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ABSTRACT

Motivation: Unravelling the rules underlying protein–protein and

protein–ligand interactions is a crucial step in understanding cell

machinery. Peptide recognition modules (PRMs) are globular protein

domains which focus their binding targets on short protein sequences

and play a key role in the frame of protein–protein interactions. High-

throughput techniques permit the whole proteome scanning of each

domain,but theyarecharacterizedbyahigh incidenceof falsepositives.

In this context, there is a pressing need for the development of in silico

experiments to validate experimental results and of computational

tools for the inference of domain–peptide interactions.

Results: We focused on the SH3 domain family and developed a

machine-learning approach for inferring interaction specificity. SH3

domains are well-studied PRMs which typically bind proline-rich

short sequences characterized by the PxxP consensus. The binding

information is known to be held in the conformation of the domain sur-

face and in the short sequence of the peptide. Our method relies on

interaction data from high-throughput techniques and benefits from

the integration of sequence and structure data of the interacting part-

ners. Here, we propose a novel encoding technique aimed at repre-

senting binding information on the basis of the domain–peptide contact

residues in complexes of known structure.Remarkably, the newencod-

ing requires few variables to represent an interaction, thus avoiding

the ‘curse of dimension’. Our results display an accuracy >90% in

detecting newbinders of knownSH3 domains, thus outperforming neu-

ral models on standard binary encodings, profile methods and recent

statistical predictors. The method, moreover, shows a generalization

capability, inferring specificity of unknown SH3 domains displaying

some degree of similarity with the known data.

Contacts: enrico@cbm.bio.uniroma2.it

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Protein–protein interactions play an essential role in the regulation

of cell physiology. Not only can the function of a protein be char-

acterized more precisely through its interactions, but also networks

of interacting proteins can shed light on the molecular mechanisms

of cell life. The development of a large number of experimental

techniques aimed at analysing protein–protein interactions (Ito

et al., 2000; Uetz et al., 2000; Gavin et al., 2002; Ho et al.,
2002; Tong et al., 2002; Aebersold and Mann, 2003; Zhu and

Snyder, 2003; Landgraf et al., 2004), is giving rise to an increasing

amount of data. Therefore, the need for validation procedures is

becoming ever more pressing.

Several computational methods for the inference of protein–

protein interaction have already been developed [see Pazos and

Valencia (2002), Bork et al. (2004) and Russell et al. (2004) as

reviews]. Such methods rely on various principles and make use of

information on either genes (Gaasterland and Ragan, 1998;

Pellegrini et al., 1999; Overbeek et al., 1999; Marcotte et al.,
1999; Enright et al., 1999) or proteins (Pazos et al., 1997; Goh

et al., 2000; Pazos and Valencia, 2001, 2002). A machine learning

approach to the inference of protein–protein interactions is also

possible. Milik et al. (1998) trained different neural networks to

predict MHC-binding peptides using either binary encoding or a

biochemical features representation of the amino acids sequence.

Bock and Gough (2001) proposed a support vector machine (SVM)

learning approach based on the primary structure of the interacting

partners and on the physicochemical features of amino acids. A

selection of structural and biophysical information has been col-

lected by Zhao et al. (2003) to characterize peptide sequences and

build a SVM able to identify MHC binders. Martin et al. (2005)

developed a SVM by combining a sequence-based description of

proteins with experimental information, while Nanni and Lumini

(2006) proposed an ensemble of machine learning models and a new

encoding technique which combines physicochemical indices of

amino acids with the occurrence of dipeptides in protein sequences.

