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Abstract
The understanding of how different cell types contribute to amyotrophic lateral sclerosis (ALS) pathogenesis is
limited. Here we generated a single-nucleus transcriptomic and epigenomic atlas of the frontal cortex of ALS
cases with C9orf72 (C9) hexanucleotide repeat expansions and sporadic ALS (sALS). Our findings reveal
shared pathways in C9-ALS and sALS, characterized by synaptic dysfunction in excitatory neurons and a
disease-associated state in microglia. The disease subtypes diverge with loss of astrocyte homeostasis in
C9-ALS, and a more substantial disturbance of inhibitory neurons in sALS. Leveraging high depth 3’-end
sequencing, we found a widespread switch towards distal polyadenylation (PA) site usage across ALS subtypes
relative to controls. To explore this differential alternative PA (APA), we developed APA-Net, a deep neural
network model that uses transcript sequence and expression levels of RNA-binding proteins (RBPs) to predict
cell-type specific APA usage and RBP interactions likely to regulate APA across disease subtypes.

Introduction
The advent of transcriptomic and epigenomic interrogation at the single cell level facilitates a deeper
understanding of the mechanisms underpinning disease, especially in complex tissues such as the brain.
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease caused by degeneration of
motor neurons in the brain, brainstem and spinal cord. Over 50% of ALS patients also exhibit progressive
cognitive and/or behavioral symptoms caused by frontotemporal lobar degeneration (FTLD), with 10-15% of
patients fulfilling the diagnostic criteria of frontotemporal dementia (FTD). Although the vast majority of ALS
cases are sporadic (sALS), with no family history of disease, over 30 genes have been associated with disease
causation, including SOD1, TARDBP (TDP-43) and FUS. The most common genetic cause linking ALS and
FTLD is a G4C2 hexanucleotide repeat expansion within intron 1 of C9orf72 (C9)1,2, a gene with unclear
function but with emerging roles in nucleocytoplasmic transport3 and synaptic homeostasis4–6.
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The molecular underpinnings of cortical dysfunction associated with FTLD in ALS remain unclear but has
been linked with changes in expression and/or subcellular localizations of various RNA binding proteins
(RBPs), including TDP-437–10, the most prevalent disease pathology in ALS/FTLD, as well as FUS11,
SFPQ12,13, TIA114, and heterogeneous ribonucleoproteins (HNRNPs)15,16. RBPs regulate diverse functions
across cell types, including chromatin dynamics10,17–19, transcription7–10, auto-regulation20,21, alternative splicing
(AS)8, and alternative polyadenylation (APA)20,22–25. Evidence supporting disruption of RBP functions has been
reported in ALS cases8,26. Brain region-specific APA is seen in postmortem bulk RNA-seq analysis of ALS
patients27 and in iPSC-derived motor neurons from patients with TARDBP and VCP mutations28. However, the
cell type-specific mechanisms underlying APA in postmortem tissue from patients with ALS have not been
explored.

Here, we generated a single nucleus RNA-seq (snRNA-seq) and Assay for Transposase Accessible Chromatin
Sequencing (snATAC-seq) atlas of 196,896 nuclei to uncover transcriptomic and epigenomic changes in
post-mortem orbitofrontal cortex from C9-ALS and sALS cases. A comparison of C9-ALS and sALS cases
with non-neurological controls was performed to assess mutation- and disease-specific effects, and provide
novel insight into cellular changes in this ALS-affected brain region. We find cell type- and disease
subtype-specific alterations in cis-regulatory elements, transcription factor (TF) motif enrichment, and
pathways in C9-ALS and sALS cases. We also analyzed cell type-specific dysregulation of APA in ALS,
identifying thousands of significant APA events, including distal, intronic and internal exonic APAs in both
diseases compared to non-neurological controls. To further decode this APA dysregulation, we developed an
interpretable state-of-the-art deep learning method called Alternative Polyadenylation Network (APA-Net).
APA-Net enabled us to identify a range of cis/trans regulators correlated with the observed APA events in the
disease. By interpreting APA-Net, we identify potential RBP interactions in dysregulating APA in ALS,
shedding more light on the regulatory programs likely to induce APA in ALS. These findings improve our
understanding of cell-type specific transcriptomic and epigenetic changes occurring in the frontal cortex in
ALS, and provide mechanistic insights into the potential coordinated interaction of RBPs in regulating APA in
disease.

Results
Transcriptomic and epigenomic profiling of single nuclei from the frontal cortex of ALS patients
We generated and analyzed a single cell atlas containing 196,896 nuclei derived from 24 snRNA-seq (103,076
nuclei) and 21 snATAC-seq (93,820 nuclei) samples from orbitofrontal cortex (Brodmann area 11; referred to
here as frontal cortex) of C9-ALS (n=10 individuals) and sALS (n=8) cases compared to non-neurological
controls (n=6) (Figure 1, Supplementary Data Fig. 1a, Supplementary Table 1). Standard quality control (QC)
guidelines were applied to the snRNA-seq29 and snATAC-seq30–33 data. We used an established snRNA-seq data
integration method34, ensuring consistent alignment of cell clusters across technologies for sex (Supplementary
Data Fig. 1b), disease subtype (Supplementary Data Fig. 1c), and samples (Supplementary Data Fig. 1d).

To delineate cell types, a consistent clustering algorithm35 and cell annotation approach36,37 was used for both
snRNA-seq and snATAC-seq datasets (Supplementary Data Fig. 1e-f) (Methods). We uncovered 23 frontal
cortex cell subtypes for both snRNA-seq and snATAC-seq datasets, including oligodendrocytes,
oligodendrocyte precursor cells (OPCs), astrocytes, endothelial cells, vascular leptomeningeal cells (VLMCs),
microglia and perivascular macrophages (PVM), ten excitatory neuron subtypes, and seven inhibitory neuron
subtypes (Supplementary Data Fig. 1g). A catalog of specific gene expression markers for each cell type is
presented in Supplementary Data Fig. 2a. To facilitate downstream analysis, we grouped cell subtypes into
seven major cell types: oligodendrocytes, OPCs, astrocytes, endothelial-VLMC, microglia-PVM, excitatory
neurons, and inhibitory neurons, based on canonical markers (Supplementary Data Fig. 2b-e). The nuclei from
endothelial-VLMC cells were excluded from all downstream analyses due to poor yield across samples and
technologies.

All major expected cortical cell types were consistently found in both snRNA-seq and snATAC-seq samples,
resulting in similar distributions of cell types when categorized by disease subtype (Supplementary Data Fig.
3a-c). Gene activity levels, measured by the open chromatin peaks from the snATAC-seq data32,38, show
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significant correlation with gene expression levels across cell types (Pearson R > 0.65 and p-values < 1e-6).
Collectively, these two technologies exhibit robust concordance (Supplementary Data Fig. 3f), supporting their
quality and use in subsequent analyses.

Converging and diverging transcriptomic and epigenomic changes across ALS subtypes
To uncover the transcriptomic and epigenomic cell-states in frontal cortex of C9-ALS and sALS cases
compared with controls, we carried out differential expression analysis39 and computed differential accessible
chromatin regions (DARs) (Methods). We observe that a majority of large and small ribosomal machinery
subunits (RPL and RPS prefix) are dysregulated across cell types in C9-ALS and sALS (Supplementary Data
Figure 4a-f). These findings agree with recent reports from dorsolateral prefrontal and primary motor cortex
neurons from C9-ALS40,41 and sALS42. This highlights dysregulation of translation machinery as a significant
cellular state in ALS. To alleviate the overrepresentation of translational machinery pathways in the analysis,
we removed all ribosomal subunit genes from the count matrix which enables the identification of other
cell-type specific changes43.

The subsequent differential expressed genes (DEG) analysis revealed distinct changes in major cell types
between C9-ALS and sALS relative to controls (all adjusted p-value < 0.05; Fig. 2a-c, Extended Data Fig.
1a-f, Supplementary Data Table 2). This analysis shows significant changes in DEGs and DARs in excitatory
neurons in both ALS subtypes (Fig. 2c-d). However, inhibitory neurons in sALS show higher DEG and DAR
dysregulation than in C9-ALS (Fig. 2b, Fig. 2e-f).

