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The challenge of large-scale functional genomics pro-

jects is to build a comprehensive map of the cell

including genome sequence and gene expression data,

information on protein localization, structure, function

and expression, post-translational modifications, mol-

ecular and genetic interactions and phenotypic descrip-

tions. Some of this broad set of functional genomics

data has been already assembled for the budding yeast.

Even though molecular cartography of the yeast cell is

still far from comprehensive, functional genomics has

begun to forge connections between disparate cellular

events and to foster numerous hypotheses. Here we

review several different genomics and proteomics tech-

nologies and describe bioinformatics methods for

exploring these data to make new discoveries.

Charting the cell map – that is, how all of the parts of the
cell exist, interact and react over space and time – is an
enormous challenge for contemporary biology. New exper-
imental strategies combined with complete genomic
information and automation technology are allowing
biologists to explore cellular function systematically
[1,2]. Each large-scale study, from genome sequencing to
molecular interaction network mapping, provides knowl-
edge that enables further directed and discovery-based
research. This mode of analysis can be likened to mapping
based on satellite images, in which a high-altitude view of
a geographical region highlights general features that can
be surveyed in more detail.

A systematic approach to cell biology first requires an
ordered list of parts, such that protein and gene function
can be classified in general terms. A more complex goal
is to collect, on a large scale, quantitative information
such as expression levels of mRNA and protein, rate
constants and stoichiometry for biochemical reactions.
Such datasets can provide detailed insight into specific
cellular functions, for example biological pathways,

through rigorous mathematical modeling [3,4], and an
integration of this information can enable computational
simulation of more general cellular processes, for example
cell division [5]. Because cellular processes are often
determined by functional modules such as molecular
complexes, signaling pathways and whole organelles [6],
it is possible to study these modules separately and then
integrate them back into a complete system using a
systems biology approach [7]. Other approaches that
consider stochastic cellular processes [8] are probably
also required to understand fully the workings of the cell.
To create a meaningful output, the information collected
for each approach should be of high quality [9] and must be
organized into databases in structured formats that can
be interrogated computationally in order to manage,
integrate, analyze and visualize all of the data.

The completion of whole genome sequences has greatly
accelerated the pace of biological discovery. An illustration
of this effect can be seen in the publications on budding
yeast, for which the number of papers published per year,
describing specific discoveries in many diverse areas,
increased enormously between 1992 and 1996 (Fig. 1)
when the genome sequence was released [10,11]. We
anticipate another substantial jump in discovery rate with
the population of large-scale functional databases, such as
the Biomolecular Interaction Network Database (BIND)
[12], the Database of Interacting Proteins (DIP) [13], the
Molecular Interactions Database (MINT) [14], the General
Repository for Interaction Datasets (GRID) [15], the MIPS
Comprehensive Yeast Genome Database (CYGD) [16] and
the Saccharomyces Genome Database (SGD) [17]. These
databases are only just starting to be filled and the
biological significance of much of the data remains to be
validated. For example, although 15 000 of an estimated
30 000 [18] direct physical interactions have been ident-
ified, many of these are likely to be false positives [18,19].
In a second example, putative binding sites in the genome
for most known and predicted transcription factors have
been identified [20–22], but direct regulation has not been
demonstrated for most and, furthermore, there is only
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minimal overlap between the datasets, probably because of
lack of sensitivity [20–22]. Finally, the first systematic
analysis of yeast genetic interactions suggests that only
a fraction of genetic interactions have been documented
so far [23].

The budding yeast is likely to be the first eukaryotic
cell to be computationally modeled successfully because
of the powerful molecular and genetic methodologies
available and the number of systematic large-scale
studies currently underway and planned. This model-
ing might take many decades to complete because of
the enormous number of individual reactions and
reaction parameters that must be carefully measured
for every cell part and among all parts of a complex or
pathway [5,24]. Flux balance analyses, which can
model whole cells, are easier to construct because
they do not require reaction parameter measurements,
but they can predict only the limits of normal cellular

function and not exact metabolic behaviour [25]. Here
we review work completed and in progress to chart the
yeast cell, focusing on the elucidation and integration
of gene expression patterns and protein–protein and
genetic interaction networks in yeast.

Genome sequence

Mapping and sequencing genomes [26,27] are prerequi-
sites for systematic genomics and proteomics. Genes are
predicted from the genome, translated to proteins and
then functionally annotated on the basis of their similarity
to known proteins in databases [28]. Computationally
annotating gene function in this manner can also lead to a
higher level of understanding; for example, metabolic
networks have been partially reconstructed from this type
of analysis [29,30]. Unfortunately, the requirement of exon
and splice site identification in eukaryotes means that
gene prediction is often uncertain and atypical genes can

Fig. 1. Publication density by year and by Yeast Proteome Database categories of cellular role. Shown is the increase in the average number of papers per gene per func-

tional category since 1970. Red indicates more papers published and blue indicates less. The number in parentheses after the functional category is the number of genes in

each category. Number of publications per gene per year was determined by gene name occurrence (considering all aliases) in a compiled set of 24 000 Medline abstracts

listed in the SGD database [17] and in additional Medline abstracts identified by the association of any of the aliases of each yeast gene name together with the strings

‘yeast’, ‘sacch’ or ‘cerev’. The publications per category are normalized to the number of genes in the category, thus the values shown are normalized units of zero and

above and are not the actual number of papers. The first complete yeast chromosome sequence was published in 1992 [10] (red in the x axis) and the yeast genome was

assembled in 1996 [11] (blue in the x axis). It can be seen that a large increase of publications mentioning yeast genes in their abstract occurred in conjunction with the

availability of the yeast genome sequence.
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be missed [31]. Consequently, many genes are designated
as hypothetical open reading frames (ORFs).