Reiss and Schwikowski (2004) integrated protein sequence

information and observed interactions in a probabilistic model

based on the Gibbs sampling motif finding algorithm. This

model is aimed at identifying the amino acid sequences of the

SH3 domain ligands. Similarly, Lehrach et al. (2005) generated

a maximum likelihood discriminative model for the direct evalu-

ation of SH3 domain binding motifs in protein sequences. These

approaches demonstrate that two main issues have to be faced in

order to set up a reliable predictor for protein–protein interactions:

the selection of the relevant sequence information and the identi-

fication of an effective encoding for the input information. It is

known that standard encodings of protein sequences can produce

a huge number of input variables (Baldi and Brunak, 1998), thus

increasing the input space dimension without enhancing the quan-

tity of available information. This reduces a model’s power and may

give rise to the ‘curse of dimension’ (Bishop, 1995). In the above-

described works the problem of huge dimensionality has been

addressed through the use of models less sensitive to the input

space dimension (SVM) or the choice of compressed encoding�To whom correspondence should be addressed.
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of the interaction information. Therefore, a methodology that makes

use of both an exhaustive representation of the interaction and a

numerical encoding, which avoids the curse of dimensionality with-

out weakening the biological information, is needed.

Over the past few years, it has become increasingly clear

that many protein–protein interactions occur within short regions,

often <10 amino acids in length within one protein. This is particu-

larly true for protein recognition modules (PRMs), such as Src

homology (SH) 2 and 3 domains, WW domains, phosphotyrosine

binding domains (PTB), postsynaptic density/disc-large/ZO1 (PDZ)

domains, Eps15 homology (EH) domains and 14-3-3 proteins that

typically recognize linear regions generally 3–9 amino acids long.

In particular SH3 domains belong to a well-known family of 50–

70 residue-long PRMs, which are ubiquitous in eukaryotes and bind

to short proline-rich peptides characterized by a PxxP core (Sudol,

1998; Mayer, 2001; Musacchio, 2002). Structural studies of

peptide–SH3 complexes have demonstrated that peptide ligands

preferentially bind in one of two opposite orientations with respect

to the SH3 domain (Feng et al., 1994; Lim et al., 1994), conforming

to either class I ([RK]xxPxxP) or class II (PxxPx[RK]) binding

consensus, respectively. Individual SH3 domains exhibit specific

preferences for variations of their binding consensus, highlighting

the promiscuity and the versatility of this kind of PRMs (for an

interesting review, see Li, 2005). With the aim of investigating the

binding specificity of SH3 domains, a number of experimental

strategies have been proposed, some of which are high-throughput

(Sparks et al., 1996; Kay et al., 2000; Cesareni et al., 2001;

Landgraf et al., 2004).

In this work we have developed a methodology which inte-

grates SH3–peptide binding data obtained from high-throughput

experiments with information derived from SH3–peptide three-

dimensional (3D) complexes. This combined information is numeri-

cally encoded ad hoc. A neural network model is then trained to

infer SH3 domain–peptide binary interactions. The results of this

procedure, applied to a set of Saccharomyces cerevisiae SH3

domains, are impressive, especially when the experimental data

used to set up the method are abundant and of high quality. This

is encouraging for the application of our approach to other SH3

domains of the same organism, to SH3 domains of other organisms,

and also to other PRMs. In principle, only the availability of the

necessary interaction and structural data would limit the possible

extension of the methodology to other protein families that recog-

nize more extended protein regions.

2 METHODS

2.1 The dataset

The dataset is composed of 7925 domain–peptide complexes involving 16 SH3

yeast domains and a peptide library of �1500 sequences (1379 plus a variable

number of domain-specific sequences) extracted from the yeast proteome [The

Saccaromyces Genome Database (http://www.yeastgenome.org/), see Table 1]

and representing all occurrences of both class I and class II binding consensi
(Lim et al., 1994). True interactions were identified in phage display (Tong

et al., 2002) and in pep-spot experiments (Landgraf et al., 2004), thus allowing

us to use both positive and negative information through the identification of

binding and non-binding subsets of domain–peptide pairs.