Pathway enrichment analysis on DEGs shows that signal transduction terms are enriched in excitatory neurons
in C9-ALS, with up-regulated genes including WNT9A, EDNRB, PRKCH, AR, and EGF (Fig. 2g).
Dysregulation of androgen receptors (AR) has been associated with ALS motor neurons and impaired motor
neuron/cranial nerve function44,45. Excitatory neurons in sALS show enrichment for lipid metabolism and
neuronal system genes. No significantly altered pathways were detected in C9-ALS inhibitory neurons. In
contrast, genes involved in neuronal system and synaptic pathways such as GRIN3A, KCNG1, KCNG2, SYT10,
and CAMK2D (Fig. 2h) are enriched in sALS inhibitory neurons, differentiating sALS from C9-ALS.

Altered cellular states in microglia are important for the pathogenesis of ALS, and with neurodegeneration
more broadly46–48. In microglia in C9-ALS, we observe up-regulation of IL1B and CD83, and enrichment of
innate immune response pathways (Extended Data Fig. 1b), suggesting a potential shift of these cells toward a
proinflammatory state49,50. To further characterize microglia in ALS, we scored microglial cell states based on
those typically observed in neurodegenerative disease48 by ranking cell state markers according to their gene
expression levels51. We observe a decrease in homeostatic microglial markers such as CSF1R, CX3CR1, and
P2RY12 in both ALS subtypes with C9-ALS showing the lowest scores (Extended Data Fig. 1c). In both ALS
subtypes, we observe an increase in disease-associated microglia (DAM) stage 1 markers, including TYROBP,
APOE, and B2M. DAM stage 2 markers, however, show only a marginal increase (Extended Data Fig. 1d-e)
with SPP1 the most significant (Supplementary Data Table 3). These results indicate a transcriptional shift
from homeostatic microglia towards a disease associated state.

Astrocytes are linked with the pathophysiology of ALS through reactive toxicity and loss of homeostasis52,53.
Here, we observe up-regulation of reactive astrocyte genes ACTN1, MYH1, and OLFM154 (Extended Data Fig.
1f). Upregulated GFAP is a common feature in reactive astrocytes55. While GFAP is not among the DEGs for
astrocytes in C9-ALS or sALS, we observe significant increase in chromatin accessibility (Supplementary
Data Table 3) and higher gene expression of GFAP (Extended Data Fig. 1g) in both ALS subtypes. These
changes are concordant with astrocytic changes reported in C9-ALS dorsolateral prefrontal and primary motor
cortex40. The differential expression and accessibility analyses reveal that astrocytes in C9-ALS are
substantially more affected than in sALS, as is evident by the larger number of detected DEGs and DARs
(Extended Data Fig. 1h-i).

To study how DARs are distributed across genomic regions, we annotated open chromatin peak locations56.
Genomic regions for excitatory neurons in C9-ALS and sALS are highly enriched in proximal promoter,
intronic, and distal intergenic loci (Fig. 2i). DARs annotate to proximal promoter regions in inhibitory neurons,
oligodendrocytes, OPCs, and astrocytes (Fig. 2j, Extended Data Fig. 1j-m). Oligodendrocytes, OPCs, and

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.573083doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=129353&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15373739,11343990&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14447258&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15411955,15411950&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=15312577,3796408,15423239&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=5865343,15545351&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=15423239&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4362786&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4407534,14054979&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=22794&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1468946&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15373739&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1308084&pre=&suf=&sa=0
https://doi.org/10.1101/2023.12.22.573083


astrocytes in sALS show a larger proportion of proximal peaks compared with C9-ALS (Extended Data Fig.
1j-l), suggesting promoter over distal element level regulation by TFs in these cells.

To evaluate the biological implications of DARs in C9-ALS and sALS, we conducted a pathway enrichment
analysis across cell types, focusing on enriched peaks in either proximal promoter and intronic or distal regions
(Supplementary Data Table 4). For excitatory neurons in C9-ALS, proximal peaks are associated with genes
involved in signal transduction and protein localization, aligning with the corresponding DEGs observed in
excitatory neurons (Fig. 2). Distal peaks in excitatory neurons in C9-ALS did not yield significant pathways.
In excitatory neurons in sALS, both proximal and distal peaks are related to neuronal development, whereas
distal peaks relate to potassium ion transport. For inhibitory neurons from C9-ALS, the enrichment is
exclusively in proximal peaks, pointing to processes such as transcriptional regulation, development, and
growth. By contrast, proximal peaks in inhibitory neurons in sALS are associated with lipid metabolism,
nervous system development, and transcriptional regulation, and these overlap with pathways identified from
the DEG analysis (Fig. 2). Microglia in C9-ALS show proximal peaks focused on tumor necrosis factor
regulation and leukocyte adhesion, while distal peaks are associated with JAK-STAT signaling and leukocyte
differentiation. Overlapping up-regulated gene examples include JAK3, STAT3, and LY96 in C9-ALS microglia
(Supplementary Data Table 2). In sALS microglia, only the distal peaks show enrichment for JAK-STAT
signaling, with proximal peaks displaying no significant enrichment. Up-regulation of JAK-STAT signaling
has been observed in spinal cords57 and cortices58 from ALS patients and C9orf72 negatively regulates
JAK-STAT signaling in vivo59. These findings indicate the presence of epigenetic regulatory mechanisms
involved in the cell type-specific dysregulated pathways in ALS frontal cortex.

ALS risk gene expression across frontal cortex cell types
To investigate the cell type expression level of ALS-associated genes, we analyzed the expression patterns of a
comprehensive set of genes (n=30) implicated in familial ALS or linked to heightened risk in sporadic
cases60,61. Hierarchical clustering of ALS risk gene expression patterns by cell types and conditions (columns)
primarily reveals a segregation pattern based on cell type, with disease subtype as the next most distinguishing
factor (Extended Data Fig. 2). Gene clustering was conducted to examine how ALS risk gene expression
patterns are partitioned. A total of seven gene clusters are observed: Cluster 1 (NEK1, SQSTM1, ATXN2) and
cluster 6 (FIG4, C9orf72, VAPB, TBK1, SETX, GRN, FUS, SPG11, PFN1, ANG) show high expression across
all major cell types, with particularly high expression in microglial cells. Cluster 2 containing KIF5A, OPTN,
ALS2, TUBA4A, and CCNF is highly enriched in neurons; Cluster 3, characterized by the mitochondrial genes
SOD1 and CHCHD10, is predominantly associated with excitatory and inhibitory neurons (Extended Data Fig.
1). The observed increase in SOD1 expression across different cell types in ALS suggests that it might play a
significant role in the disease and could be explored as a therapeutic target not only for the mutant
SOD1-linked ALS62 but for additional ALS subtypes as well. Cluster 4 (SIGMAR1, TIA1, MATR3) and Cluster
5 (SPAST, TARDBP, CHMP2B, UBQLN2) show high expression across all cell types except microglia.
Overall, these findings agree with other single cell studies on ALS exploring a different frontal cortex region
and the motor cortex40,41 suggesting that these gene expression levels are not specific to a cortical subregion in
patients nor to a particular disease subtype.

Previous studies have found haploinsufficiency of C9orf72 in C9-ALS as indicated by decreased transcript and
protein levels1,2,63–65. We evaluated chromatin accessibility and RNA expression of C9orf72 across disease
subtypes and cell types revealing accessible peaks in the 5′UTR region of C9orf72 (Extended Data Fig. 3a).
Microglial cells alone show intronic peaks between exons 3 and 4 of C9orf72 which have high co-accessibility
with 5′UTR end peaks (Extended Data Fig. 3a). A pseudo-bulk analysis of chromatin peaks uncovered
decreased peak height near the location of the repeat expansion in C9-ALS cases relative to controls and sALS
cases (Extended Data Fig. 3a). This chromatin accessibility decrease in the 5′UTR, the known site of C9orf72
repeat expansions1,2, points to a possible contributory role in C9orf72 haploinsufficiency observed in these
cases. The expression profile of C9orf72 shows similar cell type enrichment in the transcriptome and
epigenome (Extended Data Fig. 3b-c). Further, we observe a concomitant trend towards decreased C9orf72 in
the gene expression and gene activity scores in C9-ALS across all measured cell types (Extended Data Fig.
3d). Overall, C9orf72 shows altered chromatin accessibility in C9-ALS, but a decrease in RNA expression
levels is observed in both C9-ALS and sALS across surveyed cell types.
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Cell type-enriched TF motif analysis in ALS subtypes
To establish the cell type TF motif landscape in accessible DNA, we annotated potential TF-binding sites in
open chromatin regions across the ALS and control datasets (Extended Data Fig. 4a)66. The pseudo-bulk
analysis of our snATAC data reveals TF-binding within a range of approximately 10-100kb from the
transcriptional start site (TSS) in both directions (Extended Data Fig. 4b) suggesting cis-regulatory activity
extending both up and downstream of the TSS.

