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RNA-sequencing of transplant
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Background: Single-cell RNA-sequencing (scRNA-seq) technology has revealed
novel cell populations in organs, uncovered regulatory relationships between
genes, and allowed for tracking of cell lineage trajectory during development. It
demonstrates promise as a method to better understand transplant biology;
however, fundamental bioinformatic tools for its use in the context of
transplantation have not been developed. One major need has been a robust
method to identify cells as being either donor or recipient genotype origin, and
ideally without the need to separately sequence the donor and recipient.
Methods: We implemented a novel two-stage genotype discovery method (scTx)
optimized for transplant samples by being robust to disparities in cell number and
cell type. Using both in silico and real-world scRNA-seq transplant data, we
benchmarked our method against existing demultiplexing methods to profile
their limitations in terms of sequencing depth, donor and recipient cell
imbalance, and single nucleotide variant input selection.
Results: Using in silico data, scTx could more accurately separate donor from
recipient cells and at much lower genotype ratios than existing methods. This
was further validated using solid-organ scRNA-seq data where scTx could more
reliably identify when a second genotype was present and at lower numbers of
cells from a second genotype.
Conclusion: scTx introduces the capability to accurately segregate donor and
recipient gene expression at the single-cell level from scRNA-seq data without
the need to separately genotype the donor and recipient. This will facilitate the
use of scRNA-seq in the context of transplantation.

KEYWORDS

single-cell RNA-sequencing, solid-organ transplantation, bioinformatics, application,

donor and recipient genotypes

Introduction

Droplet-based single-cell RNA-sequencing (scRNA-seq) enables gene expression

profiling of thousands of individual cells and has led to novel insights into cancer and

developmental biology. This technology forms the basis for the generation of detailed

single-cell atlases of human organs at a previously unattainable resolution (1–4). Similarly,
Abbreviations

BAL, bronchoalveolar lavage; KNN, k-nearest neighbor; mAF, minor allele fraction; scRNA-seq, droplet-based
single-cell RNA-sequencing; SNV, single nucleotide variant.
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this technology has the promise of allowing for the study of solid-

organ transplantation at this previously unattainable resolution (5).

For example, interrogating the role of passenger donor immune

cells within the recipient following kidney transplant (6, 7).

However, in addition to identifying cell type, use of scRNA-seq

for transplantation requires the additional step of identifying cells

of donor genotype from cells of recipient genotype.

Recently, transplant scRNA-seq publications have used X- and Y-

linked gene expression from sex-mismatched transplant samples to

separate donor from recipient (8, 9), but this prevents study of

non-sex-mismatched samples. Another previous study applied single

nucleotide variant (SNV) deconvolution using demuxlet to profile

kidney transplant immune cell persistence, but the major limitation

is that demuxlet relies on matched genotyping data for the donor

and recipient (7, 10, 11). Generation of matched genotyping data

requires the collection and sequencing of isolated donor and

recipient samples, greatly increasing the complexity and cost of an

experiment, and separate donor and recipient tissues may not

always be available. Another method might be to use previously

published SNV-based genotype demultiplexing methods that were

designed to identify pooled populations of cells from differing

genetic backgrounds in order to differentiate donor and recipient

cells (12–14). These SNV-based demultiplexing methods take

advantage of expressed SNVs that can be identified in individual

cells; however, these methods assume that the samples are pooled

in equal proportions and that their cell types are similar. The latter

is a critical assumption, as similar cell types will express similar

gene expression programs, implying that they will express similar

SNV loci that simplify the demultiplexing process. As transplant

samples will vary in cell type and number, these methods may fail.

Indeed, the first major challenge with donor and recipient cell

identification using SNVs from transplant scRNA-seq samples is

that donor and recipient cell proportions and cell types may vary

substantially; for example, donor cells are expected to be

dominated by parenchymal cells and some passenger cells of

hematopoietic origin, while recipient cells are expected to be

mostly hematopoietic. The second major challenge with SNV-based

demultiplexing methods is with the inherent technical challenges of

scRNA-seq: (a) the sparsity and high false positive rate of SNV

detection in a single cell, (b) the presence of cell–cell doublets (two

cells in a single droplet), and (c) ambient RNA contamination

(free-floating RNA molecules encapsulated into a droplet with a

cell). Since the donor and recipient cell proportions can vary,

SNVs that are specific to the less abundant genotype may be rare.