2.2 The SH3 domain–peptide contact space

We processed the sequences of each SH3–peptide interacting pair by select-

ing only amino acids lying on the interaction surface and directly involved

in an inter-molecular contact. Given a domain A and a peptide B in a 3D

complex, an amino acid of A is assumed to be in contact with an amino acid

of B if the shortest distance between their atoms is smaller than the sum of

their van der Waals radii plus a tolerance of 3 s. To identify the SH3–

peptide contact residues, we considered six 3D complexes of known struc-

ture [PDB (http://www.pdb.org) ID codes 1ABO, 1EFN, 1OEB, 1N5Z,

1OV3 and 1CKA, corresponding to the SH3 domains of Abl and Fyn

kinases, Adapter protein Grb2, Peroxin-13 protein, NCF-1 and C-Crk,

respectively] and analyzed them with the software PINQ (Lesk, 1986 and

references contained therein).

‘Virtual’ contacts were defined in order to exploit all SH3/peptide inter-

action data involving peptides whose structure or complex structure is not

known. A ‘virtual’ contact, according to Brannetti et al. (2000), is estab-

lished between a domain and a peptide residue pairs if and only if (1) the SH3

sequence can be aligned to the multiple alignment shown in Figure 1a; (2)

the peptide sequence can be aligned to at least one of the peptides of the SH3/

peptide complexes of known structure; (3) the SH3 and the peptide have

been experimentally tested in a pep-spot or in a phage display experiment.

The SH3 and peptide residues contact positions are identified by the SH3 and

peptide multiple sequence alignments, respectively.

The definition of virtual contact is supported by the theoretical basis of

homology modelling. An SH3 sequence, which can be aligned to a multiple

alignment of SH3 domains of known structure, can be homology-modelled

with high reliability, depending on its sequence similarity to the template

structure (Sali, 1995; Srinivasan et al., 1996). A poly-proline sequence,

which has been shown to interact with an SH3 domain is very likely to

assume a poly-proline II structure. It is therefore reasonable to assume that

the pattern of contacts identified on the crystal structures of a number of

complexes is conserved in the homologous sequences and can be extended to

the phage display or pep-spot interaction data.

Virtual contacts can lead to a binding or to a non-binding interaction,

depending on the results of the experimental tests. In case of non-binding

interaction, two main possibilities can be envisaged:

(1) The domain or the peptide does not assume the expected 3D

conformation;

Table 1. The experimental domain–peptide database. Data are derived from

Landgraf et al. (2004) and Tong et al. (2002)

Domains Class I

peptides

Class II

peptides

Class I

binders

Class II

binders

Boi1 672 (19) 707 (15) 15 (3) 16 (6)

Myo3 (28) — (7) —

Myo5 1139 (34) — 43 (13) —

Rvs167 672 (21) 707 (21) 19 (11) 44 (16)

Sho1 672 (30) — 37 (18) —

Yfr024 672 (24) 707 (27) 25 (7) 123 (22)

Yhr016 672 (18) 707 (16) 12 (6) 67 (11)

Ygr136 (32) (24) (18) (15)

Ypr154 (34) (18) (23) (8)

Sla1-3 (26) — (8) —

Nbp2 (35) — (16) —

Hr114-1 (31) — (14) —

Hr114-2 (28) — (13) —

Yhl002 (23) — (9) —

Yjl020 (22) (22) (4) (11)

Pex13 (22) (28) (10) (16)

Subtotal 4499 (427) 2828 (171) 151 (180) 250 (105)

Total 4926 2999 331 355

The first number represents the dimension of the peptide library scanned from each

domain by pep-spot technology. The number in parenthesis refers to the peptides tested

by phage display experiments.
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(2) The domain and the peptide fold in the expected SH3 and poly-proline

II conformations, but no complex is formed between them.

We foresee that most of the non-binding cases represented in our dataset

fall in this second ensemble and we assume that no binding is detected since

the residue pairs that are responsible for the binding in the complexes of

known structure are changed into residue pairs that are not compatible with

the complex formation.

