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KEY PO INT S

� The PLAG1
transcription factor
promotes human HSC
self-renewal and
dormancy.

� PLAG1 enforces
stemness by dampening
expression of translation
machinery activated in
HSC-stimulatory
conditions.

Hematopoietic stem cell (HSC) dormancy is understood as supportive of HSC function and
its long-term integrity. Although regulation of stress responses incurred as a result of HSC
activation is recognized as important in maintaining stem cell function, little is understood
of the preventive machinery present in human HSCs that may serve to resist their activation
and promote HSC self-renewal. We demonstrate that the transcription factor PLAG1 is
essential for long-term HSC function and, when overexpressed, endows a 15.6-fold
enhancement in the frequency of functional HSCs in stimulatory conditions. Genome-wide
measures of chromatin occupancy and PLAG1-directed gene expression changes combined
with functional measures reveal that PLAG1 dampens protein synthesis, restrains cell
growth and division, and enhances survival, with the primitive cell advantages it imparts
being attenuated by addition of the potent translation activator, c-MYC. We find PLAG1
capitalizes on multiple regulatory factors to ensure protective diminished protein synthesis
including 4EBP1 and translation-targeting miR-127 and does so independently of stress

response signaling. Overall, our study identifies PLAG1 as an enforcer of human HSC dormancy and self-renewal
through its highly context-specific regulation of protein biosynthesis and classifies PLAG1 among a rare set of bona
fide regulators of messenger RNA translation in these cells. Our findings showcase the importance of regulated
translation control underlying human HSC physiology, its dysregulation under activating demands, and the potential
if its targeting for therapeutic benefit.

Introduction
Hematopoietic stem cells (HSCs) ensure long-term multilineage
blood regeneration through their enduring self-renewal capac-
ity.1,2 As such, transplantation of hematopoietic stem and pro-
genitor cells (HSPCs) sourced from bone marrow (BM) or
umbilical cord blood (CB), can be life-saving for patients with
myriad malignant and nonmalignant disorders.3,4 Widespread
application of HSPC therapies remains limited by disease-
causing mutations in autologous HSPCs and difficulties sourcing
HLA-matched allogenic BM.3,5 Efforts to bridge these gaps
include attempts to achieve therapeutic HSPC genome editing
and amplification of less plentiful but immunologically superior
CB HSPCs.6-13 However, these goals remain challenged by our
incomplete understanding of the fundamental biology underly-
ing human HSC identity and fate-decisions, especially in stimula-
tory regenerative conditions where HSCs are predisposed to
depletion.6,14-19

Despite their extensive regenerative capacity, the most potent
HSCs live principally in a state of quiescence and dormancy,
wherein cells exhibit reduced anabolic activity that preserves the

integrity of the HSC pool.20-23 Indeed, conditions that cause
HSPCs to exit dormancy, such as the regenerative stress of ex
vivo manipulation or transplantation, compromises the pool of
long-term (LT) repopulation-competent HSCs.24-26 Interventions
that restrain mitochondrial metabolism or cell cycle to limit HSC
activation in these settings can aid in preservation of mouse and
human HSCs.21,27-31 Importantly, however, the process of pro-
tein biosynthesis, which in many contexts is co-regulated with
metabolism and can fuel cellular growth and division, has not
been well explored for its role in human HSC dormancy and
transplantation paradigms.

In their native environment murine HSCs, like several other model
stem cell types,32-35 require tightly controlled, low levels of pro-
tein synthesis,36,37 understood to limit exhaustive proliferation
and safeguard the proteome to evade attrition or death from pro-
teotoxicity.37-40 In response to stimulatory conditions, the activa-
tion of stress effectors in murine HSCs serves to rebalance
proteostasis by favoring diminished translation rates.41,42 These
studies have begun to elucidate the multifactorial contributions
to HSC dormancy and fate; however, they raise a number of key
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questions: Under activating conditions, what are the dynamics of
translation in stem vs mature human hematopoietic cells? Can
translation modulation be supportive of human HSCs? Can trans-
lation regulation be decoupled from stress response? And what
factor(s) control translation in human HSCs?

PLAG1 is a zinc finger transcription factor (TF), first discovered
as being rearranged in pleomorphic adenomas of the salivary
gland and plays essential regulatory roles in mammalian fetal
growth and development.43,44 We now identify PLAG1 as an
essential regulator of human HSC dormancy and self-renewal
by acting as a novel negative regulator of protein synthesis
independently of triggering intrinsic stress-responsive effec-
tors. Our study supports an emerging paradigm that dysregu-
lation of protein synthesis is a key clinical demand on human
HSCs and its modulation could be leveraged for therapeutic
benefit.

Methods
CB Lin2CD341 culture and analysis
Lin2CD341 CB cells were isolated, transduced with lentiviral
vectors (supplemental Methods available on the Blood web
site), and cultured in StemSpan Serum Free Expansion Medium
with 20 ng/mL thrombopoietin and interleukin-6 and 100 ng/
mL SCF and FLT3 ligand at 37�C 5% CO2. Culture-derived cells
were analyzed by xenotransplantation, extreme limiting dilution
analysis (ELDA),45 colony-forming unit (CFU) assay, flow cytom-
etry, immunofluorescence microscopy, quantitative polymerase
chain reaction, CUT&RUN,46 or RNA-sequencing (RNA-seq)
(supplemental Methods; supplemental Tables 7-10).

Mouse xenotransplantations
Mouse work was done in pathogen-free facilities in compliance
with ethical regulations approved by McMaster University’s

D

F G

E

0

20
10

50
40
30

60
70

shCntrl

p=0.12p=0.16

2shPLAG1 shCntrl 2shPLAG1

shCntrl
2shPLAG1

shCntrl 1shPLAG1 shCntrl 1shPLAG1 shCntrl 1shPLAG1

shCntrl
2.14%

2shPLAG1
0.04%

1shPLAG1
0.11%

90
80

To
ta

l c
ol

on
ie

s p
er

 5
00

sh
RN

A+
 ce

lls

0

10

5

25

20

15

30

35

40

Co
lo

ni
es

 p
er

 5
00

sh
RN

A+
 ce

lls

0

0.4
0.2

1
0.8
0.6

1.2
1.4
1.6
1.8

1.3�
n.s.

