molecules (recognition). A
similar division is made by [25] between disordered
regions that can at least transiently fold (’folders’) from
regions that never fold (’unfolders’). There the authors
claim that entropic chains are necessarily unfolders,
while recognition regions are necessarily folding regions.
The yeast nucleoporin NUP2, a canonical example of
entropic chains, appears to contain long regions of flex-
ible disorder. In fact, 22% of its residues are cases of
flexible disorder (the background rate is 9%) while only
12% is constrained disorder (the background rate is 7%).
This is consistent with the fact that the role of such
regions does not require strict residue conservation and
it is tempting to speculate that other entropic chains are
also cases of flexible disorder.

Despite some evidence that flexible disordered regions
as defined here may correspond to entropic chains, the
previously defined category of recognition proteins
(folders) appears to contain clear cases of both flexible
and constrained disorder. In particular, the subcategory
of ‘display sites’ seems to correspond to our notion of
flexible disorder, given its enrichment for linear motifs
and association with signaling proteins. These appear to
be cases of a relatively short recognition motif contained
in a longer disordered region [28], and it has been pre-
viously observed that, while functional recognition
motifs are well conserved, the surrounding disordered
region may evolve quickly [29]. Thus, these regions
appear to consist primarily of flexible disorder since
only the motif is conserved while the surrounding disor-
dered region is under less selective constraint and is
presumably important in facilitating the promiscuous
binding required for signaling proteins.
Another class of proteins associated with promiscuous

protein binding, chaperone proteins, is clearly enriched for
constrained disorder. While the importance of disordered
regions in the functioning of chaperones is well established
(for example, [30,31]), the role played by disordered
regions in chaperones is still the subject of active investi-
gation [32]. There are a number of hypotheses regarding
the roles of disorder in protein chaperones, including the
idea that disordered chaperones may directly or indirectly
stabilize client proteins due to their high hydrophilicity, or
the notion that disordered chaperones may help in shield-
ing unfolded proteins from interactions with other mole-
cules, and the aforementioned entropy transfer hypothesis
(see [32] for a comprehensive review). Our study suggests
that, regardless of the precise function of the disordered
regions in chaperones, it differs from the role that disorder
plays in signaling proteins.
Finally, the other major category of recognition pro-

teins, ‘permanent binding’, appears to, at least in part, be
populated by regions of constrained disorder. This is sup-
ported by the enrichment for ribosomal proteins that are
known to fold upon binding other ribosomal proteins
and rRNA. Again, we suspect that cases where disordered
regions fold permanently upon binding other molecules
will be enriched for constrained disorder due to increased
selective pressure required to maintain a stable bond.
Another classification scheme for disordered regions was

put forth in [27] based on an unsupervised, data-driven
partitioning of 145 disordered proteins, which identified
three ‘flavors’ of disorder. The group of proteins described
as ‘flavor V’ is highly enriched for ribosomal proteins and
resembles the enrichments of constrained disorder defined
here, while ‘flavor S’ was highly enriched for protein bind-
ing functions similar to regions of flexible disorder. How-
ever, these categories only weakly resemble the flexible and
constrained disorder defined here as evidenced by their
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apparently distinct amino acid distributions (compare Fig-
ure 1 of [27] and Figure S25 in Additional file 1). These dif-
ferences may stem from the fact that the previous
classification scheme used an unsupervised algorithm and
a limited set of proteins, and, most importantly, trained on
whole proteins. In other words, it assumed that all disorder
in one protein is of the same category, an assumption we
are not making.

Conclusions
In this work, we show that protein disorder can be parti-
tioned into three biophysically and biologically distinct
phenomena. The first two, flexible (’classic’) and con-
strained disorder, capture different functional character-
istics. On the other hand, non-conserved disorder does
not seem to have functional roles. Our results have wide-
ranging consequences for the prediction of disordered
regions and for the functional interpretation of disor-
dered regions in cellular networks. Future experimental
work may confirm the distinct biophysical properties of
constrained and flexible disorder we are predicting here.
Importantly, our analysis framework allows for much
more detailed functional interpretations of disordered
regions. Finally, our new categories of disorder will help
in the refinement of disorder prediction algorithms.