The relative frequency of virtual contacts leading or not leading to the

formation of complexes can be organized in a contact matrix, as described

below.

2.3 Contact matrix

A contact matrix for an SH3–ligand complex is characterized by 27 columns

(the number of the domain positions involved in the interaction) and 10 rows

(the number of peptide positions involved in the interaction) (Brannetti et al.,
2000). The matrix contains 27 · 10 elements, each corresponding to a pair of

residues, one belonging to the SH3 domain and one to the peptide (Fig. 1b).

Out of the 270 potential pairs of interacting residues, those belonging to class

I and class II complexes are 57 and 53, respectively.

The contact residues of a new SH3 domain–peptide pair are identified as

follows (Fig. 1). The sequence of the domain is aligned to the multiple

sequence alignment of the SH3 domains used to build the contact matrix

(Fig. 1a); 27 contact positions are derived from the alignment and assigned to

the columns of the 27 · 10 contact matrix. A total of 10 peptide positions are

assigned to the rows of the contact matrix, by aligning the last proline of the

class I motif to the first row from the top (in Fig. 1b, the class I matrix). The

contact residues are then inferred from the contact matrix filled cells

(Fig. 1c).

2.4 Pair of interacting residues

A pair of interacting residues (PAIR) is thus defined as the object (pi, dj)k, i 2
{1, . . . , 10}, j 2 {1, . . . , 27}, k 2 {1, . . . ,N}, where pi and dj are the i-th and

j-th interacting residues of the peptide and the domain, respectively, while

k is the order index of the contact position (Fig. 1c). This procedure is used to

transform the dataset of domain–peptide sequence partners into a dataset of

PAIR arrays. Class I and class II contact matrices identify 57 and 53 PAIRs,

respectively.

The relevance of a PAIR in the formation of a complex can be assessed by

examining its frequency within the binding and the non-binding peptide

subsets.

Given the PAIR (p, d)k, in the position k, where (p, d) 2 S · S, S represents

the set of all amino acids plus the insertions, the relative frequencies

fk
(+)(p, d) and fk

(�)(p, d) were defined as follows:

f
þð Þ
k p‚dð Þ ¼ n

þð Þ
k p‚dð ÞP

r0‚ r002S n
þð Þ
k r0‚r00ð Þ

f
�ð Þ
k p‚dð Þ ¼ n

�ð Þ
k p‚dð ÞP

r0‚ r002S n
�ð Þ
k r0‚r00ð Þ

‚

where nk
(+)(p, d) and nk

(�)(p, d) indicate the number of occurrences of (p, d)k
in the binding and non-binding subsets respectively, and k represents the

generic contact position. Hence, the PAIRs distributions for any given posi-

tion k are Fk
(+)¼ {fk

(+)(p, d)}(p, d)2S · S and Fk
(�)¼ {fk

(�)(p, d)}(p, d) 2 S · S.

2.5 PAIRs binding significance

The comparison of the relative frequencies makes it possible to gauge which

PAIRs are specific for binding and which for non-binding, and which PAIRs

have no role in the SH3 domain–peptide interaction.

We introduced the following rule of significance: if fk
(+) > 0 and fk

(�) ¼ 0,

the corresponding PAIR makes a positive contribution to the formation of the

complex. If fk
(+) ¼ 0 and fk

(�) > 0, the PAIR provides a negative contribution

to the formation of the complex. If fk
(+) > 0 and fk

(�) > 0, the relevance of the

PAIR in the formation of the complex depends on the difference between

fk
(+) and fk

(�): If fk
(+) is greater than fk

(�), the PAIR is more relevant for

binding whereas, if fk
(+) is lower than fk

(�), the PAIR is more relevant

for non-binding. This rule of significance clearly depends on whether the

distributions Fk
(+) and Fk

(�) display a meaningful difference.