14.7�
***

11.6�
***

17.94�
p=0.064

6 weeks 16 weeks

Ou
tp

ut
/in

pu
t %

GF
P 

of
 h

um
an

CD
45

+
 in

 u
ni

nj
ec

te
d 

fe
m

ur

Ou
tp

ut
/in

pu
t %

GF
P 

of
 h

um
an

CD
45

+
 in

 in
je

cte
d 

fe
m

ur

Ou
tp

ut
/in

pu
t %

GF
P 

of
hu

m
an

 C
D4

5+
 in

 B
M

GF
P

shCntrl
15.9%

GF
P

Human CD45-PacBlue

Human CD45-PacBlue

BFU-E CFU-G CFU-M CFU-GM GEMM

0

0.4

0.2

1

0.8

0.6

1.2

Ou
tp

ut
/in

pu
t G

FP
+

 o
f h

um
an

CD
45

+
 in

 in
je

cte
d 

fe
m

ur

0

1

0.5

2.5

2

1.5

0

0.4
0.2

1
0.8
0.6

1.2
1.4
1.6

16 weeks

B

BFU-E

* **

*

0

20

40

60

shCntrl
1shPLAG1

80

Co
lo

ni
es

 p
er

 3
00

 sh
RN

A+
 ce

lls

CFU-G CFU-M CFU-GM GEMM Total

C
shCntrl
1shPLAG1

*

0

1

2

3

4

5

To
ta

l C
D3

4+

(cu
m

ul
at

ive
 fo

ld
 ch

an
ge

)

Days in culture
D0 D4 D7

Input flow
xenotransplant

CD34+ FACS
lentiviral
transduction

Suspension culture
measurements

GFP+

FACS CFU counts

Day 14

Week 16

Day 0Day –3

A

LTR LTRshPLAG1U6 hPGK EGFP

Day 4&7

Xenotransplant
endpoint

Figure 1. PLAG1 is enriched and essential in human HSCs. (A) Schematic of Lin2CD341 CB HSPC in vitro and in vivo functional assay timelines and lentivectors used
for PLAG1 knockdown. (B) Primary CFU output by Lin2CD341 HSPCs expressing control or (1sh) PLAG1-targeting hairpins. (C) Cumulative in vitro CD341 cell fold
change of cultured of Lin2CD341 HSPCs expressing 1shPLAG1 or control hairpins. (D) GFP1 engraftment in the uninjected femur of primary NSG mice 6 weeks after
xenotransplantation of Lin2CD341 cells expressing either 1shPLAG1 (n 5 4) or control (n 5 6) hairpins normalized to input % GFP1 levels. (E) GFP1 engraftment in the
injected femur and bone marrow of primary NSG mice 16 weeks after xenotransplantation of Lin2CD341 cells expressing either 1shPLAG1 (n 5 4) or control (n 5 5)
hairpins normalized to input % GFP1 levels. (F) Primary CFU output by Lin2CD341 HSPCs expressing control or a second (2sh) PLAG1-targeting hairpin. (G) GFP1

engraftment in the injected femur and bone marrow of primary NSG mice 16 weeks after xenotransplantation of Lin2CD341 cells expressing either 2shPLAG1 (n 5 3)
or control (n 5 6) hairpins normalized to input % GFP1 levels. Data are presented as average 6 SEM unless otherwise indicated. Each point represents one mouse or
an individual CB unit. ***P , .005, **P , .01, *P , .05. n.s., not significant. See also supplemental Figure 1.
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Animal Research Ethics Board. Age- and sex-matched NSG
mice (Jackson Laboratories) were sublethally irradiated (315 cGy)
1 day before intrafemoral injection of HSPCs, and endpoint tis-
sues were processed by passage through 40-mM cell strainer as
previously described.47

Informed consent was received for all of the human cord blood
samples used.

Results
PLAG1 is enriched and essential in human HSCs
We previously showed that when co-overexpressed, short iso-
forms of PLAG1 (-S and -B) (supplemental Figure 1A) and the
USF2 TFs can cooperatively transactivate the pro-self-renewal
gene MSI2.48 However, although USF2 expression is stable
across the human hematopoietic hierarchy, PLAG1 is specifically
elevated in HSCs from human CB48-51 and murine52 and
human53 BM (supplemental Figure 1B-E), altogether suggesting
that PLAG1 may have important unexplored functions in the
most primitive hematopoietic cells.

To evaluate this, we queried the in vitro and in vivo potential of
CB-derived Lin2CD341 HSPCs expressing PLAG1-targeting
short hairpin RNAs (Figure 1A; supplemental Figure 1F). PLAG1-
depleted HSPCs generated fewer colonies, due mainly to
reduced burst forming erythroid (BFU-E) and primitive granulo-
cyte-erythroid-megakaryocyte-monocyte (CFU-GEMM) colonies
(Figure 1B). This was mirrored in suspension culture where
shPLAG1 significantly reduced total nucleated cell and CD341

outputs over 7 days (Figure 1C; supplemental Figure 1G). Six
weeks following NSG mouse xenotransplantation, when engraft-
ment is largely contributed by progenitors, there was modest
but nonsignificant reduction in the representation of shPLAG1-
expressing GFP1 cells (Figure 1D). However, 16 weeks after
transplant when the graft is sustained by bona fide HSCs,
engraftment by shPLAG1-expressing cells was significantly
impaired 11- to 14-fold (Figure 1E). Patterns in reduced CFU
output, and impairment of long-term BM reconstitution were
replicated by a second independent PLAG1-targeting hairpin
(Figure 1F-G; supplemental Figure 1H).