Materials and methods
Description of gene/protein level features and correlation
analysis
Throughout this paper, correlations were done using
Pearson’s correlation coefficient [33] and calculated
using Matlab’s corrcoef function. Error bounds are the
95% confidence interval.
In the following section, we describe the data sets

used throughout to characterize aspects of disorder. Sev-
eral of these features were previously described in [9].
Genetic interaction degree
This was the same measure as the negative GI degree in
[9]. Specifically, it is the number of negative interactions

each array gene has, where negative interactions are
defined as those that have a score ε < -0.08 and P < 0.05.
Protein disorder
Protein disorder was derived using the software Dis-
opred2 [2]. We define structured proteins to be those
with less than 10% disorder and disordered proteins to
be those with greater than 30% disorder, following [4].
dN/dS Ratio
We computed the average dN/dS ratio for S. cerevisiae
in comparison to the yeast species (Saccharomyces para-
doxus, Saccharomyces bayanus and Saccharomyces
mikatae). Sequences were subsequently aligned using
MUSCLE [34] and dN/dS ratios were computed using
PAML [35].
Expression level
The expression level of a gene as measured by the aver-
age number of mRNA copies of each transcript per cell
were taken from [36].
Half-life
The half-life of a gene was the half-life of its mRNA
measured in minutes and reported in [37].
Phenotypic capacitance
The phenotypic capacitance reflects the variability in a
panel of phenotypes induced by deletion of non-essen-
tial genes and was used directly from the Levy and Sie-
gal study [38].
Multi-functionality
This is simply the number of GO process annotations
for each gene restricting to the functionally distinct set
of GO terms described in [39].
Expression coherence score
This is the clustering coefficient calculated on the
MEFIT [40] combined network where edges are genes
with a score higher than 2 (approximately 95th percen-
tile). Let E(Ni,Nj) be 1 if there is an edge between Ni

and Nj and zero otherwise. The clustering coefficient for
a gene G with n neighbors {Ni} is:

∑
1≤i<j≤n

E(Ni, Nj)

n(n − 1)
2

Linear motifs
Linear motifs were found using Scansite [41] on the
most stringent setting.

Conserved disorder
Defining conservation of disorder and sequence residues
from the yeast clade
Each of 5,025 orthologous groups across 23 species in
the yeast clade [42] was multiple-aligned by MAFF [43]
with default parameters. Amino acid conservation scores

Table 1 Description of the structural and disordered
classes of amino acids

Structural amino acids Disordered amino acids

Cysteine Aspartic acid

Tryptophan Methionine

Tyrosine Lysine

Isoleucine Arginine

Phenylalanine Serine

Valine Glutamine

Leucine Proline

Histidine Glutamic acid

Threonine Alanine

Asparagine Glycine
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(A) of each position in each alignment was calculated
and binned as follows:

A∗ = max

⎧⎨
⎩

∑
k

ai(k)

N

⎫⎬
⎭

where ai represents one of 20 different amino acid
symbol indicator functions in an alignment position in
kth protein sequence, and N stands for total number of
protein sequences aligned.

A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ⇔ 0 ≤ A∗ ≤ 0.1
...

...
...

8 ⇔ 0.7 < A∗ ≤ 0.8
9 ⇔ 0.8 < A∗ ≤ 1

For disorder conservation score (D), each alignment
position was overlaid with the disorder symbol predicted
by Dispred2 [2] with default parameters and its conser-
vation was calculated and binned as follows:

D∗ =

∑
k d(k)
N

where d represents the disorder indicator function in
an alignment position in kth protein sequence.

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ⇔ D∗ = 0
1 ⇔ 0 < D∗ ≤ 0.1
...

...
...

9 ⇔ 0.8 < D∗ ≤ 1

We only considered proteins for which at least ten
orthologs were available, and residue positions where at
least five of those orthologs were aligned. All ortholo-
gous sequence- and disorder-overlaid alignments are
displayed with the Jalview applet [44] and available at
[45].

Structural conservation of disorder calculation
To calculate how disorder is structurally conserved
despite changes at the amino acid level, we divided
amino acids into a group associated with disorder and a
group associated with structure (Table 1). This list was
compiled based on [6] where disordered amino acids are
charged and hydrophilic while structural amino acids
are neutral and therefore hydrophobic. We considered
all positions of orthologs of S. cerevisiae genes after
alignment. If the amino acid was changed from S. cerevi-
siae to an ortholog, we recorded if it was changed
towards the disordered set of amino acids or the struc-
tured set of amino acids. Then we compared the amino
acids in regions of conserved disorder, regions of non-
conserved disorder and the background (all positions).

A systematic classification of disorder
Definitions of constrained and flexible disorder
Conserved disorder: aligned positions that have D ≥ 5,
that is, are disordered in more than 50% of aligned
residues.
Flexible disorder: aligned positions that have D ≥ 5

and A < 5, that is, are disordered in greater than or
equal to 50% of aligned residues but are conserved in
less than 50% of aligned residues.
Constrained disorder: aligned positions that have D ≥

5 and A ≥ 5, that is, are disordered in greater than or
equal to 50% of aligned residues and conserved in
greater than or equal to 50% of aligned residues.
Non-conserved disorder: aligned positions that have D

< 5, that is, are disordered in S. cerevisiae but are disor-
dered in less than 50% of aligned residues.
Distribution of residues in two conservation spaces:
phosphorylation and linear motifs
Phosphorylation sites of S. cerevisiae, Schizosaccharo-
myces pombe and Candida albicans were obtained from
[46] and a compilation of phosphosite datasets [46-51].
Linear motif sites are predicted by ScansSite2.0 on the
S. cerevisiae data. Each distribution of feature-residue-
odds-ratio (Ofeature, termed as relative density in the
main text and Figure 5a) is calculated in a similar way
as the hub-odds-ratio:

Ofeature
ij =

Fij

FN

TN

Tij

where Fij represents the number of feature residues
(that is, phosphorylation site) with ith amino acid con-
servation score (A) and jth disorder conservation score
(D) in whole proteins of S. cerevisiae, S. pombe, and C.
albicans in case of phosphorylation sites or S. cerevisiae
in case of linear motifs.
Each distribution of phosphorylation-site-odds-ratio

(P) and linear-motif-odds-ratio (M) is displayed with
levelplot function in lattice R package [52]. Partial corre-
lations of Ofeature and A (or Ofeature and D) are statisti-
cally tested by pcor.test function [53], and plotted with
residuals after controlling each other by linear
regression.
Distribution of two conserved residues in hubs: GI, protein-
protein interaction and structural interaction network
The 50th or 90th percentile hubs of GI and protein-pro-
tein interaction networks were defined as proteins with
the degree greater than 50th or 90th percentile degree
in the respective degree distributions. Singlish- and
multi-interface hubs were defined as described in [20]
with the structural interaction network recently updated
with iPfam corresponding to Pfam release 21.0 [54],
2,295 yeast Protein Data Bank files [55] and 82,650 phy-
sical interactions in Biogrid 2.06 [56].
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Function of flexible versus constrained disorder
GO enrichments
We found GO term enrichments for disorder type (flex-
ible, constrained and non-conserved disorder) using the
following method. The distribution of disorder type for
each GO term was tested against the background distri-
bution of that disorder type using the Wilcoxon rank
sum test for P-value < 0.05, where the P-value was
adjusted for multiple hypothesis testing using Benja-
mini-Hochberg false discovery correction. Terms
enriched for either flexible or constrained disorder were
only considered enriched if the distribution of ratios
(Flexible/(Flexible + Constrained) or Constrained/(Flex-
ible + Constrained), respectively) was significantly higher
than the background for the term using a Rank sum test
with P < 0.01. Thus, a term that was reported as
enriched for flexible disorder was not also enriched for
constrained disorder. Similarly, terms that initially were
enriched for non-conserved disorder were tested to see
if the ratio (Non-conserved disorder)/(Total disorder)
was above the background of the term using a Rank
sum test with P < 0.01. Enrichments for flexible and
constrained disorder are contained in Additional file 2.
Domain analysis
To define domains, we used the domains.tab file down-
loaded from the Saccharomyces Genome Database on 4
April 2010, which contains the results of an InterProScan
using each S. cerevisiae protein sequence to query for
domains/motifs from several databases. The file consists
of 40,737 domains mapped onto the yeast proteome. To
restrict our analysis to structural domains, we only con-
sidered 11,801 domains mapped using three methods:
superfamily (SCOP database, 4,943 domains), HMMPfam
(Pfam database, 4,422 domains) and Gene3D (CATH
database, 2,336 domains). For each of the 3,680 genes
with mapped domains and alignments, every position in
the sequence was associated with two conservation
scores: conservation in disorder (D) and conservation in
amino acids (A) obtained from the sequence alignments
of the yeast clade (see above). For a given point in the
conservation grid (A, D), we counted the residues that
overlap with at least one domain and the residues that
did not overlap with any domain. We then computed the
log odds ratio of these counts.
Family analysis
For each domain, we computed the percentage of resi-
dues falling in each of the three categories: flexible dis-
order, constrained disorder, non-conserved disorder. We
then compared the distributions of these percentages for
all domains. We extracted the domains enriched in con-
strained disorder as opposed to flexible disorder by
examining the ratio constrained/flexible (false discover
rate (FDR)-adjusted Wilcoxon P-value < 0.05). The tests
were performed with the function wilcox.test and the P-

values were corrected for multiple testing with the func-
tion p.adjust(method = ‘FDR’) from the statistical pro-
gramming environment R [52]. The results of these
enrichments are contained in Additional file 2.
Enrichment map
Enrichment maps were created using Cytoscape [57]
and the Enrichment Map plugin [58]. The edges repre-
sent the value of the overlap coefficient (size of the
intersection of both GO terms/size of the small GO
term) with a cutoff at 0.3.

Additional material

Additional file 1: Supplemental figures and tables. This text file
contains Figures S1 to S25 and Table S1 with their associated legends.

Additional file 2: Functional enrichment. This file contains three tables:
a table of GO terms (function, process and component) that are enriched
for flexible and constrained disorder, a table of enrichments for domains
in regions of constrained disorder and a table of enrichments for
domains in regions of non-conserved disorder.

Abbreviations
GI: genetic interaction; GO: gene ontology; IDP: intrinsically disordered
proteins.
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