The prediction of genes encoding RNA is generally more
difficult, and current identification methods require
comparisons of sequenced genomes of organisms that are
closely related but have diverged just enough that
conserved sequences are differentiated from background
[32]. Even the yeast genome, which was assembled in 1996
[11], is still not completely annotated. The complement of
yeast genes is undergoing continual refinement as false
genes are removed and novel ORFs are added [33]. As each
gene and protein is verified as being expressed, the genome
becomes more complete. Large-scale application of DNA
microarrays to identify expressed exons [34], mass
spectrometry to identify expressed proteins [35,36] and
polymerase chain reaction (PCR) to identify predicted
ORFs [37] can verify genes and their translated proteins in
a high-throughput manner.

Phenomics: large-scale gene deletion and RNA-mediated

interference

Systematic mutational analysis of every predicted gene
offers the potential to assess all genes for a role in a
particular biological process using phenotypic analysis.
The set of all mutant phenotypes can be defined loosely as
the ‘phenome’ [38]. For yeast, a complete set of deletion
mutants has been constructed by PCR-based homologous
recombination [39]. This project was carried out by an
international consortium of laboratories, which identified
about 1000 essential genes and generated roughly 5000
viable haploid gene deletion mutants. The whole set of
mutants has been made publicly available, enabling a
systematic and comprehensive approach to phenotypic
analysis. The power of this approach has been demon-
strated by several screens of the set of 5000 viable gene
deletion mutants for defects in drug sensitivity [40], cell
size [41], cell morphology [42], cell surface function [43],
bud site selection [44] and vacuolar protein sorting [45].

‘DNA bar codes’ – two unique 20-nucleotide oligomers
of DNA sequence flanked by common PCR primer sites
[39] – are engineered into each deletion cassette and thus
unambiguously identify each mutant yeast strain in the
collection. Because these bar codes can be detected by
hybridization to a bar code DNA microarray, the presence
or absence of each deletion strain in a mixed population
can be deciphered simply by examining the bar code
pattern of a population sample [42]. Pools of diploid strains
that are heterozygous for a deletion mutation can be
examined – for example, for hypersensitivity to com-
pounds that inhibit growth – in relatively small culture
volumes, thereby providing a high-throughput system for
linking compounds to their intracellular targets [42].
Application of this analysis to fungal pathogens should
facilitate the identification of antifungal drug leads for
fungal-specific essential genes [46]. Alternatively, map-
ping specific phenotypes to genes conserved from yeast to
humans might help to identify candidate genes linked to
disease. For example, candidate human disease genes
associated with mitochondrial defects have been mapped
simply by examining the set of 5000 viable deletion

mutants for growth defects on a nonfermentable carbon
source [47].

In metazoan organisms, RNA-mediated interference
(RNAi) offers the potential for systematic phenome
mapping by the selective ‘knock down’ of gene expression.
Large-scale analysis of the organismal phenotypes
associated with RNAi-based inhibition of Caenorhabditis
elegans genes has been reported recently [48,49]. Further-
more, the introduction of RNAi constructs into mamma-
lian stem cells, which can be then grown into tissues or
adult organisms in which the interfering RNA is expressed
in every cell, will vastly accelerate phenotypic screens.

Large-scale screens of mouse RNAi mutants, tra-
ditional knockout mutants [50] and chemically mutagen-
ized mutants [51] will enable the measurement of
phenotypes in blood and tissue tests, whole-body magnetic
resonance imaging, and learning and memory tests,
thereby facilitating the elucidation of gene function and
the generation of new mouse models of human disease (see
TBASE: http://tbase.jax.org/). Finally, the use of micro-
arrays of double-stranded RNA on glass slides for RNAi
transfection of many types of cell simultaneously will allow
high-throughput phenotypic analysis at a cellular [52] or
tissue [53] level. From the perspective of drug discovery,
whole chips of cells or grown tissues, each with a different
known genetic defect introduced by RNAi, could be used in
small-molecule screens.