PLAG1-S is a positive regulator of human
HSPC fitness
Mining expression profile data, we next uncovered intriguing
differences in the expression profiles of PLAG1 and MSI2 signi-
fying that the role of PLAG1 in human HSC physiology may

transcend the PLAG1/USF2-MSI2 regulatory axis. First, in the
human hierarchy, PLAG1 expression is highly restricted to non-
cycling HSCs, whereas MSI2 is strongly expressed in both non-
cycling and cycling HSCs and CD341 progenitors (Figure 2A).54

Second, upon 5-fluorouracil stress induction of mouse HSC
cycling, Msi2 is elevated, whereas Plag1 is repressed (supple-
mental Figure 2A).55 Most importantly and unexpectedly,
PLAG1-S overexpression without USF2 in Lin2CD341 cells is
insufficient to enhance MSI2 protein expression (Figure 2B).
Moreover, PLAG1 levels are reduced in human HSPCs activated
by transplantation (supplemental Figure 2B)28 or culture (Figure
2C; supplemental Figure 2C).39,56,57 Therefore, to explore the
potential for an independent function of PLAG1 in modulating
human HSPC fate decisions in these contexts, we assayed
Lin2CD341 CB cells in vitro and in vivo upon gain of PLAG1
(Figure 2D; supplemental Figure 2D).

Overexpression of each of the 3 PLAG1 isoforms (supplemental
Figure 1A)43,44,48 increased BFU-E output with only the shorter
isoforms (-S and -B) enhancing GEMM replating efficiency (Fig-
ure 2E-F) and CD341 cell expansion in culture over 7 days (peak
advantage at day 4) (Figure 2G-I; supplemental Figure 2E). In
PLAG1-S overexpressing (PLAG1-SOE) cultures enhanced CD34
maintenance occurs concurrently with a reduction of committed
CD331 cells and an elevated frequency of CD341CD711 (BFU-E)
progenitors (supplemental Figure 1F,G). Altogether, these find-
ings point to the short isoforms of PLAG1 as important positive
regulators of human HSPCs and contextualize our past
observation that these isoforms are preferentially expressed
in the HSC-enriched compartment of human CB.48

Given the strong and comparable phenotypes between PLAG1-
S and PLAG1-B, we prioritized the shortest form, PLAG1-S, for
assessment in competitive repopulation assays (Figure 2D). Fol-
lowing a 4- or 6-week repopulation period in NSG mice,
PLAG1-SOE and control short-term progenitors are similarly
capable of contributing to engraftment (supplemental Figure 2H).
After 16 weeks, the proportion and intensity of the BFP trans-
duction marker relative to input levels was however signifi-
cantly higher in the BM of PLAG1-SOE recipients compared
with control (Figure 2J-K; supplemental Figure 2I). Because BFP
intensity from this bidirectional promoter vector provides a sur-
rogate measure for transgene expression40,58 this indicates that
cotransplanted cells overexpressing PLAG1-S to higher levels
outcompete those expressing lower levels. Importantly, the
enhanced fitness of PLAG1-SOE HSCs was neither associated
with splenomegaly (supplemental Figure 2J) nor elevation of the

Figure 2. PLAG1-S is a positive regulator of human HSPC fitness. (A) PLAG1 and MSI2 transcript expression in human bone marrow cell populations determined by
single-cell RNA-seq.54 (B) MSI2 protein expression measured by immunofluorescence microscopy in PLAG1-S overexpressing Lin2CD341 cells. (C) Change in variance-
stabilizing transformed (vst) PLAG1 transcript expression in Lin2 cord blood cells cultured for 2 or 4 days showing the P value from 1-tailed Student t-test39 and in
72-hour cultured long-term (Lin2CD341CD382CD45RA2CD901CD49f1) CB HSCs showing the P value from 1-tailed Student t-test and differential expression from
DEseq analysis.56 (D) Schematic of Lin2CD341 CB HSPC in vitro and in vivo functional assay timelines and lentivectors used for overexpression of PLAG1 protein iso-
forms. (E) Primary CFU output by BFP1 Lin2CD341 cells overexpressing PLAG1-A, B, or S, or Luciferase control (n 5 3 per experiment). (F) Secondary CFU replating
efficiency (for each condition, 12 GEMMs from 3 distinct CB units were replated into new wells. Negative indicates no secondary colonies were derived from the pri-
mary GEMM, Positive indicates at least 1 secondary colony was derived from the primary GEMM) and the total number of secondary colonies on positive plates with
images of representative primary GEMM colonies used. (Square data points are from experiment 1 and circle data points are from experiment 2, n53 per experiment.)
(G) Cumulative in vitro total nucleated cell (TNC) and (H) CD341 cell fold change of cultured of Lin2CD341 cells overexpressing PLAG1-A (n 5 3), B, or S, or Luciferase
control (n 5 6). (I) Frequency of CD34 positivity in PLAG1-A (n 5 3), B, or S, or Luciferase control (n 5 6) overexpressing cultures after 4 and 7 days ex vivo. (J) Repre-
sentative flow plots and quantification relative to input proportions of BFP representation in CD451 human grafts in bone marrow of primary NSG mice 16 weeks after
receiving Lin2CD341 cells overexpressing either PLAG1-S or Luciferase control (n 5 6). (K) Representative flow plots of input and output BFP fluorescence intensity and
quantification of output/input BFP median fluorescence intensity in bone marrow of primary NSG mice 16 weeks after receiving Lin2CD341 cells overexpressing either
PLAG1-S or Luciferase control (n 5 6). Data are presented as average 6 SEM unless otherwise indicated. Each point represents 1 mouse or an individual CB unit.
***P , .005, **P , .01, *P , .05. n.s., not significant. See also supplemental Figure 2.
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Figure 3. PLAG1-S overexpression promotes self-renewal of long-term human HSCs. (A) Schematic of primary and secondary xenotransplantation in limiting dilu-
tion format. (B) Representative flow plots of human CD451BFP1 multilineage (CD331, CD191) engraftment of primary recipient mice in injected femur. Percent human
CD451BFP1 engraftment in injected femur of primary recipient mice across multiple cell input doses. Dashed line indicates cutoff for calling engraftment, which
was .0.5% human chimerism including both myeloid (CD451BFP1CD331) and lymphoid (CD451BFP1CD191) lineages. (C-D) Quantification of HSC frequency by ELDA45
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CD341 compartment; and despite erythroid bias in vitro, in the
in vivo niche PLAG1-SOE grafts displayed balanced multilineage
output (supplemental Figure 2K; supplemental Table 1).