To elucidate the cell type-specific activity of TF motifs, we performed a differential analysis across major cell
types (Fig. 3a, Supplementary Data Table 5). For oligodendrocytes, this identifies motifs from the SOX family,
which have established roles in oligodendroglia development67. The NFI family of TFs68 are enriched in both
OPCs and astrocytes, however, astrocytes show further enrichment for GSX1 and PAX4 motifs which are
known to be active in astrocytes69. For microglia, SPI family motifs show highest enrichment and have been
shown to regulate microglial lineage from myeloid cells70,71. TF motifs EGR2, NEUROD2, and OLIG3 motifs
are enriched in excitatory neurons72,73, whereas inhibitory neurons are characterized by ASCL family and
TCF12 motifs which are involved in neuronal migration during cortical development74.

The differentially accessible TF motifs across cell types demonstrate that TF motif enrichment differs between
C9-ALS and sALS in neurons and glial cells relative to controls (Fig. 3b, Extended Data Fig. 4c,
Supplementary Data Table 6). Overall, C9-ALS shows more altered TF motifs than in sALS, with ZSCAN11,
ZNF621, and SMAD4 being the most significant in excitatory neurons in C9-ALS (Fig. 3b). In both disease
subtypes, excitatory neuron-enriched TF motifs NEUROD2 and OLIG3 show altered activity (Fig. 3b).
Inhibitory neurons show more differentially accessible motifs in sALS than C9-ALS (Fig. 3b), underscoring
the DEG findings which suggest that this cell type is more affected in sALS (Fig. 2b). Both excitatory and
inhibitory cells show alterations in MECP2, DNMT1, and FOXG1 in C9-ALS and sALS (Fig. 3b). For glial
cells, we found that C9-ALS microglia and OPCs show more changes than in sALS, which agrees with the
DEG results (Extended Data Fig. 2a, 4c). In contrast, sALS astrocytes show more TF motif variability than in
C9-ALS (Extended Data Fig. 4c). Oligodendrocytes show few TF motif changes in either C9-ALS or sALS
(Extended Data Fig. 4c).

We characterized the genomic regions where the differentially active TF motifs bind relative to the TSS across
major cell types in C9-ALS and sALS (Fig. 3c-e, Extended Data Fig. 4d-f). The landscape of TF binding in
ALS suggests cis-regulatory influences extending both upstream and downstream of the TSS, mirroring the
distribution of genomic loci observed in DARs (Fig. 2, Extended Data Fig. 1). Particularly, TF motifs from
inhibitory neurons are predominantly located proximal to the TSS across ALS subtypes as seen in DARs
altered in the same cell type (Fig. 3d, Fig. 1j). For all glial cell types, the sALS cohort exhibits higher
preference for TF motifs proximal to the TSS, suggesting regionally distinct regulatory patterns compared to
C9-ALS (Fig. 3e, Extended Data Fig. 4d-f).

We next visualized the cell type and ALS subtype levels of open chromatin around TF binding site motifs. A
TF footprinting analysis75 uncovers a high Tn5 insertion density and drop-off around cell type-enriched TF
motifs (Fig. 3f-h). The footprinting analysis reveals a notable reduction in Tn5 insertion up and downstream of
NEUROD2 motifs in excitatory neurons from both ALS subtypes relative to controls (Fig. 3f). Considering the
critical role of NEUROD2 in maintaining excitatory neuron homeostasis76, this finding implicates a
dysregulation of excitatory neuron homeostasis in ALS. FOXG1, which promotes neuronal survival77, also
shows increased Tn5 insertion in both excitatory and inhibitory neurons in C9-ALS and sALS (Extended Data
Fig. 4g). Astrocytes from C9-ALS and sALS show increased Tn5 insertion around STAT1 (Fig. 3h) and
BACH2 motifs (Extended Data Fig. 4i) suggesting a neuroinflammatory response78. Insertion near JUNB
motifs in microglia shows a higher accessibility in C9-ALS relative to controls, whereas sALS demonstrates
lower accessibility (Extended Data Fig. 4j). This indicates a potential divergent dysregulation of immediate
early response factors79 in microglia in C9-ALS versus sALS. Taken together, these results provide a
foundation for TF motif variability by cell type in the frontal cortex and delineate TF motif changes in C9-ALS
and sALS.
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Dysregulation of APA landscape in ALS
Despite previous studies showing that APA is dysregulated in ALS27, the underlying mechanisms have
remained largely unexplored. We identified known polyadenylation (PA) sites in transcripts across our ALS
subtypes and non-neurological controls and performed differential PA analysis comparing ALS with control80,81

(Methods). We find many significant PA differences between ALS subtypes and controls across all major cell
types (Fig. 4a,b, Supplementary Data Figure 5). In both ALS subtypes, we observe larger peaks and tails for
positive APA usage (Fig. 4c) indicating a global trend towards distal PA sites.

We next examined the location of APA events in transcripts. While most events are found in the 3′ most exons,
a significant number are also in intronic and exonic regions. This pattern was consistent across major cell types
in both C9-ALS and sALS (Fig. 4d). The abundance of intronic APAs in ALS compared to controls suggests a
potential increase in truncated gene transcripts, which could have a significant impact on gene function. The
shift towards distal PA sites and longer 3′ UTRs could impact function through altering mRNA stability82,83.
We observe lengthening and shortening of many ALS risk genes across major cell types in C9-ALS and sALS
in 3′ UTR, introns, and internal exons (Extended Data Fig. 5a-j). For instance, in excitatory neurons, genes
such as TARDBP, MATR3, SETX, and ANXA11 exhibit lengthening, while TIA1 shows 3′ UTR shortening (Fig.
4e,f). Increased intronic PAs usage for UNC13A is observed in excitatory and inhibitory neurons across ALS
subtypes, indicating truncated UNC13A transcripts in ALS (Extended Data Fig. 5e-f,h). Depletion of UNC13A
as a result of mis-splicing of the transcript has been reported in ALS84,85 suggesting that UNC13A transcript
structure modifications are involved in ALS.

To explore the biological significance of APA dysregulation in ALS, we performed a pathway analysis for
each cell type (Supplementary Data Table 8). We found that lengthened genes in excitatory neurons from
C9-ALS and sALS are enriched in pathways such as cell cycle86, cell proliferation87, vesicle organization88,
ribonucleoprotein complexes40, and apoptosis89 (Fig. 4g). In C9-ALS excitatory neurons, lengthened transcripts
are enriched in pathways such as cell motility, organelle assembly, and protein localization, whereas shortened
transcripts are enriched in transcription regulation and protein complex assembly. In sALS excitatory neurons,
lengthened transcripts are related to mitosis and programmed cell death pathways (Fig. 4g), whereas no terms
are enriched for shortened transcripts. These findings highlight shared and distinct pathways in C9-ALS and
sALS subtypes. Taken together, our data indicate a complex dysregulation of the APA landscape in ALS,
involving both increased shorter and longer gene transcripts that differ across C9-ALS and sALS cell types.

Deep learning model to map APA dysregulation in ALS
To decode the complex grammar of APA dysregulation in our ALS cohorts, we developed a deep learning
model called APA-Net. APA-Net is trained to predict the APA log-fold change (LFC) values from our ALS
datasets vs. control comparison (Fig. 4a,b) using the RNA sequences surrounding proximal and distal PA sites
for each APA event per transcript and the RBP expression profiles per cell type (Fig. 5a) as input. To assess
APA-Net performance, we compared predicted to known APA LFC values using Pearson correlation. APA-Net
achieved a robust Pearson correlation coefficient of over 0.61 on a previously unseen C9-ALS test data set and
0.64 on an unseen sALS data set, across the entire data set (Fig. 5b,c, Extended Data Fig. 6a,b). APA profiles
are highly specific for each cell type in C9-ALS and sALS (Fig. 5c, Extended Data Fig. 6b). Thus, APA-Net
successfully learns cell type-specific APA profiles across disease subtypes.