Transcriptional profiling

Large-scale gene expression analysis with microarrays is a
powerful genomics methodology that can be applied to any
organism for which the genome has been sequenced or for
which extensive cDNA collections have been built [54,55].
As genome sequencing becomes more efficient, the
application of highly flexible rapid oligonucleotide syn-
thesis technology such as inkjet [56] and dynamic light-
directed [57] synthesis, which provide the ability to print
whole-genome microarrays immediately after sequence
release, will facilitate transcriptional profiling in an
increasing number of organisms. Transcript levels of all
predicted genes can be measured simultaneously, under
any given condition at several time points, to identify sets
of genes whose expression levels are induced or repressed
relative to a reference sample [58]. The global transcrip-
tional profile often reflects the pathways that are directly
induced or repressed in response to the primary pertur-
bation, as well as secondary responses that might not be
linked functionally to the primary perturbation.

Owing to indirect effects and genetic redundancy, the
mutation of genes that are induced under a particular
biological condition might not yield a specific phenotype
[42]. Even though gene expression might not relate
directly to protein expression [59], the proteins products
of genes that are coexpressed under different conditions
are often functionally related and can even interact
physically with one another as part of the same pathway
or complex [60–62]. Various clustering algorithms have
been devised to identify coexpressed genes for functional
annotation [63,64]. Because of these features, gene
expression profiles have been used extensively to analyze
biological perturbations. For example, a compendium of
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microarray gene expression profiles of yeast mutants has
been used to infer the pathways affected by a mutation or a
drug [65]; such compendia provide a key for interpreting
how small molecules interfere with specific cellular
processes (Fig. 2).

The global transcriptional regulatory network is dic-
tated by a myriad of protein–DNA interactions and
chromatin modifications. The regulation of transcription
factor interactions with elements in promoter DNA
nominally controls the global expression profile. Compu-
tational analysis can define potential binding sites in the
promoters of co-regulated genes [66] and in alignments of
promoter regions from closely related species [32]. Assign-
ment of the cognate transcription factors to such elements
remains difficult, however, probably because of the
combinatorial effects between transcription factors and
because their interactions with chromatin generate com-
plex regulatory elements [41]. Indeed, such elements are
only poorly predictive of co-regulation because, on average,
80% of the genes that share defined elements are not
co-regulated (P. Cliften and M. Johnston, pers. commun.).

Direct analysis of protein–DNA interactions on a
genome-wide scale is readily accomplished by chromatin
immunoprecipitation array techniques (‘ChIP-chip’), in
which DNA is crosslinked to the transcription factor of
interest in vivo and then hybridized to a microarray
[20,67]. Systematic application of this method has the
potential to identify complex transcriptional regulatory
circuits [20,67]. This approach can be also applied to
identify any other protein–DNA interaction on a genome-
wide scale, including chromatin-modifying [68,69] and

DNA repair [70] complexes and replication factors [71].
Given that specificity often arises from both positively and
negatively acting factors, the overlay of these datasets can
prove crucial in deciphering the ultimate transcriptional
hierarchy of the cell.

The analysis of gene expression at various intervals
after a perturbation offers the potential to computationally
infer gene regulatory networks [72], their kinetics and
even the protein concentration profiles of gene regulators
[73]. Determining gene expression kinetics in response to
numerous different perturbations can enable large-scale
kinetic simulation of a gene regulation network for the cell.
The integration of gene expression data with protein–
protein and protein–DNA interaction networks [41,74]
provides one of the first examples in which multiple data
sources have been combined to deduce previously
uncharted areas of the cellular map.

Protein interactions

The function of a protein is defined by the other
biomolecules with which it interacts and reacts. An
enormous amount of protein–protein interaction infor-
mation has been obtained recently for yeast and other
organisms using two-hybrid [75–77], mass spectrometry
[36,78], phage-display [79] and protein fragment comple-
mentation [80] assays. Large-scale datasets derived using
these methods have provided a wealth of new leads in
many areas of biology. A potential difficulty with large-
scale protein interaction datasets is a prevalence of false
positives (interactions that are seen in an experiment but
never occur in the cell or are not physiologically relevant)
and false negatives (interactions that are not detected but
do occur in the cell) [18,19,81,82].

Although high-quality datasets are obviously ideal,
there is currently a quality/coverage tradeoff related to the
speed of data acquisition. On the one hand, high-quality
data are time consuming and costly to complete, leading to
a low sampling of potential interactions that is biased
towards known proteins. Large-scale studies, on the other
hand, have a high sampling rate but can produce lower
quality data. The quality of existing datasets with respect
to false-positive and false-negative interactions is a
complicated issue, which we discuss below. Despite these
potential problems, however, protein–protein interaction
networks derived from large-scale studies have proved
extremely useful for defining protein function [83],
examining general properties of different protein func-
tional classes, and analyzing the topology of protein
interaction networks [84].

Informatics methods can be applied to reduce the
number of false positives in a dataset. By comparing
datasets to benchmarks such as well-known interactions,
the proportion of false positives can be estimated for a
given dataset. Filtering criteria can be devised using these
results combined with control data from the original
experiment [36,78]. Moreover, large-scale datasets can be
combined such that the overlapping set of interactions is of
much higher quality than the input datasets. This has
been successfully done using a simple overlap scheme [79].
This approach can be problematic if a less-sensitive

Fig. 2. Microarray pattern compendium. Diagram showing how a ‘compendium’ of

microarray patterns, each corresponding to a different perturbation, can be used

to classify an uncharacterized perturbation. Here, a hypothetical microarray with

sixteen spots is shown, each measuring the expression of a single gene in a per-

turbed cell population relative to an unperturbed population. Black represents no

change in expression, red represents induction and green represents repression.