PLAG1-S overexpression promotes self-renewal
of human LT-HSCs
To evaluate the capacity of PLAG1-S to promote LT-HSC self-
renewal, we performed serial gold-standard primary xenotrans-
plantation in limiting dilution to quantify HSC frequencies in the
culture-derived progeny of Lin2CD341 cells immediately after
induction of ectopic PLAG1-S (Figure 3A). Fourteen weeks fol-
lowing primary xenotransplantation, only 33% of mice trans-
planted with control cells, compared with 66% of mice
transplanted with PLAG1-SOE cells met multilineage BM engraft-
ment criteria (Figure 3B,D). ELDA45 determined HSC frequencies
of 1 in 715 PLAG1-SOE vs 1 in 11157 control cells, representing
15.6-fold enhancement of functionally validated HSCs (Figure
3C-D). A similar analysis of splenic grafts revealed 75-fold
enhancement in primitive cells capable of repopulating this envi-
ronment (supplemental Figure 3A-B). Notably, HSC renewal
achieved by ectopic MSI2 does not occur at this early timepoint
posttransduction,47 highlighting a unique functional capacity of
PLAG1-S enacted via MSI2-independent means.

At the secondary transplant endpoint, we confirmed that recipi-
ents of PLAG1-SOE cells exhibited enduring multilineage recon-
stitution and heightened engraftment because of a 4.8-fold
higher HSC frequency relative to control (Figure 3E-G; supple-
mental Figure 3C). Accounting for initial HSC input into
primary recipients, we find that enhanced engraftment in sec-
ondary recipients is not the result of enhanced renewal in vivo
(Figure 3G) and is primarily attributed to the initial ex vivo pro-
motion of the HSC compartment. These results quantitatively
demonstrate that PLAG1-SOE does not impart excessive HSC
self-renewal characteristic of clonal hematopoiesis or prema-
lignancy, and that the potent promotion of HSCs in a stimula-
tory setting is not associated with detrimental exhaustion of
the LT-HSC compartment.

To test for the effect of PLAG1-S on HSC renewal over longer
periods in vitro, cells cultured for 7 additional days were sub-
jected to limiting dilution xenotransplantation (supplemental
Figure 3D). Relative to immediately postinduction of ectopic
PLAG1-S, the number of functional HSCs continue to increase
1.6-fold and sustain 4.3-fold higher frequencies relative to con-
trol (supplemental Figure 3E-G). Thus, the potent stem cell
advantage endowed by PLAG1-S, though sustained in culture,
can be maximally achieved shortly after PLAG1-S induction,
underscoring PLAG1-S as an early actor in promoting HSC func-
tion to improve hematopoietic repopulation.

PLAG1-S enforces a pro-HSC transcriptional state
Genomic binding and transcriptomic profiles were next used to
uncover molecular targets underpinning the positive regulation

of HSCs by PLAG1-S. CUT&RUN performed in PLAG1-SOE

Lin2CD341 cells identified 9788 reproducible genomic binding
sites46,59 (supplemental Figure 4A; supplemental Table 2). Con-
sistent with our published chromatin immunoprecipitation
sequencing in K562 cells48 and its known role as a TF, PLAG1-S
sites are principally located in promoter regions (58.4%) (Figure
4A). De novo motif discovery revealed that PLAG1-S is predomi-
nantly (35%) bound to G-rich core consensus sequences
expected for PLAG family members, likewise supporting the
specificity of the CUT&RUN profile generated (Figure 4B). To a
lesser extent, PLAG1-S is also bound to non-canonical motifs,
including those associated with other zinc finger, GATA, or
RUNX TFs (Figure 4B; supplemental Table 3).

RNA-seq of HSPCs directly following up- or down-modulation
of PLAG1 levels (supplemental Tables 4 and 5) corroborates
the respective immunophenotypic and functional outcomes
both through the expression of surface markers (supplemental
Figure 4B) and by global alignment to transcriptional states of
20 human hematopoietic cell subpopulations,49 which show
positive associations to primitive and erythroid signatures and
negative associations to myeloid signatures correlated with
high PLAG1 levels in vitro (Figure 4D).

Ectopic PLAG1-S significantly altered the expression of 543
genes (supplemental Table 4; Figure 4C). Consistent with its
understood function as a transcription activator, 60% of the 291
upregulated genes are proximally bound by PLAG1-S. Thirty
percent of downregulated genes are also directly bound, which
similarly to other recent publications,60 suggests an underappre-
ciated role for PLAG1-S in negative regulation of gene expres-
sion. Gene set enrichment analysis (GSEA) revealed that
coordinated pathway-level changes are dominated by negative
enrichments (supplemental Table 6). The top-most negatively
enriched gene sets coalesce in the largest cluster of altered sig-
natures and point to a synchronized attenuation of messenger
RNA (mRNA) translation machinery in PLAG1-SOE HSPCs (Figure
4E; supplemental Figure 4C). These negative enrichments are
driven largely by reduced expression of genes encoding ribo-
somal proteins (RPs) (supplemental Figure 4D). Moreover, there
is a significant overrepresentation and overlap of genes belong-
ing to the cluster of protein synthesis gene sets in the repertoire
of genes directly bound by PLAG1-S (Figure 4E [green edges]
and 4F; supplemental Table 7). Altogether, this speaks to an
unexpected ability of PLAG1-S to intersect with the regulation
of protein synthesis machinery to regulate fate decisions in
human HSPCs.