Using a Convolutional Neural Network (CNN) architecture augmented with multi-head attention, our model
was designed to identify cis-regulatory elements that influence PA site selection across different cell types. We
optimized the model architecture, including kernel size and max pooling steps, to capture relevant genomic
motifs (Fig.5a)90,91. To identify potential cis-regulatory elements, we used the filter weights from the CNN
module of APA-Net, which represent learned sequence motifs. We scanned every sequence within the test
dataset using the model's filters to identify regional subsequences where the filters showed the highest
activation. We employed a position-weight matrix technique to capture the patterns each filter had learned for
C9-ALS and sALS (Supplementary Data Fig. 6-7). We next aligned RBPs from the compendium of
RNA-binding motifs92 with the motifs found by APA-Net. We observe ALS risk genes FUS93 and TDP4394, as
well as APA and AS factors such as HNRNPC, SFPQ, and SRSF795–99 among the aligned RBPs (Fig. 5d,e). A
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differential expression analysis reveals significant dysregulation of these RBPs across the major cell types in
both C9-ALS and sALS relative to control (Fig. 5e,f, Extended Data Fig. 6c).

To corroborate APA-Net findings, we used a CLIP-seq dataset to investigate the enrichment of HNRNPC
binding sites in excitatory neuron transcripts. HNRNPC binds to regions surrounding proximal PA sites, and its
knockdown can promote distal PA site usage98,100. Considering the observed downregulation of HNRNPC in
excitatory neurons in C9-ALS (Fig. 5e), we hypothesized that HNRNPC binding sites are enriched in distal
APA sites. To explore this, we performed an enrichment analysis of HNRNPC binding sites near proximal
PAs. We observe a significant enrichment of binding sites in distal APA events and a lower enrichment in
proximal APA events (Fig. 5g). Overall, our findings highlight the value of APA-Net's interpretability,
enabling us to discern the underlying dysregulation of APA in ALS and deepening our molecular
understanding of the disease.

RBP interactions reveal cell type-specific mechanisms and dysregulation of APA in ALS
Leveraging APA-Net's interpretability, we investigated potential RBPs involved in APA dysregulation in ALS.
We first identified co-occurring sequence motifs that were automatically identified by APA-Net with our data
and then identified RBPs that are known to bind these motifs. This resulted in RBP co-occurrence profiles that
were clustered to identify major modules grouping RBPs with similar motif co-occurrence indicating potential
interactions. C9-ALS and sALS had different module structures indicating a disease subtype-specific
dysregulation (Fig. 6a, Extended Data Fig. 8).

In C9-ALS, Module 1 (Fig. 6a) highlights interactions with RBPs like MBNL1 and SRSF7, both involved in
transcript shortening99,101. This module also features other APA-related factors such as HNRNPA1, as well as
TDP-43 (TARDBP). Module 3 includes RBPs, such as CNOT4, SAMD4A and RBM24, which are associated
with the coordinated regulation of transcription, AS, and APA102. Module 4, with the highest number of RBPs,
highlights HNRNPC and PAPBN1, both involved in transcript lengthening103,104. This module also includes
ALS-related RBPs like FUS, MATR3, SFPQ, and TIA111,93,105–107, alongside various other RBPs involved in
transcript processing and APA. In sALS (Extended Data Fig. 8), Module 3 of the RBP interaction profile
includes TDP-43, SRSF7, ENOX1, and FXR1. While SRSF7 can physically interact with TDP-43108, ENOX1
demonstrates FUS and TDP-43-like properties in functional yeast screens109. The precise interactions between
FXR1, a member of the FMRP family, and TDP-43 are not known; however, both FMRP family proteins and
TDP-43 are concurrently detected in RNA granules in post-mortem brains of FTLD patients110,111. Taken
together, our findings indicate that dysfunctional interactions among these RBPs could be a contributing factor
to the complex interplay between AS and APA, thereby shaping the dysregulated APA landscape observed
across ALS subtypes.

We next explored the RBP interaction patterns across various cell types. Distinct RBP interactions are found
among different cell types in both C9-ALS and sALS (Extended Data Fig. 9a,b). We also identified eight
distinctive RBP expression patterns (Fig. 6b), suggesting that specific sets of RBPs might be important in
regulating APA events within individual cell types. This cell type-specificity in RBP interactions and
expression profiles hints at the presence of distinct cis and trans regulatory elements that may influence APA.
Collectively, our findings help map cell type-specific APA regulation in ALS and the complex molecular
landscape underlying disease.

Discussion
In this study, we explored the molecular landscape of ALS through post-mortem tissue analysis of the
orbitofrontal cortex, a region associated with behavioural impairments in ALS ALS/FTLD spectrum112–118.
Using single nucleus transcriptomic and epigenomic profiling, and a state-of-the-art deep learning model, we
shed light on the cell type-specific dysregulation of gene expression, open chromatin, and APA in C9-ALS and
sALS. Our findings reveal that excitatory neurons in both C9-ALS and sALS exhibit altered cell states,
characterized by changes in genes associated with neuronal and synaptic functions. Gene expression and APA
changes are more pronounced in inhibitory neurons in sALS than C9-ALS when compared with control cases.
Microglia from both C9-ALS and sALS similarly shift from a homeostatic to a disease-like phenotype.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.573083doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=8576024,589890&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10657198,14390300&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5055076&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15355578,11904070&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=9421035,248546,632697,15376963,5734387&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=11559142&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=233231&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=513320,812907&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10592809,5569713,10592807,249447,5562095,10700535,5750212&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0
https://doi.org/10.1101/2023.12.22.573083


ALS-related risk genes change expression across cell types in C9-ALS and sALS. Notably, there is a consistent
upregulation of SOD1 and CHCHD10, highlighting potential significance of these genes in disease subtypes
other than mutant SOD1- and CHCHD10-linked ALS119,62.

To explore the APA regulation in ALS, we introduce APA-Net, an interpretable deep learning model that can
predict disease and cell-type specific APA events and their associated regulatory mechanisms. Compared to
previous work, APA-Net is more interpretable and better performing, particularly as it provides cell
type-specific APA insights120,121. The strength of APA-Net lies in its ability to handle identification of cis
regulatory elements without relying on additional methods for post-analysis interpretation and to uncover cell
type-specific RBP interactions, offering a window into their roles in APA dysregulation and their links to
disease. This capability has led to the identification of novel RBP interaction candidates in both C9-ALS and
sALS, shedding light on the cell type-specific APA dysregulation within ALS. Such insights deepen our
understanding of ALS at the molecular level and extend the potential of APA-Net to investigate other diseases
marked by APA dysregulation.

Our single-nucleus transcriptomic and epigenomic profiling from the frontal cortex provides a granular
understanding of the cellular heterogeneity in ALS. The atlas presented here complements existing single cell
mapping papers40,122, which profiled dorsolateral prefrontal, occipital, and motor cortex regions of the brain in
C9-ALS and sALS. We expand on these studies by providing an evaluation of the orbitofrontal cortex.
Moreover, we introduce APA-Net to enable the cell type-specific probing of APA dysregulation. Our findings
help map ALS disease mechanisms and targets useful for future therapeutic research.