A numerical code Ck(p, d) can be proposed for a PAIR (p, d)k, according to

its binding significance:

p‚dð Þk !Ck p‚dð Þ ¼ f
þð Þ
k p‚dð Þ � f

�ð Þ
k p‚dð Þ

max f
þð Þ
k ‚ f

�ð Þ
k

� �

Ck p‚dð Þ ¼

1 if f
þð Þ
k > 0‚ f

�ð Þ
k ¼ 0

c 2 � 1‚1ð Þ if f
þð Þ
k ‚ f

�ð Þ
k > 0

� 1 if f
�ð Þ
k > 0‚ f

þð Þ
k ¼ 0

8>>><
>>>:

For each pair of domain–peptide sequences, the set of N PAIRs is thus

transformed into an N-tuple of PAIR numerical codes.

We stress that the set S includes an auxiliary character ‘X’ that represents

insertions in domain contacts alignment (Fig. 1 and Brannetti et al., 2000)

and is also used to complete peptide sequences shorter than 10 amino acids.

Therefore a PAIR that combines a domain residue and an unknown peptide

residue, or an insertion in the domain sequence and a peptide residue, or

an insertion and an unknown residue, is considered to be meaningless and a

null numerical code is assigned to it.

2.6 The input space

Each class I interaction between an SH3 domain and a peptide in the dataset

is thus described by 57 real variables, varying between �1 and +1 and

representing the contacts existing between the domain and the peptide.

As described above, each variable encodes for a single contact between a

domain and a peptide, independently of the other contacts and of the relative

PAIR frequencies. This corresponds to the assumption of an independent

contacts representation, which is clearly an approximation simplifying

the analysis of binding information. This assumption implies a noisy input

(a)

(b)

(c)

Fig. 1. The identification of PAIRs of a query domain–peptide pair follows

three steps: (a) the sequence of the query domain (Yfr024 in the reported

example), for which no structural data are available, is aligned to the se-

quences of the domains of known structure previously used to extract contact

information. From the alignment, the contact positions of the query domain

are inferred (uppercase residues). (b) The inferred contact positions of the

query domain (27 for an SH3 domain) and the positions of the query peptide

(10 for an SH3 ligand) are aligned respectively to the columns and to the

rows of the contact matrix (the matrix shown represents class I complexes).

(c) PAIRs involved in the interaction are identified from the cells filled with

a black dot in the matrices (57 in the class I matrix). The subscript index in a

PAIR indicates the position of the contact along the matrix in a lexicographic

order, namely reading the filled cells from the first top left to the last bottom

right.
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space. In fact, some contact positions might be non-significant for discrimi-

nating binders from non-binders: In this case the corresponding distributions

Fk
(+) and Fk

(�) do not differ meaningfully. This implies that the numerical

codes associated to the PAIRs in those non-significant positions will fluc-

tuate randomly around zero as a sort of white noise.

In order to reduce this type of noise we added, as auxiliary input variables,

the average and the standard deviation (SD) of the 57 numerical codes of

each interaction (Fig. 2).

2.7 The neural network

All the encoded information was used to build and test a neural network

model. The architecture of the network is feed-forward, with a single hidden

layer. A single output unit is a linear combination of sigmoid hidden units.

In the training phase, the output of the network is forced to assume the

value 1 if the input refers to true binding partners, 0 otherwise.

For the simulation we used the Stuttgart University software JavaNNS, i.e.

the Java version of the SNNS package (http://www-ra.informatik.uni-

tuebingen.de/SNNS/).

2.8 Control procedures

We formulated and carried out four control procedures in order to investigate

the efficacy of the method. In the first procedure, the neural network results

were compared with the results of a position specific scoring matrix (PSSM)

(Henikoff and Henikoff, 1997). Using the Emboss (Rice et al., 2000) rou-

tines ‘prophecy’ and ‘profit’ (EMBOSS, http://emboss.sourceforge.net/), a

PSSM was built for each domain displaying a sufficient number of binders.