PLAG1-S dampens protein synthesis and
promotes dormancy in stimulated human HSPCs
The state of attenuated translation machinery in PLAG1-SOE

HSPCs is intriguing given that tightly controlled protein synthesis
is a hallmark of stem cell biology.32-35,37 Although others have
demonstrated that culturing human HSPCs, like their murine

Figure 3 (continued) of injected femur of primary recipient mice. Shaded area under the curve represents 95% confidence interval of HSC frequency. (E) Percent human
CD451BFP1 engraftment in injected femur of secondary recipient mice across multiple cell input doses. Dashed line indicates cutoff for calling engraftment, which was
the same as for primary mice. (F-G) Quantification of HSC frequency by ELDA of injected femur or uninjected bone marrow of secondary recipient mice and of in vivo
expansion. Shaded area under the curve represents 95% confidence interval of HSC frequency. Total BFP1 cells within whole-body BM of primary mice were extrapolated,
as previously,47 based on femur and hind limb counts and proportional accounting from Colvin et al,107 and in vivo expansion is measured as the fold difference of total
BFP1 HSCs in donor mice relative to total day 0 HSCs initially transplanted into the 6 donor mice. Data are presented as average 6 SEM unless otherwise indicated. Each
point represents 1 mouse. See also supplemental Figure 3.
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counterparts, promotes exit from dormancy, loss of quiescence,
and differentiation,24,25,28,39 little is known of their translation
dynamics within immediate and prolonged timeframes, and in
comparison with more committed cells.42 To gain these insights
and contextualize the HSPC-specific PLAG1-S regulon, we mea-
sured O-propargyl-puromycin (OP-Puro) incorporation in CB
cells upon culture-induced stimulation.37,61,62 As early as 4
hours after being placed in culture, Lin2CD341 cells activate
protein synthesis, and these levels progressively increase, peak-
ing at 9.5-fold after 48 hours. Subsequently, translation rates
drastically decline between 48 and 72 hours and plateau
between 3 and 10 days, but do not return to baseline levels
(Figure 5A; supplemental Figure 5A). In contrast, more mature
Lin2CD342 cells experience only a modest elevation of transla-
tion after 24 hours that diminishes by 48 hours (Figure 5B), indi-
cating that human HSPCs selectively undergo an immediate but
transient pro-translation response when placed into culture.
Evaluating PLAG1-SOE HSPCs we observed that transcriptional
reprogramming of protein biosynthetic processes indeed sup-
ports a 13% reduction in global translation rates in Lin2CD341

cells ex vivo (Figure 5C; supplemental Figure 5B-C). This
appears selective to primitive hematopoietic cells because com-
parably handled PLAG1-SOE K562 and Lin2CD342 cells display
unchanged and heighted translation levels, respectively (sup-
plemental Figure 5D).

Anabolic processes such as protein biosynthesis are generally
correlated with cellular enlargement and division,63-67 both of
which can predict HSC exhaustion.24,68 To this point, the diame-
ter of untransduced cultured HSPCs is significantly enlarged
coincident with the peak in translation rates, which notably pre-
cedes when the first cellular division is expected28 (supplemental
Figure 5A). Likewise, we find that depressed translation in
PLAG1-SOE HSPCs is associated with restraint in size (Figure 5D).
GSEA did not uncover consensus control over cell-cycle pro-
gression by PLAG1-S (supplemental Table 6; Figure 4E). How-
ever, Hoechst/Ki-67 staining indicated that PLAG1-SOE HSPCs
are slightly restrained in cell-cycle progression (Figure 5E), paral-
leling the correlation between PLAG1 expression and dormant
HSCs (Figure 2A-C). Although this may likely be secondary to
translation regulation, we also noticed that expression of
CDKN1C, an essential regulator of murine HSC quiescence and
renewal,69,70 appears directly activated 2.5-fold by PLAG1-S in
HSPCs (supplemental Tables 2 and 4), possibly contributing to
the cell-cycle profile of these cells.

In vitro survival, which could contribute to amplifying a stem cell
pool experiencing infrequent and/or slow division dynamics, is
enhanced in PLAG1-SOE cells, as measured by Annexin V (Figure
5F). Given that translation dynamics are highly interconnected

with stress signaling that can dictate survival decisions, we pro-
filed stress effectors in PLAG1-SOE HSPCs. Firstly, pro-apoptotic
p53 targets, which can be induced by imbalances in ribosome
components, are not activated within the PLAG1-SOE transcrip-
tome (supplemental Figure 5E).71,72 Low levels of EIF2 complex
restrains global translation while dichotomously promoting trans-
lation of the integrated stress response effector ATF4 in CB
HSPCs73 and muscle stem cells to support regeneration.35

However, neither EIF2 subunits nor ATF4 targets73,74 are differ-
entially regulated in PLAG1-SOE HSPCs, suggesting this path-
way is not significantly at play (Figure 5G-H). Lastly, CB HSPCs
are selectively sensitive to stress associated with misfolded
proteins40 and low translation rates in murine HSCs is a mecha-
nism that protects their proteostatic integrity.38 To this point,
reduced translation in PLAG1-SOE HSPCs is associated with
depressed expression of unfolded protein response signatures
(Figure 5I). Altogether, this suggests that dampened translation
rates imparted by PLAG1-S is protective and forestalls stress
responses.

In sum, we show that human HSPCs selectively experience an
immediate and transient pro-translation response when exposed
to stimulatory conditions and, through transcriptional program-
ming, PLAG1-S limits translation in human HSPCs to mitigate
the impact of culture-induced protein stress and HSC activation.
This manifests as PLAG1-S-induced reductions in cell enlarge-
ment, division, differentiation, and death in human HSPCs, alto-
gether significantly enhancing HSC fitness and output in vivo.

PLAG1-S activates imprinted loci to support
human HSPCs
A notable finding of the PLAG1-S regulatory network is its direct
binding and activation of DLK1/MEG3 and IGF2/H19 (Figures
4C and 6A; supplemental Figure 6A), affirming that as in mouse
tissues,75 these imprinted loci are targets of PLAG1-S in primi-
tive human hematopoietic cells. PLAG1-induced activation of
IGF2 can stimulate mitogenic and PI3K-AKT-mTOR signaling to
promote tumorigenic growth and division.75-77 However, H19
and MEG3 act in opposition to PI3K-AKT-mTOR signaling in
support of fetal murine HSC quiescence and function.78,79 When
activated, this pathway can stimulate protein synthesis dually
through phospho-dependent activation of RPS6K and inhibition
of translation initiation-regulating 4EBPs (supplemental Figure
6B). At the transcript level, PI3K-AKT-mTOR signaling signatures
are both up- and downregulated in PLAG1-SOE HSPCs (supple-
mental Figure 6C). Definitive characterization of the pathway
flux by intracellular flow cytometry (IFC) reveals subtle reductions
in AKT and 4EBP1 phosphorylation, while RPS6 phospho-status
was unchanged (Figure 6B; supplemental Figure 6D), suggesting
selective repression of 4EBP1-regulated translation initiation