Methods
Human brain samples
Informed consent was obtained from all participants in accordance with the Ethics Review Boards at
Sunnybrook Health Sciences Centre and University of Toronto. ALS clinical diagnosis was determined based
on the El Escorial revisited clinical criteria123. Fresh frozen orbitofrontal cortex tissues were collected from
ALS cases with pathologically confirmed FTLD or no FTLD, and six non-neurological control cases (detailed
information in Supplementary Data 1). C9-genotypes were determined as described previously63,124.
Postmortem patient samples comprised C9-ALS/FTLD (n=7), C9-ALS no FTLD (n=3), and sALS no FTLD
(n=8). Postmortem non-neurological control samples (n=6) were obtained from the Douglas-Bell Canada Brain
Bank (DBCBB, Montreal, Canada) (n=4) or University Health Network–Neurodegenerative Brain Collection
(UHN–NBC, Toronto, Canada) (n=2). Expert neuroanatomists ensured that each orbitofrontal cortex tissue
section contained the entire laminar structure of the cortex (layers I-VI and white matter). A subset of samples
were processed using the 10X v2 chemistry for C9-ALS/FTLD (n=3), C9-ALS no FTLD (n=1), and sALS no
FTLD (n=4). These v2 samples were used solely for an in-depth cell type annotation process across disease
subtypes. For all downstream analyses on snRNA-seq, exclusively v3 chemistry samples were used. Here, the
C9-ALS/FTLD (n=4) and C9-ALS without FTLD (n=2) were combined to create the C9-ALS cohort (n=6).
The sALS without FTLD (n=4) samples constituted the sALS cohort. These disease subtypes (C9-ALS and
sALS) were then compared to the non-neurological control group (n=6).

Single nucleus RNA-seq by fluorescence activated cell sorting
Frozen orbitofrontal cortex (~50mg per sample) was dounce homogenized on ice in lysis buffer (0.32mM
sucrose, 5mM CaCl2, 3mM Mg(Ac)2, 20mM Tris-HCl [pH 7.5], 0.1% Triton X-100, 0.5M EDTA [pH 8.0],
40U/mL RNase inhibitor in H2O), centrifuged at 800×g for 10 min at 4°C. The supernatant was removed and
the pellet was washed twice and resuspended in a resuspension buffer (1x PBS, 1% BSA, 0.2U/µL RNase
inhibitor). Resuspended nuclei were sorted by fluorescence activated cell sorting with DAPI (Roche) labeling,
removing any debris and nuclei aggregates within DAPI-positive gating, capturing ~6000 nuclei per sample.
Library preparation was performed using either the 10X Chromium Single Cell 3’ v2 or v3 platform following
the manufacturer protocols. The QC of cDNA libraries was conducted on a 2100 Bioanalyzer (Agilent). The
cDNA libraries were 100-bp paired end sequenced on either an Illumina NovaSeq 6000 SP XP or
NovaSeq6000 S2 standard flow cell at the Princess Margaret Genomic Centre (Toronto, Ontario). Raw
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Illumina base call files from each sample were demultiplexed to produce FASTQ files with the cellranger
mkfastq pipeline (10X Genomics). Reads were aligned to the pre-mRNA GRCh38-2020-A genome and
quantified using cellranger count command on Cell Ranger v5.0.0 (10X Genomics).

Single nucleus ATAC-seq by density gradient
Frozen orbitofrontal cortex (~50mg per sample) was dounce homogenized on ice in homogenization buffer
(HB, 260mM sucrose, 30mM KCl, 10mM MgCl2, 20mM Tricine-KOH [pH 7.8], 1mM DTT, 0.5mM
Spermidine, 0.15mM Spermine, 0.3% NP40, 1 tablet cOmplete Protease inhibitor [Sigma-Aldrich]) and then
filtered using a 40µm Flowmi cell strainer. Filtered nuclei were spun down at 500×g for 5 min at 4°C.
Following removal of supernatant, nuclei were resuspended in 400µL of HB and then mixed with 50%
iodixanol (Sigma-Aldrich). The final nuclei suspension at 25% iodixanol was loaded onto a 30-40% iodixanol
density gradient and then centrifuged at 3200×g for 20 min at 4°C. Nuclei collected from the 30-40% iodixanol
interface were resuspended in HB and centrifuged at 500×g for 10 min at 4°C. Supernatant was removed and
the gradient purified nuclei were resuspended in diluted nuclei buffer (10X Genomics). Library preparation
was performed following manufacturer instructions on the 10X Chromium Single Cell ATAC v1.1 platform.
The QC of cDNA libraries was conducted on a 2100 Bioanalyzer (Agilent). The cDNA libraries were 100-bp
paired end sequenced on either an Illumina NovaSeq 6000 SP XP or NovaSeq6000 S2 standard flow cell at the
Princess Margaret Genomic Centre (Toronto, Ontario). Raw Illumina base call files from each sample were
demultiplexed to produce FASTQ files with the cellranger-atac mkfastq pipeline (10X Genomics). Reads were
aligned to the GRCh38-2020-A genome and quantified using cellranger-atac count command on Cell Ranger
ATAC v2.0 (10X Genomics).

snRNA-seq sample processing, QC, and clustering
All processing and QC of snRNA-seq samples was performed using Seurat (v4.0), and custom R and Python
scripts. Seurat objects were created for each sample using the filtered feature-barcode matrices obtained from
Cell Ranger (v5.0.0). For each sample, nuclei containing mitochondrial reads with a threshold greater than
three mean absolute deviations from the median number of mitochondrial reads with a maximum cut-off of 5%
were removed. Next, nuclei with fewer than 200 and greater than 12000 detected genes were removed. Reads
pertaining to the cell cycle were scored using the scran R package125. Potential doublets were estimated and
removed using scDblFinder with default parameters126. The remaining singlet transcriptomes were merged and
batch corrected with Harmony34 on log1p normalized counts. Dimensionality reduction was performed using
principal component analysis (PCA) on 50 PCs and then visualized using UMAP127. Seurat clustering was
approximated using a resolution of 0.6. Clusters with fewer than 200 cells were filtered out as background as
shown previously128 based on poor representation across samples and disease subtypes.

snATAC-seq sample filtering, quality control, and clustering
Filtering and QC was performed on snATAC-seq samples using the “Merging Objects” vignette from Signac
(v1.7.0)32. Peak sets were read from BED files produced by Cell Ranger ATAC (v2.0) followed by conversion
to genomic ranges and then reduced to a common peak set shared by all samples. Fragment files were loaded
and filtered using a 500 count cut-off to filter out low quality barcodes. The CreateChromatinAssay step was
performed prior to creating a Seurat object for each sample. All samples were then merged and an additional
filtering step was performed to remove barcodes from nuclei containing fewer than 2000 and greater than
25000 peak fragments in a given region, less than 15% reads in a given peak, less than a nucleosomal signal of
4, and less than 2 or greater than 20 TSS enrichment score32. On the merged object, matrix normalization was
performed with the RunTFIDF function followed by singular value decomposition using RunSVD prior to
visualization by UMAP. Doublets and multiplets were then filtered out from the merged object using the
ATAC-seq MULtiplet Estimation Tool (AMULET)129. We removed clusters with fewer than 250 cells as
background and a doublet cluster which was identified during annotation, as performed previously128

(Morabito 2021). Batch correction on the dataset was performed using Harmony34. Re-clustering was then
performed with Seurat at resolution of 0.6 and visualized again by UMAP. From here, peaks on the merged
object were called using MACS2130. A gene activity matrix was added to the object using the GeneActivity
command in Signac. This approach estimates gene expression by counting ATAC-seq peaks within the gene
body and 2 kilobases upstream of the TSS. The resulting gene activity matrix was normalized by log1p
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transformation. QC visualization was performed using the ArchR package131 and any additional visualization
was performed using the scCustomize132 or dittoSeq133 R packages.

Cluster annotation by machine learning and reference-based approaches
For both the snRNA-seq and snATAC-seq datasets, clustering was performed using the Leiden algorithm35. To
uncover orbitofrontal cell types from the identified clusters, we employed marker discovery by machine
learning (NSForest v3.9.1)37 and reference-based annotation36 using the Allen Brain Atlas. Default parameters
in NSForest were applied to identify binary markers for each cluster. The machine learning-based marker
classification approach identified binary markers for each cluster using random forest feature selection and
expression scoring. These binary markers for clusters were then used to confirm cortical cell type identity
using reference-based annotation. In the case of the snATAC-seq dataset, the gene activity matrix was used as
input for NSForest. Markers from each dataset were then compared with reference 10X Genomics experiments
from two cortical regions in humans, including the primary motor cortex and medial temporal gyrus from the
Seattle Alzheimer Disease Cell Atlas (https://portal.brain-map.org/atlases-and-data/rnaseq). Markers were
additionally compared to the results of a rank-sum Wilcoxon and auROC analysis with the R package Presto134.
Final confirmation of cell type identity was confirmed for each cell subtype in the snRNA-seq and
snATAC-seq (both the open chromatin peaks and gene activity matrix data) datasets by manual annotation36

using canonical cortical cell markers.