We have previously demonstrated that germline SNVs can be

called from scRNA-seq data with very low coverage; however, the

false positive SNV rate is also increased (15). Therefore, SNV-

based demultiplexing methods need to be robust to false positive

SNVs. Cell–cell doublets and ambient RNA contamination both

lead to scenarios where a cell with a particular genotype may be

contaminated with SNVs derived from the other genotype.

Depending on the combination of cells in the doublet and the

amount of ambient RNA contamination, a singlet cell may be

incorrectly identified as doublet or vice versa. The previously

published demultiplexing methods have attempted to mitigate these

issues but, again, they have not been tested in the transplant context.
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In this article, we introduce scTx, a custom demultiplexing

method that is specifically designed for transplant samples. We

systematically benchmark scTx against two current popular

genotype demultiplexing methods, Vireo and Souporcell, using

simulated and biological transplant samples (12, 13). During

benchmarking, we observed that Vireo and Souporcell performed

inconsistently when there were large differences in the donor and

recipient cell proportions, demonstrating that scTx is more

robust than Vireo and Souporcell to the donor and recipient cell

proportion imbalance and ambient RNA contamination. Finally,

we demonstrate the accuracy of scTx on a variety of solid-organ

transplant samples, including previously published kidney

samples and novel lung transplant samples from bronchoalveolar

lavages (BALs) and explanted lung allograft tissue.
Materials and methods

scRNA-seq alignment, cell identification,
and SNV calling

For scRNA-seq alignment and SNV calling in scTx, we used

our previously published tool, scSNV, which we demonstrated to

have a reduced false positive call rate when calling rare germline

SNVs (15). We processed all the samples using the default

parameters and the human Ensembl build 102 for gene

annotations and reference sequences (16).
Demultiplexing scRNA-seq samples using
scTx

We implemented a two-stage genotype discovery method. In the

first stage, we cluster high-quality single cells that express a reasonable

number of SNV loci using minor allele fractions (mAFs) with

community clustering (Figure 1). If a second genotype is not

found using our clustering approach, we assume the second

genotype is at a low proportion and attempt to find it by looking

for cells that differ substantially from the dominant genotype using

a genotype score metric and apply thresholds based on the median

absolute deviation. If a second genotype is still not found, our

method stops processing the sample and indicates that a second

genotype could not be found. After a second genotype is identified,

we apply an algorithm that iteratively refines the genotypes, cell

assignments, and simulates and identifies cell–cell doublets.

These steps can be performed interactively using an example

available in the scTx code repository (https://github.com/GWW/

sctx) and is detailed in Supplementary Material.
Simulating lung transplant samples with
doublet and ambient RNA contamination

Lung cells from the “Lung_367_T0” sample by Madissoon et al.

and peripheral blood mononuclear cells (PBMC) cells from the

PBMC 4k dataset from 10× Genomics were mapped with scSNV
frontiersin.org
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FIGURE 1

Implementation of a two-stage genotype discovery method. (A) Community clustering of a KNN graph based on allele fraction distances (see Materials
and methods section). Only high-quality single cells that express a reasonable number of SNV loci using minor allele fractions are used in this step. (B) If a
second genotype is not found, cells that differ substantially from the dominant GT using a genotype score metric are identified based on the median
absolute deviation. If a second genotype is identified, we apply an algorithm that iteratively simulates and identifies cell–cell doublets (C) and refines
the genotypes and cell assignments (D). KNN, k-nearest neighbor; GT, genotype.
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(17). Using these cells, we randomly generated three replicates of 12

lung and PBMC singlet cell mixtures each with a total of 4,000 cells.