Figure 4. PLAG1-S enforces a pro-HSC transcriptional state. (A) Loci annotations and distribution of PLAG1-S binding sites in the Lin-CD341 genome identified by
CUT&RUN. (B) Enriched motifs among PLAG1-S genomic binding sites determined by HOMER indicating the % of PLAG1-S targets bound to the consensus and
P value of the enrichment relative to genome-wide background occurrence of the consensus. (C) Volcano plot of differential gene expression in PLAG1-S overexpressing
Lin2CD341 cells. Red- or blue-colored genes are significantly changed by adjusted P value , .05 and green- and purple-colored genes are directly bound by PLAG1-S.
(D) PLAG1-S overexpression and shPLAG1 transcriptomic alignment to DMAP signatures of hematopoietic compartments.49 Numbers above or below the bars indicate the
empirical P value determined based on the percentage of times for which the observed value (set of up- or downregulated genes) was as large or larger in that population
than random values (equal number of randomly selected genes) based on 1000 trials. (E) Enrichment map of significantly enriched gene sets (FDR , 0.1) in PLAG1-SOE

Lin2CD341 cells compared with control. Genes bound by PLAG1-S in Lin-CD341 cells (CUT&RUN q-value cutoff of 0.05) are intersected to gene sets by Mann-Whitney
U test (P , .05) and the width of green edges correlates with increasing statistical significance of the overlap. Node size reflects the number of genes in the gene set.
(F) Forty-one of 46 gene sets from the “Establishment Protein Localization Translation” cluster that are overrepresented among PLAG1-S genomic binding sites (g:Profiler
FDR , 0.1) and the list of bound leading-edge genes driving negative enrichments in this cluster. See also supplemental Figure 4. FDR, false discovery rate.
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could partially contribute to reduced protein synthesis in
PLAG1-SOE HSPCs. Human HSPC fitness can be enhanced by
pharmacological inhibition of AKT (AKTi), which promotes quies-
cence80 or addition of the mTOR inhibitor, rapamycin.81 Given
the pleiotropism of these signaling factors, we investigated
whether combining PLAG1-SOE with these inhibitors could pro-
duce combinatorial effects on human HSPC output. As demon-
strated previously in human Lin2CD341 cells treated with
AKTi80 and murine Lin2Sca1 cells treated with rapamycin,82

either inhibitor reduced total cells in both control and PLAG1-
SOE cultures (Figure 6C) while enhancing the proportion of prim-
itive CD341 cells (Figure 6D), resulting in maintenance of similar
total CD341 cell outputs (Figure 6C). Only with rapamycin were
these growth dynamics associated with a reduction in translation
rates in PLAG1-SOE cells (Figure 6E), whereas neither treatment
altered apoptosis in control or PLAG1-SOE cultures (supplemen-
tal Figure 6E).

The DLK1/MEG3 locus also encodes the largest microRNA
(miRNA) mega-cluster in the mammalian genome, with possible
roles transcending PI3K-AKT-mTOR regulation83,84 (Figure 6F).
RNA-seq read counts identified 4 miRNAs from within this locus
(miR-770, miR-433, miR-127, and miR-370) reproducibly overrep-
resented in PLAG1-SOE cells (Figure 6G). Comparison of experi-
mentally supported miRNA targets to transcripts downregulated
in PLAG1-SOE HSPCs found the highest overlap for miR-127
(supplemental Figure 6F),85,86 specifically including genes
involved in complex cap-dependent translation and RNA and
peptide metabolic processing (Figure 6H), providing impetus to
test its role downstream of PLAG1-S. Simultaneous ectopic
expression of PLAG1-S and an inhibitory miR-127-5p
sponge87,88 netted significantly reduced CD341 output (Figure
6I; supplemental Figure 6G,H), and in the 2 CBs in which sample
amounts supported testing OP-Puro incorporation, this was
associated with an increase in protein synthesis (supplemental
Figure 6I). Finally, overexpression of miR-127 enhanced CD341

output while imparting reduced levels of protein synthesis (Fig-
ure 6J; supplemental Figure 6J-L). Together, these results sug-
gest that miR-127 partially contributes to the effects of PLAG1-S
in promoting a specific translational state and primitive cell
maintenance.

MYC-induced translation impairs
PLAG1-S-mediated stemness in human HSPCs
MYC is a potent tissue nonspecific transcriptional activator of
cytoplasmic translation and nuclear ribosome biogenesis.89 In
the murine context, Myc deletion impairs hematopoietic differ-
entiation,90-92 and Myc expression is concomitantly activated
with translation machinery when murine HSCs exit dormancy.93

Recent findings in cultured human HSPCs also establish that
MYC drives their ex vivo activation via promotion of anabolic
programs.56 Therefore, we next investigated whether PLAG1-S
acts through repression of MYC and whether MYC-mediated
activation of translation could influence the ability of PLAG1-S to
promote stemness.

Neither c-MYC protein levels, post-translational regulation, nor
the expression of MYC target genes are reduced in PLAG1-SOE

HSPCs (supplemental Results; supplemental Figure 7A-D). In
fact, in contrast to diminished cytosolic ribosome expression,
the expression of MYC-regulated nuclear ribosome assembly
targets trend upward in PLAG1-SOE HSPCs (Figure 7A), alto-
gether suggesting PLAG1-S acts autonomously of MYC repres-
sion. As such, modulation of MYC expression could serve as a
tool to independently activate translation rates as a means to
query the dependency of PLAG1-S-enforced stemness on its
attenuation of protein synthesis. Indeed, modest c-MYC overex-
pression via the PGK promoter endowed a 25% increase in
OP-Puro incorporation by Lin2CD341 cells (supplemental Fig-
ure 7E-F). Next, BFP1GFP1 PLAG1-S and c-MYC
co-overexpressing Lin2CD341 cells and their control counter-
parts were assessed for primitive cell maintenance ex vivo (Fig-
ure 7B-C). Consistent with other reports,56,90-92 relative to
control, ectopic c-MYC independently promotes hematopoietic
differentiation, as measured by loss of CD341 and gain of
CD331 cells (Figure 7D-E, purple vs red). Over culture c-MYCOE

cells also become enlarged relative to control (Figure 7F, purple
vs red) and display the highest rates of active translation (Figure
7G). We observed that PLAG1-S overexpression significantly
reduced protein production rates in c-MYCOE HSPCs (Figure
7G), and concomitantly countered c-MYC-induced cellular
enlargement and pro-differentiative phenotypes (Figure 7D-F
top, purple vs green). Finally, after 7 days we observed that
cells co-overexpressing PLAG1-S and MYC have significantly
reduced primitive cell output relative to cells solely overexpress-
ing PLAG1-S (Figure 7D-E, bottom, green vs blue). Together,
these findings provide important proof of principle that damp-
ened translation is key to the HSC-supportive programming
imparted by PLAG1-S.