Differential gene expression analysis
DEGs were uncovered using DESeq239. Based on a comprehensive comparison of most single cell differential
expression analyses, pseudobulk approaches were shown to outperform other methods135,136. DESeq2 has been
shown to preserve biological variability and expected effect sizes in a single cell context137. For the DEG
analysis, only the 10X v3 samples were included in the analysis to account for differences in the number of
detected genes and UMI distribution. The counts matrix for each of these samples was aggregated for a given
cell type, creating a pseudobulk RNA count for each cell type by biological replicate. First, a Single Cell
Experiment (SCE) object138 was created using the counts matrix and metadata from the snRNA-seq object
from above created with Seurat. Any clusters with fewer than 10 cells in a given sample were removed from
the SCE object. The resulting counts matrix was aggregated using the aggregate.Matrix command from the
Matrix.utils package (v0.9.8). A DESeq2 object was created with the design ~ diagnosis + sex. Dispersion
estimates and coefficients were all inspected manually prior to shrinking log2 fold changes to accurately
estimate effect size using the Apeglm package139. An adjusted p-value < 0.05 was used to detect significance in
all cases. Further analysis of transcriptional signatures within cell types and across disease subtypes was
performed using the R package UCell version 2.4140. UCell uses the Mann-Whitney U statistic to assign and
rank signature scores from a set of genes based on their relative expression in cells.

Transcription factor motif and differentially accessible region analysis
DARs were determined with the FindMarkers function in Seurat using the logistic regression (LR) algorithm.
Latent variables included sex and normalized counts in peaks for DARs. An adjusted p-value < 0.01 was used
as the threshold to determine significance for DARs. TF motif accessibility was computed on the snATAC-seq
data using the R package chromVAR66, which enables the calculation of TF motif variability in sparse
chromatin data. In brief, the motif position frequency matrix (pfm) was the human reference from the cisBP
database141 to produce a motif object which was then added to the Seurat object using the AddMotif function in
Signac. TF motif activity was then calculated on the snATAC-seq object using the RunChromVAR function
(GRCh38/hg38 reference genome assembly). Differential TF motifs were uncovered using the Wilcoxon Rank
Sum Test algorithm in Seurat’s FindMarkers command. The fold change value was changed to represent the
average difference given to match the chromVAR output. Statistically significant TF motifs showed at least an
average difference between conditions of 0.5 and an adjusted p-value<0.01. Overlap between differential
results for DEG, DARs, and TF motifs were visualized using either the R packages ggvenn142 or UpSetR143.

Peak annotation and chromatin co-accessibility analysis
The annotation of peak and TF motif locations relative to the transcriptional start site TSS were performed
with the ChIPseeker56, and included regions ranging from promoters, 5′ UTR, 3′ UTR, exonic, intronic, and
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distal intergenic. To identify co-accessible peaks in the snATAC-seq data, we computed co-accessibility peak
scores using the R package Cicero38. In brief, Cicero takes the existing UMAP embeddings to cluster cells
together, whereby the algorithm computes a regularized correlation matrix from binary chromatin accessibility
values using a graphical LASSO approach. Here, the LASSO penalizes distant sites at a maximum of 500kb
versus proximal sites. A cis-co-accessibility network (CCAN) is plotted using a given peak as a node and
edges are co-accessible peaks connected from the node. An empirical CCAN score threshold of >25% of
maximum score was set for each cell subtype.

APA Quantification and Profiling
Pseudo-bulk alignment files were generated for each cell type using the barcodes. We employed the MAAPER
software to assign sequencing reads to known polyadenylation (poly A) sites, as defined in the PolyA_DB_v3
database80,81. Polyadenylation sites are considered only if there were 25 reads aligning to the sites. For
identifying genes with significant changes in the length of their 3′-most exon, we used the REDu metric
provided by MAAPER. REDu measures the relative expression levels between the two most differentially
expressed isoforms in the 3′-most exon. A positive REDu value indicates transcript lengthening events, while a
negative value points to shortening events. For pinpointing genes exhibiting intronic APA usage we used the
REDi metric. REDi compares the relative expression levels of the top differentially expressed isoform in the
3′-most exon and the top differentially expressed isoform in an intron or internal exon. The RED score,
comparing conditions 1 and 2, is computed using the formula:

𝑅𝐸𝐷 =  𝑙𝑜𝑔2(α2𝑑/α2𝑝) −  𝑙𝑜𝑔2(α1𝑑/α1𝑝).  

Where, the proportions of the proximal PAs in conditions 1 and 2 are denoted as α1p and α2p, and the
proportions of the distal PAS are denoted as α1d and α2d80,81.

Subsequently, we used the APAlog package to delve deeper into differential poly(A) site usage patterns.
APAlog operates on the normalized counts of reads mapped to each poly(A) site to assess the extent and nature
of differential usage. For a comprehensive comparison, APAlog was run in Pairwise Test mode, which enables
the comparison of all possible pairs of poly(A) sites per transcript104.

Gene Ontology Analysis
Gene Ontology (GO) analysis on snATAC-seq data was carried out using the rGREAT package144. All GO
analyses for snRNA-seq data, including from DEGs and APA was performed using GSEA145 with curated, no
GO inferred electronic annotation gene sets downloaded from http://baderlab.org/GeneSets/ (June 2023
release). We used a minimum gene set size of 15 and the maximum gene set size of 200. Visualization of GO
results focused on minimizing GO term redundancy using either individual enrichment or bar plots of select
representative findings, or by summarizing results by plotting enrichment maps created with the Enrichment
Map plugin for Cytoscape (v3.9.1) in Linux146. A q-value cutoff of 0.5 was used for plotting APA GO results.

Deep Learning Model Architecture
For the APA-Net architecture, we designed a state-of-the-art architecture aimed at dissecting the complex
regulatory mechanism underlying APA in both C9-ALS and sALS cases. APA-Net employs a Convolutional
Neural Network CNN architecture supplemented with a multi-head attention module, specifically optimized to
identify cis-regulatory elements impacting PA site selection across varied cell types. The input region for the
CNN and MAT modules encompasses 2 kb surrounding both the proximal and distal PAS. The CNN module
contains a single convolutional layer, comprising 128 kernels, each with a size of 12 and a stride of 1. This is
followed by a max pooling layer with a kernel size of 20 and stride of 20. The output from this stage feeds into
a multi-head attention module, in which each position in the representation map functions as a distinct token .
In this context, a 'token' refers to a discrete unit of information, which is essential for the attention mechanism
to effectively process and interpret the complex patterns within the data. A residual connection links the CNN
and multi-head attention modules. This residual connection, a key component in deep learning architectures,
helps in mitigating the vanishing gradient problem by allowing the flow of information and gradients directly
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across layers. The attention module's output, along with the RBP expression profile specific to the cell type, is
forwarded to a multi-layer perceptron for final APA effect prediction through a regression task.

Deep Learning Model Interpretation
To extract learned RNA sequence motifs, we used the learned filter weights in the CNN module of APA-Net.
Each sequence within the test dataset was scanned using the model’s filters to identify regions with maximal
filter activation, which are hypothesized to correspond to biologically relevant RNA sequence motifs, which
were modeled as Position-Weight Matrices. We next aligned RBPs from the compendium of RNA-binding
motifs92 with these RNA sequence motifs. After RBP alignment, we identified filter (RBP motif) profile
correlation interactions involved in APA regulation. This is done through analysis of filter activations (RBP
motifs) across the test dataset. We hypothesize that highly correlated filters may represent RBPs involved in
the same pathways.