We used 25, 50, 75, 100, 150, 200, 300, 400, 500, 750, 1,000, and
Frontiers in Transplantation 03
2,000 total PBMC cells and the remaining 4,000 cells were from

the lung cells. In addition to the 4,000 singlets, we generated lung/

PBMC doublets by combining the reads of two cells at a rate of
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10%. A function of scTx facilitates this by generating SNV calls from

cell mixtures using the original files. To simulate ambient RNA

contamination, scTx utilizes tag-collapsing introduced in scSNV

and randomly gives each collapsed molecule a probability of being

swapped to another randomly selected barcode. For each of the

above replicates and mixing experiments, we generated an ambient

RNA contaminated sample with rates of 0%, 10%, 20%, 30%, and

40%. This led to 3 × 12 × 5 = 180 simulated transplant experiments.

The ambient RNA simulation we implemented in scTx properly

swaps molecules by using collapsed molecules rather than

individual read tags, which better reflects the ambient RNA

generating process than previous attempts in the literature, which

swapped individual read tags (13, 15). This strategy ensures that

all the tags generated from a single molecule would be correctly

swapped to a single cell and prevents the situation where some

tags could remain in the original cell and some tags be distributed

to one or more other cells.
Transplant samples

To test scTx on “real-world” transplant samples, we generated

scRNA-seq data from two chronic lung allograft dysfunction

(CLAD) lung tissue samples at time of explant for re-

transplantation and six post-lung transplant BAL specimens (18).

Collection of samples was approved by the Research Ethics

Board of University Health Network (#11-0509 and #15-9531).

scRNA-seq data were generated using standard 10× Genomics

scRNA-seq processes (see the Supplementary Material). Publicly

available kidney transplant data from Malone et al. was

downloaded as an additional dataset (7).
Demultiplexing scRNA-seq samples using
Vireo and Souporcell

We built a custom script as part of scTx to convert our SNV

calls to the input required by Vireo and Souporcell. We applied

minimal filtering to remove SNVs that are unlikely to be useful

for demultiplexing: homozygous SNVs with an average minor

allele fraction across all cells >0.999, and SNVs with low

expression that have less than 10 cells covered or less than five

cells with an alternative allele. SNV calls from the simulated and

biological samples were annotated and filtered using the scSNV

annotate tool. We then ran Vireo and Souporcell using two

genotypes with the default parameters.
Results

Benchmarking scRNA-seq demultiplexing
methods

To benchmark our scTx demultiplexing method against Vireo

and Souporcell, we used our simulated post-transplant lung sample

by mixing differing proportions of scRNA-seq PBMC and lung
Frontiers in Transplantation 04
cells from independent and genetically distinct scRNA-seq

samples (12 randomly generated mixtures of 4,000 singlet cells

with 25–2,000 PBMCs) with simulated doublets equal to 10% of

the minor genotype population and simulated ambient RNA

contamination at a given rate (0%, 10%, 20%, 30%, and 40%

ambient RNA contamination). Collectively, we simulated a total

of 180 samples for benchmarking.

We processed all 180 of the simulated SNV calls using scTx,

Vireo, and Souporcell. There was a similar overall true positive

rate (TPR) and false discovery rate (FDR) between all three

methods across all replicates and ambient RNA contamination at

PBMC counts greater than 100 (average TPR scTx: 0.996 ± 0.010,

Vireo: 0.967 ± 0.088, and Souporcell: 0.923 ± 0.072; average FDR

scTx: 0.008 ± 0.010, Vireo: 0.033 ± 0.088, and Souporcell: 0.077 ±

0.072). However, the performance of Vireo and Souporcell had a

large drop in TPR and an increase in FDR when the number of

PBMC cells were less than or equal to 100 (average TPR scTx:

0.996 ± 0.003, Vireo: 0.440 ± 0.159, and Souporcell: 0.456 ± 0.198;

average FDR scTx: 0.004 ± 0.003, Vireo: 0.560 ± 0.159, and

Souporcell: 0.544 ± 0.198) (Figure 2). Finally, we observed that

all the tools had a lower overall doublet detection accuracy

compared to their singlet detection accuracy and this is likely

due to doublets generated from cell types with differing amounts

of RNA; for example, a T cell/epithelial doublet would likely look

more like the epithelial genotype due to the latter cell being

larger and having more RNA content.