In practice, microarrays typically have thousands of spots and ratio measurements

are continuous variables. Although this theoretically allows billions of different

patterns, it has been estimated that in yeast there are probably several hundred

discrete patterns that would result from single-gene disruptions [65].
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dataset limits the contribution of other datasets by strict
intersection (data must be in all sets).

Advanced statistical methods to combine confidence-
weighted datasets should prove even more powerful [85]. If
multiple datasets have low coverage and high accuracy,
then a union of the sets creates a more complete dataset
than an intersection. Because false positives can be
reduced by dataset overlap, their occurrence is not a big
problem. Instead, reducing false-negative interactions
becomes a major challenge because it is extremely difficult
to increase sensitivity to capture all true-positive inter-
actions. Even for yeast, published large-scale interaction
studies are far from comprehensive [18,19].

When assessing dataset quality, the definition of false
positives, which can differ depending on the circum-
stances, can have a large effect. For instance, proteome-
scale protein interaction data can be compared with the
interactions derived from the crystal structures of com-
plexes, which have arguably the highest quality of any
molecular interaction data [81]. Only a small percentage of
the published interaction data for yeast proteins occurring
in complexes with known structures has been found to
overlap with the atomic level contacts in X-ray crystal
structures. But this analysis sets a very high threshold for
protein interaction data because it considers interactions
that are not physically direct as false positives.

When defining the function of an unknown protein that
has been shown to interact with proteins of known
function, an indirect interaction can be effectively used
to assign functional annotation terms to the unknown
molecule. Statistical methods of dataset integration to
reduce false positives can be also used with information
other than protein–protein interactions, such as genetic
interactions, protein localizations and gene expression
datasets. For instance, as mentioned above, it is known
that proteins whose genes are coexpressed are more likely
to interact or be part of the same complex or pathway than
those whose genes are not coexpressed [60–62]. All of
these data could be used together to define the reliability of
specific datasets [86].

Examining patterns in network topology can prove
useful for reliability assessment. Densely connected
regions of a protein interaction network, which can be
found computationally [19,87], often correspond to com-
plexes that are likely to be real; for example, a six-core
(a sub-network in which proteins are connected to at least
six other proteins within the sub-network) from a network
was predicted from phage-display-derived protein inter-
action motifs for Src homology domain 3 (SH3) domains in
yeast and probably corresponds to an actin assembly
regulatory complex [79], and a large nine-core was
detected in a very large yeast network representing
many interconnected complexes in the nucleolus [19].

The challenge of increasing sensitivity must be resolved
through the development of wet laboratory technology.
Two large-scale projects have used mass spectrometry to
map protein complexes and have proved more sensitive
than previous comprehensive yeast two-hybrid studies, at
least as defined by a literature benchmark [36]. However,
the combined results of mass spectrometry analysis
still failed to recover two-thirds of the known protein

associations used in a large literature-derived benchmark
[19]. Interestingly, the mass spectrometry projects showed
a high variability both internally and in comparison,
which in part is probably due to human error and could be
improved by automation and repetition. In addition, the
projects used different baits for complex purification and
used overexpressed versus endogenous proteins, which
can have profound effects on the recovery of different
protein complexes. Many different experimental methods,
each with their own advantages in sampling interaction
space, should be used to uncover the complete cellular
interaction map.

True-negative and false-positive information from a
comprehensive protein interaction screen can be useful
and thus should be tracked. For example, the set of all
false-positive hits derived from yeast two-hybrid screens
using an SH3 domain bait might contain a subset of hits
that represent direct physical interactions but might not
be physiologically relevant simply because the binding
partners never co-occur in the cell. Enough information
can be present in this subset to derive a binding motif for
the SH3 domain, similar to what can be found using phage
display to screen a library of random peptides. Because
this physiologically irrelevant information can have
important physical meaning, it should be stored in
databases along with the true-positive information such
that it can be queried in the future in unforeseen ways.
Tools designed to decipher ligands from interactions in this
way in a fast and automated fashion must be developed in
parallel with protein interaction databases. Machine-
learning classification algorithms, such as the Support
Vector Machine (SVM) [88], use true-positive and true-
negative information to learn a decision boundary, which
can be then used to classify new data. SVMs can be applied
to predict protein–protein interactions but require infor-
mation about proteins that are known not to interact [89].