RBP interaction dissimilarity across cell types
We used the Frobenius norm, a measure of the difference between two matrices (similar to Euclidean distance
for vectors) defined as the square root of the sum of the absolute squares of their element-wise differences to
measure the dissimilarity of the interaction profiles across the celltypes.
The Frobenius distance between two matrices X and Y is given by:

𝑑(𝑋,  𝑌) =  ||𝑋 −  𝑌||_𝐹 =  √(𝑡𝑟((𝑋 −  𝑌)ᵀ(𝑋 −  𝑌)))

Where:
denotes the trace of a matrix (the sum of its diagonal elements).𝑡𝑟 

denotes the transpose of matrix X.𝑋^𝑇 
denotes the Frobenius norm.||·||_𝐹  

Data and code availability
Raw FASTQ snRNA-seq and snATAC-seq files are deposited in the National Institute of Health Sequencing
Read Archive SRA (https://www.ncbi.nlm.nih.gov/sra) under the accession ID (TBA). Source code used in this
study will be made available on GitHub upon publication. Processed snRNA-seq and snATAC-seq data will be
available for interaction with a R Shiny app upon publication.
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Figure 1. Epigenomic and transcriptomic atlas for the study of cell type changes in ALS brains. a,
Workflow for the generation of a single nucleus atlas of the frontal cortex from C9-ALS (n=10 individuals),
sALS (n=8), and control (n=6). The snRNA-seq data was derived from fluorescent activated cell sorted
(FACS) nuclei labeled and gated with DAPI. The snATAC-seq data was obtained from nuclei purified by
iodixanol density gradient. Analyses include clustering/annotation, differential expression/accessibility, gene
set scoring, technology (tech) comparison and correlation, and motif variability (var.). b, Alternative
polyadenylation (APA) analysis across ALS subtypes and cell types. The MAAPER software was used to
assign pseudobulk snRNA-seq reads to poly(A) sites. The APAlog software facilitated quantification of APA
events from assigned reads. APA grammar was decoded using a multi input deep learning model called
APA-Net which consists of a convolutional neural network with a multi-head attention mechanism.
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Figure 2. Neuronal transcriptomics and epigenomics show converging and diverging changes in C9-ALS
and sALS versus controls. a, Heatmaps of top differentially expressed genes (DEG) uncovered using DESeq2
in excitatory neurons from C9-ALS (left) and sALS (right). b, Heatmaps of top DEG in inhibitory neurons
from C9-ALS (left) and sALS (right). Venn diagrams indicating proportion of c, DEG overlap between
C9-ALS and sALS in excitatory neurons; d, differentially accessible chromatin regions (DAR) in excitatory
neurons between C9-ALS and sALS; e, DEG in inhibitory neurons comparing C9-ALS versus sALS; and f,
DAR in inhibitory neuron from C9-ALS and sALS. g, Representative ranked gene set enrichment analysis
(GSEA) plot from the Reactome database from DEG in C9-ALS. h, Ranked GSEA plot from inhibitory
neurons in sALS. Genomic features distribution of DAR in i, excitatory neurons and j, inhibitory neurons from
C9-ALS and sALS.
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Extended Data Figure 1. Transcriptomics and epigenomics in glial cells from C9-ALS and sALS relative
to controls. a, Heatmaps of top differentially expressed genes (DEG) uncovered using DESeq2 in microglia
from C9-ALS. b, Representative ranked gene set enrichment analysis (GSEA) plot from the Reactome
database from DEG in C9-ALS microglia. Violin and barplots of gene signature scores for c, homeostatic
markers (CX3CR1, CSF1R, P2RY12, HEXB, TMEM119, CSTC, SELPLG, TXNIP, CCR5); d, disease
associated microglia (DAM) stage 1 (TYROBP, APOE, B2M, TREM2); and e, DAM stage 2 (LPL, CSTF, AXL,
SPP1, CD9, CCL6, CSF1). f, Heatmaps of top DEG in astrocytes from C9-ALS (left) and sALS (right). g,
Violin and barplots of GFAP expression across disease subtypes. Venn diagrams indicating proportion of h,
DEG overlap between C9-ALS and sALS in astrocytes; i, differentially accessible chromatin regions (DAR) in
excitatory neurons between C9-ALS and sALS. Genomic features distribution of DARs in j, oligodendrocytes;
k, oligodendrocyte precursor cells (OPCs); l, astrocytes; and m, microglia from C9-ALS and sALS.
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Extended Data Figure 2. Expression of ALS-related genes across major cell types and disease subtypes.
Clustered heatmap dot plot analysis comparing average ALS risk gene expression (y-axis) in major cell types
and subtypes. Size of dot corresponds to percent of cells of a given cell type expressing the corresponding gene
of interest. Cell type and condition identity indicated in the upper x-axis by colour coding and lower x-axis by
label. Columns are clustered hierarchically, whereas rows are clustered and partitioned with k-means
clustering.
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Extended Data Figure 3. Cell type-specific enrichment of C9orf72 in frontal cortex. a, snATAC-seq gene
coverage and link plots for major cell types (top coverage plot) and pseudobulk peaks (bottom coverage plot)
for control and disease subtypes. b, UMAP plots demonstrating relative gene expression for C9orf72. c,
UMAP plots demonstrating relative gene activity for C9orf72. d, Violin plots of C9orf72 snRNA-seq gene
expression and snATAC-seq gene activity scores across major cell types and disease subtypes.
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Figure 3. Transcription factor (TF) motif variability is altered across cell types in C9-ALS and sALS. a,
Heatmap of average chromVAR deviation scores for the top 3 cell type-enriched motifs across disease
subtypes. b, Upset plot showing the intersection of differentially accessible TF motifs in excitatory and
inhibitory neurons from C9-ALS and sALS cohorts. Distribution of TF-binding loci relative to the
transcriptional start site (TSS) in differentially accessible TF motifs in c, excitatory neurons, d, inhibitory
neurons, and e, astrocytes. Transcription factor footprint analysis plots of enriched Tn5 insertion around f,
NEUROD2 in excitatory neurons, g, FOXG1 in inhibitory neurons, and h, STAT1 in astrocytes.
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Extended Data Figure 4. (Related to Fig. 3). Differentially altered transcription factor (TF) motifs in
glial cells from C9-ALS and sALS. a, Pie chart representing the distribution of peaks in pseudobulk
snATAC-seq dataset. b, TF-binding loci relative to the transcriptional start site (TSS) across the entire
snATAC-seq dataset. c, Upset plot showing the intersection of differentially accessible TF motifs in glial cells
from C9-ALS and sALS cohorts. Distribution of TF-binding loci relative to the transcriptional start site (TSS)
in differentially accessible TF motifs in d, oligodendrocytes, e, oligodendrocyte precursor cells (OPC), and f,
microglia. Transcription factor footprint analysis plots of enriched Tn5 insertion around g, FOXG1 in
excitatory neurons, h, TCFL5 in inhibitory neurons, i, BACH2 in astrocytes, and j, JUNB in microglia.
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Figure 4. Dysregulation of alternative polyadenylation (APA) landscape in ALS compared to control. a,
Volcano plot of APA events charting all feasible APA pairs between proximal and distal polyadenylation sites.
The x-axis denotes the natural logarithm (Ln) fold change (LFC) of distal to proximal PAs usage. a, Represents
these findings for excitatory neurons from C9-ALS versus control, while b, highlights the findings for
excitatory neurons from sALS. c, Ridge plot elucidating the distribution of APA events in both C9-ALS and
sALS relative to control samples, across the major cell types. P The "Tail probability" indicates the likelihood
of an APA event in the given distribution. d, Annotation or the locational distribution of quantified APAs. e,
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Volcano plot illustrating lengthened and shortened genes in excitatory neurons in C9-ALS relative to controls,
as measured by the relative expression difference in the 3’UTR (REDu) metric (Methods). f, Volcano plot,
analogous to d, but showing findings for excitatory neurons from sALS in comparison to control. g, Pathway
analysis of the lengthened and shortened genes in excitatory neurons across ALS subtypes.
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Extended Data Figure 5. (Related to Fig. 4). Dysregulation of Alternative Polyadenylation (APA) in ALS
Across Cell Types. This figure presents volcano plots that depict lengthened and shortened genes in ALS
subtypes across Excitatory neurons, Inhibitory neurons and Microglia, determined by the REDu and REDi
metrics. REDu evaluates the relative expression difference between the top two isoforms in the 3′-most exon,
indicating transcript lengthening (positive REDu) or shortening (negative REDu). REDi assesses the relative
expression between the top differentially expressed isoform in the 3′-most exon versus an intron or internal
exon. (Methods) The plots are organized as follows: a, REDu in Inhibitory Neurons in C9-ALS; b, REDu in
Inhibitory Neurons in sALS; c, REDu in Microglia in C9-ALS; d, REDu in Microglia in sALS; e, REDi in
Excitatory Neurons in C9-ALS; f, REDi in Excitatory Neurons in sALS; g, REDi in Inhibitory Neurons in
C9-ALS; h, REDi in Inhibitory Neurons in sALS; i, REDu in Microglia in C9-ALS; j, REDu in Microglia in
sALS.