Overall, using our benchmarking pipeline, we observed that

scTx was more robust to ambient RNA contamination and the

number of PBMC cells when compared to Vireo and Souporcell,

particularly when the number of PBMC cells was ≤100. We also

observed that Vireo performed slightly better than Souporcell on

our simulated data and that all the methods had reduced doublet

detection efficiency compared to singlets.
Donor and recipient demultiplexing on
human kidney transplant samples

Having validated scTx using simulated data with a known

makeup of cells, we next sought to utilize scTx on human

transplant samples and compare its performance to Vireo and

Souporcell. Publicly available scRNA-seq kidney transplant data

from Malone et al. was downloaded and processed using scSNV

and scTx with the same parameters as our simulation experiments

(7, 15). For each of the five samples with two replicates each, cells

were separated into “genotype 1” and “genotype 2” by each

method and then clustered for cell type using community

clustering. First, we examined the cell types associated with the

genotype calls from each of the tools and observed that the one

population was dominated by kidney parenchyma cells while the

other was dominated with immune cells, which we expect from a

reperfused graft (Figures 3A,B). Next, we looked at the similarity

between the genotype assignments for each pair of tools using the

adjusted Rand index (ARI), where a higher score indicates higher

label assignment similarity. We observed that scTx and Vireo had

a higher median score (0.874) versus comparisons with Souporcell
frontiersin.org
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FIGURE 2

(A,B) Mean TPR and FDR values across all three replicates for the lung and PBMC mixture simulations. TPR and FDR values are grouped by their tool and
ambient RNA(%) (columns). Each row represents a set of 12 mixtures from 25 to 2,000 PBMCs as indicated on the plots. The cell type used for calculating
the TPR and FDR are indicated above each plot. TPR, true positive rate; FDR, false discovery rate.

Wilson et al. 10.3389/frtra.2023.1161146
(0.623 for scTx and 0.665 for Vireo) (Figure 3E). The major

differences we observed were likely due to different doublet calling

rates where scTx predicted the fewest doublets (median 1.9- and

3.16-fold fewer than Vireo and Souporcell, respectively) and Vireo

observed an intermediary number (2.03-fold fewer than

Souporcell) (Figure 3C and Figure 3F). We also observed that

Souporcell failed on GSM4339778 replicate 2 where several

hundred kidney cells were assigned to genotype 2 and a large

number of cells were marked as unassigned (Figure 3D). This is

consistent with our simulated data where we observed that

Souporcell had the highest doublet FDR and lowest TPR. Given

the reduced performance of Souporcell on both simulated and

kidney datasets, we compared scTx only to Vireo for the

remainder of the benchmarks.
Visual confirmation of cell genotype
assignments using dot plots

To aid in the interpretation of genotyping calls from scRNA-

seq samples, we developed a method to find SNVs that are

predictive of each genotype. This algorithm, included with scTx,

can be used to find a set of SNVs that cover each cell at least N

times (N = 5 by default) and are predictive of each genotype (see

the Supplementary Material). To demonstrate this, we applied
Frontiers in Transplantation 05
the tool to the kidney transplant samples using the scTx

genotype calls (Figure 4 and Supplementary File S2). The

results of these predictions can be visualized as dot plots where

each column of dots is a set of predictive SNVs, the size of the

dot represents the proportion of cells in each group and the

color represents the mean allele fraction for each group. As

expected, we observed large mean allele fraction differences

between each genotype and the doublet calls tend to have mean

allele fractions between the two individual genotypes. The most

predictive SNVs for a given sample tend to be derived from

mitochondrial reads, which is not surprising as these can

represent a large proportion of a cell’s sequenced molecules. This

demonstrates that visualizing the genotyping results can be a

powerful way to validate whether the tool has been successful at

identifying the donor and recipient genotypes.
Donor and recipient cell identification from
lung transplant samples

To further assess scTx performance in transplant samples, we

utilized eight samples from lung transplant recipients: six BAL

and two lung allografts. The two lung allograft samples were

similar to the kidney samples where the dominant (donor)

genotype is parenchymal, and the minor (recipient) genotype
frontiersin.org

https://doi.org/10.3389/frtra.2023.1161146
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