Genetic interactions

Genetic screens for suppressors or enhancers of mutant
phenotypes have been remarkably useful for identifying
genes in a common pathway or process [90–92]. For
example, when the phenotype of an original mutation is
exacerbated by mutation of a second gene, a synthetic
enhancement or, if death results, a synthetic lethal
situation is scored. Tong et al. [23] have established a
system in which a mutation in a specific query gene can be
crossed to a set of 5,000 viable deletion mutants to map
synthetic genetic interactions systematically. This meth-
odology is referred to as synthetic genetic array (SGA)
analysis. If the activity of a nonessential pathway is
required for cellular fitness when a particular query gene
is compromised functionally, then all of the components of
the pathway should be identified in a comprehensive
synthetic lethal screen. Thus, application of the SGA
system identifies a set of synthetic genetic interactions
that are enriched for the components of pathways and
complexes. For example, BIM1 encodes a protein that
associates with the plus end of microtubules and partici-
pates in nuclear positioning and spindle orientation. An
SGA screen with a query mutation identifies genetic
interactions with kinetochore components, spindle check
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point proteins and the dynein–dynactin spindle orien-
tation pathway (Fig. 3).

As the genetic network expands, complexes and path-
ways are expected to show a unique pattern of genetic
interactions. The molecular function of previously unchar-
acterized genes can be thus inferred from the connectivity
and the position within the network. In fact, these
predictions can be precise enough to infer protein–protein
interactions directly from genetic interaction data. An
initial set of SGA screens suggests that many of the genes
implicated in the fundamental processes required for cell
division and growth show 30–50 synthetic genetic
interactions, indicating that the genetic interaction map
of yeast could contain over 100 000 interactions. This
unexpected density of interactions indicates functional
redundancy and pathway cross-talk in yeast.

As the SGA system maps interactions for deletion
mutations constructed in an inbred laboratory yeast
strain, perhaps the topology of the interaction network
uncovered by this system can be extrapolated to more
phenotypically variable outbred populations in which
genetic interactions among alleles of genes presumably
underlie the increased variability. Thus, large-scale
genetic interaction maps created with inbred experimen-
tal systems might provide a key for deciphering the
combinations of alleles underlying polygenic traits, such
as human diseases, in natural populations [93]. Because
gene functions are often highly conserved, a comprehen-
sive genetic interaction map for yeast will provide a
template to understand the interactions between analo-
gous pathways in metazoans. Given the advent of RNAi
technology and microarray-based transfection method-
ology, the SGA approach is applicable to more complex

eukaryotic cells and to genetically tractable metazoan
systems [49].

Protein profiling

Localization

Understanding the spatial and temporal distribution of
proteins will help to define certain cell map constraints,
because two proteins that interact in vivo must do so in the
same space at the same time. Large-scale protein localization
studies have been carried out in yeast by visualizing proteins
either by immunofluorescence or by expressing the protein
tagged to green fluorescent protein (GFP) [94]. Currently,
about 54% of yeast proteins have been localized according to
the Gene Ontology annotation [95] from SGD [17]. So far,
genome-wide protein localization studies have not taken into
account the temporal aspect of protein localization, such as
the dynamic movement of proteins in and out of the
nucleus [96]; however, comprehensive collections of
GFP-tagged proteins should facilitate this type of analysis.

Recent advances in cryoelectron tomography that allow
three-dimensional (3D) visualization of the actin cytoske-
leton and the 26S proteasome in Dictyostelium cells
forecast the ability to take a 3D snapshot of the structure
of a cellular proteome at a resolution of less than 2 nm [97].
The dynamic analysis of protein localization will obviously
become more complex as large-scale studies move from
yeast to multicellular organisms, which depend on the
regulation of protein localization for cellular differen-
tiation during development.

Identification

Advances in mass spectrometry have led to fast and
accurate protein identification, as long as the protein

Fig. 3. Integration of genetic and protein interactions. Shown is a set of synthetic lethal and slow growth interactions derived from an SGA screen with a BIM1 query orig-

inally from the SGA study of Tong et al. [23]. It is clear that genetic interaction data, specifically synthetic lethal and slow growth interactions, are enriched for proteins that

physically interact with each other or are in the same complex or pathway. All genes on this map are non-essential genes, as is normally the case with the SGA technique.

Gene annotation is based on the Gene Ontology terms in the SGD database. Annotation of the interactions is based on those in the BIND database [12].
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already exists uniquely in a sequence database [98].
Whether a protein is present or not in a sample can be
used to map signaling pathways, complexes [36,78] and
even all of the proteins in an organelle [99]. One of the
next frontiers in this field is the ability to measure
quantities of proteins in the cell. Genome-scale protein
quantification is not yet feasible, but methods for
determining relative levels of protein between samples
have been developed [100]. Alternatively, arrays of cell
colonies, each expressing a different fluorescent tagged
protein, should enable quantification of protein expression
in response to specific genetic and environmental pertur-
bations [101]. A measurement of the levels of all
proteins in a cell over time will provide insight into the
molecular basis of different cellular states – a prerequisite
for their modeling.

Post-translational modification mapping

Protein regulation by means of post-translational modifi-
cations (PTMs) can determine when and where a protein is
active in the cell, and mass spectrometry and protein chips
are being applied to systematically identify PTMs in a
proteome. Mass spectrometry holds great promise for
proteome-wide PTM mapping: the large-scale mapping
of phosphorylation sites has been performed for yeast
[102,103], and a technique based on mass spectrometry for
mapping O-linked N-acetylglucosamine PTMs has been
developed recently [104]. But the wide range of protein
modifications from acetylation to lipid modification will be
problematic to overcome [103,105].