Discussion
We identify PLAG1-S as a novel positive regulator of human
HSC dormancy and self-renewal. We demonstrate that PLAG1-S
enacts multifaceted and combinatorial programs to endow
HSPCs with an in situ-like rate of protein production and simulta-
neously restrain growth, proliferation, differentiation, and death

Figure 5. PLAG1-S dampens protein synthesis and promotes dormancy in stimulated human HSPCs. (A) OP-Puro incorporation dynamics measured as median fluo-
rescence intensity (MFI) in cultured Lin2CD341 cells with representative flow cytometry plots (n 5 5 for 0 and 24 hours; n 5 3 for 4, 48, and 72 hours). Red and blue
asterisks denote statistical significance relative to previous timepoint or T0, respectively. (B) Fold difference of OP-Puro MFI relative to T0 in cultured Lin2CD341 com-
pared with Lin2CD342 CB fractions (n 5 4 for 24 hours, n 5 2 for 48 hours). Blue statistics are relative to 13 levels at T0 and red statistics are between cell types at
matched time points. (C) OP-Puro incorporation by PLAG1-SOE and control Lin2CD341 cells on day 4 of ex vivo culture (n 5 8). Data from 3 experiments normalized to
the average MFI in control cells per experiment. (D) Reduced size of PLAG1-SOE Lin2CD341 cells on day 4 of ex vivo culture determined by flow cytometric MFI of FSC-
H profiles (n 5 7, left, each point is from a culture of an individual CB unit) and immunofluorescence microscopy (right, each point is a single cell; scale bar 5 25 mm).
(E) Cell-cycle analysis by Hoechst and Ki67 staining of PLAG1-SOE and control Lin2CD341 cells on days 4 and 7 of ex vivo culture (n 5 3). (F) Representative flow plots
for PLAG1-SOE and control Lin2CD341 cells stained for 7-AAD and Annexin V with apoptosis measurements of surface positivity of Annexin V on day 4 (n 5 5) and day 7
(n 5 4) of ex vivo culture. (G) Heatmap of log2FC of transcripts coding EIF2 subunits (bottom) and intracellular flow cytometric measures of EIF2S1 protein expression
(n 5 4) in PLAG1-SOE relative to control Lin2CD341 cells on day 4 of ex vivo culture (top). (H) GSEA of the PLAG1-SOE transcriptome to curated targets of ATF4 gener-
ated by Han et al74 and used by van Galen et al73 and FPKM heatmap of ATF4 targets differentially expressed in PLAG1-SOE HSPCs (p.adj , .1). (I) Negative enrichment
of gene sets related to unfolded protein response (P , .05). Data are presented as average 6 SEM unless otherwise indicated. Each point represents an individual CB
unit otherwise indicated. ***P , .005, **P , .01, *P , .05. See also supplemental Figure 5. FSC-H, Forward Scatter Height; n.s., not significant; p.adj, adjusted P value.
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to ultimately enhance human HSC preservation and function in
stimulatory culture and transplantation settings.

The role of PLAG1 in supporting healthy HSC self-renewal is
strikingly at odds with its reported functions in oncogenic con-
texts. In a murine cbfb-translocated acute myeloid leukemia
model ectopic PLAG1 promotes proliferation and its elevation
via lentiviral insertions was one of several co-occurring molecular
abnormalities associated with the onset and progression of pri-
mate myelodysplastic clonal hematopoiesis,94,95 phenotypes
notably absent upon PLAG1-S overexpression in the back-
ground of healthy human HSPCs. Additionally, effectors down-
stream of PLAG1-IGF2 reported to support solid tumors75-77,96

appear inert or repressed in PLAG1-SOE HSPCs, implicating
context-specific counteracting mechanisms. It is particularly in-
teresting that 4EBP1 displayed reduced activation in this setting,
given that phospho-4EBP1/2 is currently the most predictive
indicator of translation levels in murine HSCs.97 4EBP1 phos-
phorylation is unlikely, however, to fully account for the damp-
ened translation observed in PLAG1-SOE HSPCs, where together
with multiple functional nodes, including binding and modula-
tion of RP genes and miR-127, PLAG1-S consolidates the
restraint of translation to enhance HSC function. Interestingly,
rapamycin treatment of PLAG1-SOE HSPCs has an additive effect
on diminished protein production, possibly because of the pref-
erential inhibition of mTOR-RPS6K1 over mTOR-4EBP1.98 How-
ever, the similar CD341 cell growth dynamics upon AKT
inhibition without further reduction of translation also suggests
the possible contribution of other dormancy-promoting pro-
cesses.99 Although neither AKTi nor rapamycin enhanced total
CD341 cell output with PLAG1-S overexpression, the elevated
proportion of CD341 cells from these cultures could suggest
their functional nature differs from vehicle-treated cells. As such,
an interesting question for future investigation is whether phar-
macological inhibition of AKT, mTOR, or other pathways in
PLAG1-SOE HSPCs could further enhance their in vivo repopulat-
ing fitness, as has been shown for untransduced CB.10,12,80,81