FIGURE 3

Summary of kidney sample demultiplexing using scTx (S), Vireo (V), and Souporcell (P). The total cells assigned to genotype 1 (A), genotype 2 (B), doublets
(C), and unassigned (D), stratified by clustered cell type as per the legend. (E) The ARI was calculated for each sample between all the tool combinations as
indicated on the x-axis. (F) The log2 fold change in the number of detected doublets between each tool combination as indicated on the x-axis. ARI,
adjusted Rand index.
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expected to be circulating cells. However, the BAL samples

provided a different challenge to the tools, where cell types are

expected to be similar, but the minor genotype is usually rarer

(Figures 5A–D). Surprisingly, we observed a large discrepancy

between the scTx and Vireo calls on three of the six BAL

samples where the adjusted Rand index was very low

(Figure 5E). We suspected that these are cases where the

number of cells in the minor genotype was low and Vireo

generated artifactual genotype assignments. To verify this, we

generated dot plots using our predictive SNV method for the

genotype assignments from Vireo for BAL_D02 where scTx

found eight cells (Figure 5F) from a second genotype and Vireo

found 824 (Figure 5G). The sets of “predictive” SNVs found by

the Vireo assignments clustered to a small region of chromosome

six with low proportion of cells (small circles) and middling

mean allele fractions (yellow color), suggesting that Vireo failed.
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In contrast, for the eight cells that scTx found, a SNV pattern

consistent with the observation of a second genotype was seen.

In this case, the eight cells from the second genotype provide

information about how rare the minor genotype can be in these

samples and how robust scTx is to rare genotypes. We did a

similar analysis for BAL_D03 where scTx did not find a second

genotype and Vireo found one with 120 cells. Again, we found a

set of SNVs that were located within a similar region suggesting

an artifactual genotype assignment by Vireo (Figure 5H). The

remaining samples are shown in Supplementary File S3.

Collectively, we have highlighted that scTx can work on

samples where the second genotype is very rare but also does not

force a second genotype, if one cannot be found. It is important

to validate the genotype assignments from a given tool using

SNV data to verify that the assignment worked, and the dot plots

from scTx facilitate this. Overall, scTx demonstrates superior
frontiersin.org
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FIGURE 4

Representative dot plots from two kidney scRNA-seq samples GSM4339775 Replicate 2 (A) and GSM4339777 Replicate 1 (B). The size of each dot
indicates the percentage of cells from that genotype/label class, the color of each dot shows the average allele fraction across all of the cells with
expression at that locus. The genotype classes are indicated by the three row groups as labeled on the right side of the plots. The cell types and their
counts are indicated for each row. Finally, the SNVs are represented by columns; the number prior to the colon represents the chromosome number
or MT for mitochondrial. scRNA-seq, droplet-based single-cell RNA-sequencing

Wilson et al. 10.3389/frtra.2023.1161146
performance for transplant sample genotype deconvolution when

compared to existing methods.
Discussion

A method for the robust segregation of donor from recipient

cells is fundamental for the study of organ transplantation using

scRNA-seq. Here, we demonstrate the utility of scTx as a current

best practice method to differentiate donor and recipient cells in

solid-organ transplant scRNA-seq samples using germline SNVs,

without the need for costly germline sequencing of the donor or

recipient. In order to adequately benchmark our algorithm, we
Frontiers in Transplantation 07
required scRNA-seq data where the exact cell composition and

cell type for each sample is known. As this cannot be

generated experimentally, we created many sets of simulated

transplant data in silico, combining PBMCs with lung

parenchyma single-cell datasets to simulate a reperfused lung.

This allowed us the flexibility to assess sensitivity by lowering

the minor genotype down to 25 vs. 3,975 cells. We could also

simulate common artifacts of droplet single-cell sequencing

protocols, specifically doublets and ambient RNA, at varying

percentages. Finally, this allowed us to objectively compare the

performance of scTx—written specifically for transplant

samples—to other current scRNA-seq deconvolution methods,

Vireo and Souporcell.
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FIGURE 5