Biochemical approaches to PTM discovery also exist.
For example, protein chips that display a whole proteome
on a relatively small surface for functional testing in
different assays [106] offer the potential to identify all
possible targets for a particular kinase and, therefore, to
identify a global phosphoprotein regulatory map including
all kinases and their substrates.

Structure

Structural genomics projects ([107,108]; and see PSB Struc-
tural Genomics: http://www.rcsb.org/pdb/strucgen.html) have
the potential to define the 3D structure of all proteins,
generally by X-ray crystallography, but whether this goal
can be achieved in a high-throughput manner is still
controversial [109]. Almost the whole crystallography
process can be automated from protein expression, to
crystallization trials, to positioning the sample in a
synchotron X-ray beam line. If the crystal structure is
good enough, even the final structural modeling step can
be done computationally. But bottlenecks still arise in this
approach during the protein expression and crystallization
step, especially for eukaryotic proteins that are difficult to
express. Crystallizing membrane proteins and proteins
that are structured only when part of a physiological
complex [110] still represent tough challenges.

Homology modeling techniques can generally compute
the structure of a protein if the structure of another
protein with greater than 30% sequence identity is known
[111]. Thus, if one protein species cannot be crystallized
easily, another with a similar sequence can be attempted.
It has been suggested that roughly 16 000 carefully chosen

protein structure targets could cover the structural
diversity of most known proteins [112]. Targets from
among this reasonably sized set could be chosen in an
order that provides maximum information rapidly. For
example, proteins that are involved in a cellular module of
interest, such as a complex or an organelle, could be chosen
first and the module investigated before completion of the
whole structural genomics project.

Enzymatic function

On a molecular level, proteins have many different
enzymatic and ligand-specific binding functions, each
with their own kinetic and thermodynamic properties.
Protein functional assays have been developed to study
these protein properties on a large scale. For example, the
complete set of yeast genes has been expressed as proteins
tagged to glutathione S-transferase (GST) and affinity-
purified to assay for enzymatic functions that are known to
occur but remain to be linked to a catalytic protein or
complex [113]. Specific protein functions, such as protein
kinase activity [114], have been assayed in nanoliter-sized
wells on a large scale. Kinetic rate constants for protein-
catalyzed chemical reactions also must be measured on a
large scale, and this is planned at least for Escherichia coli
(Project CyberCell: http://www.projectcybercell.com/). The
results of such studies will provide detailed information
that will eventually allow kinetic simulations, or models,
of biological systems [115].

Discovery by mining functional genomics databases

The collection of large-scale functional genomics data in
yeast has led already to some fundamental insights
about biological networks and gene function. In a first
example, a combination of genome-wide transcriptional
profiles, large-scale protein–protein interaction mapping
and phenomic analysis has identified a large group of
co-regulated genes, called the ‘RiBi regulon’, that partici-
pates in ribosome biogenesis [116]. This co-regulated set
contains more than 200 uncharacterized genes, nearly half
of which are essential for viability [64]. Two strongly
predicted potential binding sites, termed PAC and RRPE,
lie upstream of most of these genes [66]. Sfp1 emerged
unexpectedly as a candidate transcription factor for the
RiBi regulon from a systematic screen for yeast mutants
that prematurely commit to cell division and display a
small cell size [41]. Unbiased computational clustering of
all known protein interactions identified a large previously
unknown set of related complexes composed of many of the
same nucleolar proteins [19] (Fig. 4), many of which have
been since assigned to discrete steps in either 40S or 60S
ribosomal particle biogenesis [117,118]. These data
suggest that 30% or more of all essential yeast genes
might be dedicated to the processing of noncoding RNA.

In a second example of functional genomic insight, it has
been shown that the connectivity distribution of protein
interaction networks follows a power law [119,120]; that
is, a few proteins called ‘hubs’ are involved in many
interactions, whereas many proteins are involved in a few
interactions. Evolution can generate such highly con-
nected hubs by building successive layers of regulatory
factors onto essential cellular processes. Importantly,
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power law networks are robust against random attack
(protein deletion). In simulated attacks, such networks
stay statistically coherent until most of the protein nodes
are eliminated. This property is biologically attractive
because it can help to explain how evolution can create
systems that are buffered from the wide-ranging effects of
random mutations. If the highly connected hubs are
removed first, however, the network quickly disintegrates
into disconnected components. This fact is also biologically
relevant because it has been shown that hubs in a power
law network are more likely to be essential genes [119].
Consideration of statistical network properties has many
practical ramifications for rational drug design and our
understanding of evolved disease states, such as cancer.