Figure 5. Development and analysis of a deep learning model to unravel the grammar of alternative
polyadenylation (APA) regulation in C9-ALS and sALS cases. a, Schematic representation of the APA-Net
architecture and inputs. The model uses two inputs: sequences surrounding the PA sites and the expression
profiles of 279 RBPs. b, Scatter plot depicting the correlation between predicted APA log fold change (LFC)
and observed APA LFC on a test dataset previously not exposed to the model for C9-ALS cases. c, Heatmap of
APA correlations among different cell types. A low correlation suggests varied APA usages across cell types.
The final column highlights the APA-Net’s performance for each specific cell type, focusing on C9-ALS cases.
d, APA-Net filters interpreted as motifs (Methods and Supplementary Data Figure 5), which were subsequently
aligned to an RNA-binding protein (RBP) database to identify corresponding RBPs. e, Differential expression
analysis performed on the identified RBPs. The volcano plot shows upregulated and downregulated RBPs in
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excitatory neurons from C9-ALS and f, sALS. g, Enrichment analysis targeting HNRNPC binding sites for
APA events. Top: APA sequences are divided into equally populated bins based on their LFC values. Red
shows the proportion of APA events in each bin. Middle: Enrichment score indicating under-representation and
over-representation. Bins with significant enrichment (hypergeometric test, corrected P < 0.05; red) or
depletion (blue) of poly(U) motifs are denoted with a bolded border. Bottom: volcano plot showing the
distribution of changes in APA LFC in excitatory neurons from C9-ALS compared to controls. Significant
observations are highlighted in orange.
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Extended Data Figure 6. (Related to Fig. 5) Deep learning model performance in sALS cell types versus
control. a, Scatter plot depicting the correlation between Predicted APA log fold-change (LFC) (y-axis) and
Observed APA LFC (x-axis) on a test dataset not previously exposed to the model for sALS cases. b, Heatmap
illustrating APA correlations among different cell types. A low correlation suggests varied APAs across cell
types. The final column highlights the model's performance for each major cell type, focusing on sALS cases.
c, Results of differential expression analysis on the identified RBPs across the major cell types in sALS versus
non-neurological controls. The volcano plot showcases upregulated and downregulated RBPs in each cell type.

Extended Data Figure 7. (Related to Fig. 5). Differential expression of RBPs in C9-ALS cell types versus
control. Results of differential expression analysis on the identified RBPs across the major cell types in
C9-ALS versus non-neurological controls. The volcano plot demonstrates the upregulated and downregulated
RBPs in each cell type.
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Figure 6. RNA-binding protein interactions reveal cell type-specific mechanisms and dysregulation of
alternative polyadenylation in C9-ALS. a, Clustered RBP correlation profile heatmap computed using
Pearson correlation in C9-ALS. Four RBP modules are defined based on this clustering (labeled on y- and
x-axes). b, Clustered heatmap of RBP expression patterns across major cell types and disease subtypes. The
dendrogram partitions the RBPs into cell type enrichment groups.
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Extended Data Figure 8 (related to Fig. 6). RNA-binding protein interactions reveal cell type-specific
mechanisms and dysregulation of alternative polyadenylation in sALS. Clustered RBP correlation profile
heatmap computed using Pearson correlation in sALS. Four RBP modules are defined based on this clustering
(labeled on y- and x-axes).
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Extended Data Figure 9 (related to Fig. 6). RBP interaction dissimilarity across cell types in C9-ALS and
sALS. Clustered heatmaps showing the dissimilarity of RBP correlation profile interactions measured by
pairwise Frobenius norm of correlation profile matrices, as depicted e.g. in Figure 6a, among cell types in a,
C9-ALS and b, sALS. (See Methods)

Supplementary Data Figures
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Supplementary Data Figure 1. Demographic information and cell type annotation in snRNA-seq and
snATAC-seq. a, Boxplots of age and sex across all analyzed snRNA-seq (61.6 ± 13.3 years) and
snATAC-seq (63.1 ± 13.0 years) samples. UMAP plots for b, sex; c, disease subtype; d, sample batches;
and e, Leiden Clusters. f, flowchart of the cell subtype annotation approach. g, UMAP of annotated clusters
from snRNA-seq (left) and snATAC-seq (right).
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Supplementary Figure 2 (related to Figure 1). Markers of frontal cell subtypes in snRNA-seq and
snATAC-seq. a, Stacked violin plot of binary markers identified by NS-Forest. b, UMAP of major cell type
annotation in snRNA-seq. c, UMAP of major cell type annotation in snATAC-seq; d, snRNA-seq heatmap of
canonical cell type markers. e, Chromatin accessibility peak coverage within the gene body of canonical
cortical cell type markers in snATAC-seq. Oligo = oligodendrocytes; Astro = astrocytes; Endo-VLMC =
endothelial and vascular lepotomeningeal cell; Mico-PVM = microglia and perivascular macrophages; OPC =
oligodendrocytes precursor cells; excitatory neurons subtypes = Layer 2/3 intratelencephalic (L2/3 IT), L4 IT,
L4/5 IT, L5 extra telencephalic-projecting (L5 ET), L5 IT, L5/6 near projecting (L5/6 NP) L6B, L6
corticothalamic-projecting (L6 CT), L6 IT, L6 IT Car3; enhibitory neuron subtypes: IN-SST (SST+), In-SNCG
(SNCG+), In-VIP (VIP+), In-LAMP5 (LAMP5+), In-CXCL14 (CXCL14+), In-PAX6 (PAX6+), and
In-PVALB-Ch (PVALB+ chandelier cells).
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Supplementary Data Figure 3. (Related to Figure 1). Proportions and correlations between cell types
across technologies and disease subtypes. Barplots of cell type proportions by sample in a, snRNA-seq and
b, snATAC-seq. c, Cell type proportions by disease subtype in snRNA-seq (top) and snATAC-seq (bottom). d,
Gene expression correlation matrix for snRNA-seq across major cell types and disease subtypes. e, Clustered
correlation matrix heatmaps for gene activity, as estimated by per gene promoter peaks in snATAC-seq, for
snRNA-seq across major cell types and disease subtypes. f, Scatter plots comparing the average gene
expression level of a given gene for all frontal cortex cell types from snRNA-seq (x-axis) with the average
gene activity score in snATAC-seq (y-axis). Regression line indicates correlation strength; Pearson correlation
coefficient R considered significant at p<0.000001.
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Supplementary Data Figure 4. (Related to Figure 2). Dysregulation of ribosomal subunits across cell
types in C9-ALS and sALS. Violin and boxplots of ribosomal genes (RPL/S pattern) for a, excitatory
neurons, b, inhibitory neurons, c, Microglia-PVM (perivascular macrophages), d, astrocytes, e,
Oligodendrocytes, f, OPC. The y-axis represents gene set signature scores for ribosomal genes (Methods).
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Supplementary Data Figure 5 (Related to Fig. 4). Volcano plots of APA events charting all feasible APA
pairs between proximal and distal Polyadenylation sites. The x-axis denotes the natural logarithm (Ln) fold
change of distal to proximal PAs usage. a, C9-ALS major cell types versus control. b, sALS major cell types
versus control.
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Supplementary Data Figure 6. (related to Fig. 5). Position Weight Matrix (PWM) representation of 128
filter activations for C9-ALS. Visualization of 128 sequence filters for C9-ALS. PWMs are generated by
scanning the test sequences and aligning the subsequences with high activation levels.
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Supplementary Data Figure 7. (related to Fig. 5). Position Weight Matrix (PWM) representation of 128
filter activations for sALS. Visualization of 128 sequence filters for sALS. PWMs are generated by scanning
the test sequences and aligning the subsequences with high activation levels.
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