Insights garnered from murine models have demonstrated that
HSCs strictly control their protein production.37 Hyperactivation
of protein biosynthetic processes can lead to murine HSC
impairment or depletion by driving their dormancy and quies-
cence exit, differentiation, and compromising their proteome
integrity.38,42,93 We now address these phenomena from a
human perspective, adding activation of protein synthesis as a
selective and robust feature of the molecular summary of com-
promised human HSC function upon culture-induced stimulation

that is commonly required for clinical applications. By preceding
cell division kinetics, the proteostatic response likely also acts as
an early determinant of cell fate100 and is thus an important but
underappreciated checkpoint for therapeutic procedures. The
intersection of translation, dormancy, and stemness being eluci-
dated in model stem cells is mirrored in PLAG1-SOE human
HSPCs, where concurrent with diminished translation we
observe reduced differentiation, enlargement, division, death,
and enhanced self-renewal, and by toggling c-MYC-driven pro-
tein production as a molecular tool, we provide proof of princi-
ple that diminished translation is an essential modality by which
PLAG1-S enhances HSPC output. Together, our results forward
the notion that the physiological importance of low translation
rates in homeostatic niche-associated HSCs can be harnessed
for therapeutic benefit. To this point, rebalancing proteostasis in
murine satellite cells and HSCs by activating stress-responsive
effectors can improve their long-term regenerative capaci-
ties.35,41,42 Importantly however, ectopic PLAG1-S does not
enact the integrated stress response and depresses unfolded
protein response signatures, suggesting that by directly tuning
the translation machinery PLAG1-S preempts and averts pro-
apoptotic branches of stress signaling.40 Others have also dem-
onstrated that translation inhibitors can effectively eliminate
primitive leukemic cells while sparing healthy HSC.101,102

Together with our findings, this highlights the possibility of
achieving a stem cell advantage by optimizing the timing and
dosage of such compounds. The recent success of transient
mRNA delivery systems103 also provides an exciting opportunity
through which the rapid pro-stem effect of PLAG1-S could be
realized to its full advantage. Our identification of ectopic
PLAG1-S as a highly context-selective regulator of protein syn-
thesis also provides impetus for its future investigation in physio-
logical contexts as a regulator of HSC translation, and as a
modulator of translation and/or stemness in other primitive cell
settings where its expression appears enriched.83,104-106 Finally,
our findings underscore that addressing the current deficit in
our understanding of translation dynamics and its regulators in
human HSCs in vivo when subject to demands of disease or
injury could substantively inform future HSC-focused regenera-
tive therapies.

Altogether, our discovery and characterization of PLAG1-S as a
novel regulator of human HSC dormancy and self-renewal has
derived insights germane to the appreciation of translation con-
trol in determining human HSC fate and function and highlights
the promise of exploiting regulators of this fundamental feature
of stem cell physiology to enhance regenerative therapies.

Figure 6. PLAG1-S activates imprinted loci to support human HSPCs. (A) Heatmap of top 10 differentially expressed transcripts in the transcriptome of PLAG1-SOE

Lin2CD341 HSPCs. (B) Intracellular flow cytometry of components of the PI3K signaling pathway, including phospho-S473 AKT, phospho-S2448 mTOR, and phospho-
Thr37/46 4EBP1, in PLAG1-SOE Lin2CD341 cells on day 4 of culture. Numbers above PLAG1-SOE bars show the paired Student t-test P value relative to control (n 5 3,
ph-4EBP1 n 5 5). (C) Total nucleated cell (top) and CD341 cell (bottom) fold change in Lin2CD341BFP1 cultures overexpressing either PLAG1-S or Luciferase control
and treated with 50 nM rapamycin (RAPA), 1 mM AKT inhibitor (AKTi), or vehicle (DMSO) (n 5 4). Student t-test P values in red are relative to Cntrl-DMSO and in black
are relative to PLAG1-SOE-DMSO. (D) CD34 positivity in PLAG1-SOE or control HSPCs following 4 and 8 days of ex vivo culture with RAPA, AKTi, or vehicle (n 5 4). Stu-
dent t-test P values in red are relative to Cntrl-DMSO and in black are relative to PLAG1-SOE-DMSO. (E) OP-Puro incorporation by PLAG1-SOE HSPCs cultured in the
presence of RAPA, AKTi, or vehicle on day 4 of culture (n 5 4). (F) Schematic of the imprinted human DLK1/MEG3 locus, which encodes miRNA mega-clusters miR127/136
(7 miRNAs) and miR-379/410 (39 miRNAs). (G) RNA-seq read tracks for miRNA transcripts from this locus detected in PLAG1-SOE HSPCs. (H) Overlap of the PLAG1-S overex-
pression gene set enrichment map (P , .025) to signatures of miR-127-5p and miR-127-3p validated targets (Mann-Whitney U test, P , .05). (I-J) Schematic of lentivectors
used for dual PLAG1-S overexpression and miR127-5p inhibition via a sponge consisting of multiple bulged 26-mer target sequences (miR127TB) or miR127 overexpression.
(I) CD341 cell fold change ex vivo when PLAG1-S and the miR127-5p inhibitor are coexpressed in Lin2CD341 cells (n 5 3). (J) CD341 cell fold change ex vivo when miR127
is overexpressed in Lin2CD341 cells (n 5 3); and OP-Puro incorporation Lin2CD341 cells overexpressing miR127 (n 5 3). Data are presented as average 6 SEM unless
otherwise indicated. Each point represents an individual CB unit. ***P , .005, **P , .01, *P , .05. n.s., not significant. See also supplemental Figure 6.
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Figure 7. MYC-induced translation impairs PLAG1-S-mediated stemness in human HSPCs. (A) Up- (red) or down- (blue) regulation of MYC ribosome biogenesis
targets in PLAG1-SOE HSPCs. (B) Schematic of PLAG1-S and c-MYC overexpression lentivectors. (C) Representative sorting gates for dual-overexpression of PLAG1-S
and c-MYC or controls in Lin2CD341 cells. (D) CD34 (n 5 4) and (E) CD33 (n 5 3) positivity in BFP1GFP1 HSPCs over 4 and 7 days of ex vivo culture. (F) Cell size deter-
mined by flow cytometric MFI of FSC-H (n 5 3-4) in BFP1GFP1 HSPC cultures on day 4 and 7. (G) OP-Puro incorporation by BFP1GFP1 HSPCs on day 4 of ex vivo culture
(n 5 4). Data are presented as average 6 SEM unless otherwise indicated. Each point represents an individual CB unit. ***P , .005, **P , .01, *P , .05. n.s., not signifi-
cant. See also supplemental Figure 7.
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