As a final example of the discovery value in large-scale
datasets, we have explored the global connectivity of a
protein functional class. Of an integrated network of more
than 15 000 yeast protein–protein interactions, we
extracted those involving only kinases and phosphatases
(,170 proteins). Interestingly, these signaling molecules
are assembled into a highly connected network (Fig. 5), an
observation originally noted by Ho et al. [36]. This
finding reflects an unusual property because proteins in
other functional classes, such as the set of about 180

transcription factors in the MIPS database (Fig. 5) and
similar-sized sets of random proteins, do not form highly
connected networks. Thus, protein–protein interaction
studies focused specifically on the kinases and phospha-
tases should efficiently chart the basic signaling circuitry
of an organism and provide a scaffold for linking
together all cellular processes regulated by protein
phosphorylation.

Databases and visualization

Building an accurate and complete cellular map, tanta-
mount to a dynamic high dimensional information matrix,
will require the integration of many layers of systematic
cell and molecular biology and many direct lines of
research. To this end, many approaches are possible.
Some groups, such as the Alliance for Cell Signaling [121],
have undertaken to map pathways in specific cells
(initially lymphocytes and cardiac myocytes) by vertically
integrating systematically derived data from many
member laboratories. Smaller groups are attacking a
single model organism, using either a single specific
technique such as RNAi [49] or multiple orthogonal
techniques such as protein interaction mapping and
expression data [122].

Fig. 4. Clusters of highly connected nuclear protein complexes. The central densest region of a large interaction network containing over 15 000 protein interactions from

yeast is shown. The interactions were collected from all large-scale studies done to date, as well as the MIPS [16] and BIND [12] databases. Known molecular complexes

can be seen clearly, as well as a large, previously unsuspected nucleolar complex. All of the proteins in this network are connected to all other proteins in the network by at

least nine interactions. Proteins are colored by cellular localization, as defined in the Gene Ontology terms in the SGD database. In 1000 randomly permuted networks, the

mean highest k-core (see text) was 7 (s.d. ¼ 0), indicating that a nine-core is highly unlikely to occur by chance. This analysis was done in Ref. [19]. The 19S regulatory sub-

unit of the proteasome, which is involved in targeted protein degradation, is labeled ‘proteasome’. APC, anaphase-promoting complex; SAGA, Spt-Ada-Gcn5-acetyltrans-

ferase (SAGA) transcriptional activator/histone acetyltransferase complex.
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A comprehensive multidimensional cell map would
require, in principle, full dynamic knowledge of all parts of
the cell in time and space [123], including direct physical
interactions, precisely delineated binding sites, kinetics
and reaction rates as well as biomolecular concentrations
(protein, RNA and small molecule) at all stages of the cell
cycle and in all differentiated states with all genetic
interactions, and so on. Whether useful information of
such complexity can be even acquired remains to be seen.
Even a limited subset of these data will require powerful
information storage, query and analysis engines to
handle data manipulation computationally. Current rep-
resentational models of pathways and cell simulation will
need to evolve substantially to manage these data
meaningfully.

Databases such as BIND [12], DIP [13], MINT [14],
GRID [15], SGD [17] and MIPS [16] are intended to serve
as a repository for protein and genetic interactions and
associated regulatory events, as occur in cell signaling.
Gene expression databases already store huge amounts
of DNA microarray information from many organisms
[124,125], and yet other databases can store transcription
factor [126], metabolic pathway [29,127,128] and gene
regulatory network [129] data. Building and maintaining
a high-quality database requires a substantial amount of
effort. Thus, creating a database large enough to capture
cell map information will require massive community
investment and commitment, ranging from the individual
researcher to the funding agency and journals, as well as
innovation from database developers. Pathway simulation
engines [4,115] are available to examine quantitatively
mathematical models of these data.

All of this must be tied together using data
standards (see BioPax: Biological Pathways Exchange:
http://www.biopax.org; Proteomics Standards Initiative:
http://psidev.sourceforge.net/; Systems Biology Markup
Language: http://sbw-sbml.org/) and Web services that
can be easily queried for information [130,131]. Machine
learning tools such as SVMs [132], Bayesian nets [133] and
decision trees [134] will be required to integrate, to filter
and to recognize patterns automatically in this enormous
multidimensional dataset, and the use of network
visualization and modeling tools such as Cytoscape
(see http://www.cytoscape.org), Osprey and BioLayout
[15,74,135,136] will be necessary to understand data
relationships quickly and to make biologically relevant
predictions. Indeed, these visualization tools must be
developed as the interactive entry point to the integrated
cell map, where a gene of interest connects directly to the
latest information about that gene and its relationships.

As an example, the initial version of Cytoscape can
represent several concurrent aspects of the multidimen-
sional cell map. Figure 6 shows two versions of the protein
kinase C (PKC) pathway from yeast. A manually con-
structed version represents a limited connection map of
PKC pathway proteins [137], whereas a version automati-
cally constructed by Cytoscape is based on a data file
containing a large set of interactions between proteins,
genes and transcription factors, combined with original
microarray gene expression data from Roberts et al. [137].
In addition to representing data associated with the PKC
pathway more fully, the Cytoscape network can be queried
interactively to reveal several layers of information, which
can be crucial for hypothesis generation. Discoveries

Fig. 5. A large network of protein–protein interactions among kinases and phosphatases in yeast. (a) Kinases and phosphatases are very well connected in a large protein–

protein interaction network. (b) Transcription factors, a functional class similar in size to the kinase/phosphatase class, are not. This is an example of an unanticipated result

that is completely unobtainable without genome-wide studies. Loops indicate self-interactions.