Cell and genotype assignment counts for GT1 singlets (A), GT2 singlets (B), doublets (C), and unassigned cells (D) using scTx (S) or Vireo (V). The six BAL
samples and two CLAD samples are indicated on the x-axis, while the stacked bar charts show the number of cells from each cell type assigned to the
given genotype as per the legend. Dot plots from BAL_D02 from scTx (F) and Vireo (G) and BAL_D03 with Vireo (H). The size of each dot indicates the
percentage of cells from that genotype/label class, the color of each dot shows the average allele fraction across all of the cells with expression at that
locus. The genotype classes are indicated by the three row groups as labeled on the right side of the plots. The cell types and their counts are indicated for
each row. Finally, the SNVs are represented by columns. BAL, bronchoalveolar lavage; GT, genotype; CLAD, chronic lung allograft dysfunction; SNVs,
single nucleotide variants.
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Using the simulated data, we could show that scTx is accurate

down to low numbers of the minor genotype cells, with a TPR of 1

down to 25:3,975 cells, whereas Vireo and Souporcell began to fail

at 100:3,900 PBMC:lung cells. We could also demonstrate that scTx

is accurate with increasing doublets even down to 5 doublets,

whereas Vireo and Souporcell failed at around 10 and 50

doublets, respectively. As expected, ambient RNA also affected

the ability of the algorithms to separate the two genotypes;

however, Vireo and Souporcell demonstrated significantly

hindered performance compared to scTx. This indicates that

scTx will be more accurate in genotype segregation in real-world

samples.

We next tested scTx on a number of scRNA-seq samples

derived from human kidney transplants and lung allograft

biopsies as well as BAL cells. We selected these samples as they

represent common examples of transplant samples but also to

highlight how transplant samples can differ in both cell type and

composition. In the lung allografts, the donor parenchymal cells

represent the major genotype and the circulating recipient cells

are the minor genotype and the genotypes are largely different

cell types. In BAL, the cell types between genotypes are similar,

but the donor to recipient cell ratio is less predictable; this is

similar to other liquid samples from solid-organ transplants such

as urine or bile. We demonstrate that scTx is robust to these

different samples and able to identify low numbers of the minor

genotype when they exist (down to eight cells) and confidently

call no other genotype when they may not exist. In contrast,

Vireo missed the eight cells in that specific sample, and

incorrectly identified a second genotype when one did not truly

exist, in another.

An additional challenge with demultiplexing transplant cells

using scRNA-seq data alone is the identification of which

genotype represents the donor and which represents the

recipient. For sample types where a large number of cells derive

from the transplanted organ, the donor genotype can be inferred

by cell type, i.e., lung origin cells are donor in a lung transplant.

However, for some samples, such as our BAL samples, there

were few parenchymal cells and the donor and recipient types

must be inferred through other methods. For example, when the

donor and recipient are sex-mismatched, the X- and Y-linked

gene expression can be used. This needs to be considered during

the design of the experiment.

The largest current limitation of scRNA-seq sample

demultiplexing using SNVs is the detection of doublets, where all

three methods had lower performance compared to singlet

detection. Nonetheless, scTx still had better performance on our

transplant samples compared to Vireo and Souporcell. The

challenge with doublet detection is that they may appear to be

more similar to singlets of one of the two genotypes depending

on the two cells that were present in the droplet; for example, a

large epithelial cell is likely to dominate in a doublet with a

small T cell. This issue is further exacerbated by ambient RNA

contamination which can bias a doublet even further to look like

a singlet population, or cause a singlet cell to appear like a

doublet. We demonstrated this by showing how ambient RNA

affects our genotype scoring procedure in Figure 2. We
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recommend that users explore other doublet detection methods,

such as Scrublet or DoubletFinder, that are based on gene

expression and use these methods to further refine the doublet

assignments generated by scTx (19, 20).

In this analysis, we utilized lung and kidney transplant samples,

but scTx is generalizable to simulate and demultiplex samples from

any transplant, or other samples where a mixture of two genotypes

is expected. In conclusion, scTx is an objectively benchmarked and

currently unparalleled best practice technique for the identification

of donor and recipient cells from transplant scRNA-seq data. It can

handle transplant datasets without need for genotyping separately

either the donor and/or recipient and is robust in cases of

differing cell types, which would be common in transplant

samples. Moreover, it considers the confounding issues of

doublets and ambient RNA contamination.

We anticipate that the availability of this mature bioinformatic

process to analyze scRNA-seq data in the context of

transplantation will spur the transplant community to embrace

this technology for the study of donor–recipient interactions at a

resolution previously unattainable.
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