TRENDS in Cell Biology 

Yck3

Ste11

Hog1

Cka2Ckb1

Cdc28

Rrd2

Sit4

Apg1

Fus3

Rrd1

Cla4

Snf1Ssn3

Cdc14

Ire1

Ptp3

Slt2

Ptp2

Ppz1

Red1

Gip2

Chk1

Gcn2

Bck1

Gip1

Pig2
Gac1

Ste7

Glc7

Swe1

Gin4

Hsl1

Kcc4

Ste20

Mkk1 Pkc1

Mkk2

Pkh2

Pkh1

Ypk1

Mps1

Bub1

Ssk2

Ssk22

Ypk2

Pho85
Ppz2

Reg1

Prk1

Ark1

Glc8

Ipl1

Ptc1Ptp1

Cdc7

Rim11

Mck1 Reg2

Pbs2

Pph22

Elm1

Cna1 Cmp2

Dbf2
Dbf20

Yak1

Cdc5
Cdc15

Ctk1

Cak1

Ptc2

Mek1

Kin28

Tpd3

Pak1Yor267c

Rts1

Ptc3

Vps15

Hrr25

Ckb2

Tpk2

Tpk3

Cdc55
Yck2

Yck1

Sps1

Tpk1

Rim15

Rck1

Cnb1

Ptc4

Sap190

Skm1

Sds22

Kin2
Rck2

Cka1

Tap42

Sap155

Sap185

Ppq1

Ksp1

Kin82

Ynr047w

Sat4

Akl1

Rad53
Dun1

Yol045w

Fun31

Smk1 Kic1

Msg5

Ybr028c

Ydr247w

Kss1

Yil113wKns1

Ppg1

Ppt1

Kin3

Med4

Med8

Hac1

Cbf1

Met28

Hsf1

Leu3

Swi5

Mcm1
Ste12

Hap1

Gcn4

Gal4

Skn7

Rtg1

Rtg3

Rlm1

Smp1

Oaf1

Pip2

Spt2

Dal81

Dal82

Bas1

Pho2

Arg81

Ume6
Arg80

Gzf3
Dal80

Ime1

Ssl1

Mac1

Pho4

Met4

Met31

Met32

Rox3

Yap1

Nut1

Rfx1

Rsc3

Reb1

Med2

Stb4

Tec1

Hrt1
Adr1

Yap5

Rcs1

Rim101

Zap1

Ino4
Ino2

Yor380w

Ydr520c

Fkh1
Hap2

Hap3

Gts1

Sfl1

Yap6

Pdr1

Lys14
Cha4

Ybr239c
Ypl133c

Ppr1

(a) (b)

Review TRENDS in Cell Biology Vol.13 No.7 July 2003352

http://ticb.trends.com

http://www.biopax.org
http://psidev.sourceforge.net/
http://sbw-sbml.org/
http://www.cytoscape.org
http://www.trends.com


prompted by large-scale datasets generated across all
manner of model systems will depend on data assembly
tools such as Cytoscape [15,74,135].

Perhaps one of the most powerful aspects of large-scale
studies is the potential for comprehensive analysis.
Completeness of functional knowledge of the cell is an
ultimate goal but will obviously be difficult to achieve.
Classical research clusters within certain fields, and thus
only expands knowledge at the field periphery. Also,
classical research tends to focus only on fashionable fields,
leaving older or less trendy fields without much inno-
vation. As can be seen in Fig. 1, for instance, much of yeast
research has focused on a subset of genes that the
community finds particularly interesting, such as those
involved in cell cycle regulation or chromosome dynamics.
In fact, only a few papers are being currently published on
metabolism (Fig. 1), and yet its integration with cell
regulation pathways is vital for a complete cell map. For all
organisms there are examples of genes about which no
information is known from any method. This class of
uncharacterized genes has been called the ‘Unknome’

[138]. Obviously, achieving a more even distribution of
functional categories in large-scale studies would be the
first approach to reducing the size of the Unknome.

Concluding remarks

As high-throughput functional genomics and proteomics
technology and bioinformatics develop concurrently, they
will become more accessible to the individual laboratory,
which will be thus empowered to ask increasingly more
interesting biological questions. For example, many
proteins are highly conserved across evolution, and it
will be interesting to determine the extent to which the cell
map is conserved. All aspects of evolution that have been
studied at the sequence level can be also studied at the cell
map level, but this requires data across species. This
should enable us to understand the evolution of complex
features in humans by network differentiation and
evolution from simpler systems. Furthermore, the cell
map will facilitate large-scale modeling of the cell,
although building computational systems that have
enough highly detailed information and computer proces-
sing resources for a complete cell model will probably take
many decades. Only the tight integration of wet-laboratory
biology and bioinformatics will enable us to overcome
these challenges.
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