The matrices were built on data extracted from the neural network training

sets and tested on the corresponding test sets. To compare the PSSM and

neural network results, we obtained an overall PSSM performance by assem-

bling the results of each domain-specific matrix.

To evaluate how the neural network approach improves ligand identifica-

tion, we compared our results to the results of the SH3-SPOT methodology

(Brannetti and Helmer-Citterich, 2003), which also relies on information on

the frequencies of contact residues in domain–peptide pairs. SH3-SPOT does

not make use of non-binding peptides data and is not based on a learning

method. The SH3-SPOT score of a domain–peptide pair is derived from the

sum of the residue–residue pair frequencies in the domain–peptide contact

positions (Brannetti et al., 2000).

The PAIR representation involves two essential aspects: a structure-based

approach to the SH3 domain–peptide interaction and a novel compressed

encoding that strongly reduces the input space dimension. In order to verify

the improvement carried out by each aspect, we defined as supplementary

control procedures both a sequence-based and a structure-based approach,

using a standard orthogonal encoding (Wu, 1997; Baldi and Brunak, 1998).

The sequence-based approach (BinSeq in the following) considers the entire

sequence of both the domain (58 amino acids) and the peptide (14 amino

acids), while the structure-based approach (Bin3D in the following) deals

only with the contact residues of both domain (27 non-contiguous residues,

see above and Fig. 1) and peptide (10 contiguous residues, see above)

sequences. In both cases, the information is encoded using 20 binary vari-

ables for each amino acid. The corresponding input spaces have 1440 and

740 dimensions respectively.

2.9 Models evaluation

Each model (NN-PAIRs, PSSM, SH3-SPOT, Bin3D NN and BinSeq NN)

was evaluated by a 5-fold cross-validation. The dataset is divided into five

subsets of equal size. The training and testing of every model was carried out

five times, using on each occasion one distinct subset for testing and the

remaining four subsets for training.

In the PAIRs approach, each training set was used to define the PAIRs, to

assess their binding significance, and to build the models. The remaining test

set was expressed as PAIRs, which were translated into numerical N-ples

using the code previously built on the training set.

Since binding and non-binding experimental data in the dataset were

unbalanced, the binders in the training set were replicated until an equal

proportion was established. The test sets were left unbalanced. A validation

set is randomly extracted from each training set and is used for the stopping

criterion.

An average performance and its related error were evaluated from the

results of the five test sets.

The output of each model is normalized in the range [0,1] and a receiver

operating characteristic (ROC) curve is plotted as a representation of the

true positive rate (TP/(TP+ FN), or sensitivity versus the false positive rate

(FP/(FP+TN) or 1 � specificity for different value of a decision threshold.

In order to obtain a single measure of the model performance that is inde-

pendent of the decision threshold, the accuracy was evaluated as the area

under the curve (AUC) (Bradley, 1997).

2.10 Class II peptides

The methodology was also applied to the interactions between SH3 domain

and class II peptides. The structure of the interaction matrix is the same, with

27 columns for domain positions and 10 rows for peptide positions. In this

case only 53 pairs of interacting positions emerged from the analysis of class

II complexes. This means that 53 PAIRs represent a domain–peptide pair in

case of class II peptides. As for class I data, we added the average and the SD

of the numerical codes for each domain–peptide pair. Therefore, the corre-

sponding neural network is characterized by 55 inputs.

3 RESULTS

Integrating both structural and sequence information we have devel-

oped a neural network-based methodology for inferring binary

domain–peptide interactions. The interaction interface is encoded

in a set of numerical variables representing spatial contact positions.

mean score
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Fig. 2. The average and the standard deviation of the 57 numerical codes that

represent each interaction, enhance the difference between positive (binders)

and negative interactions (non-binders). We added these indicators as aux-

iliary input variables for the neural network. (a and b) Figures show the

distributions of the mean numerical code (mean score) and of the standard

deviation evaluated for all the interacting (solid line) and non-interacting

(dashed line) domain–peptide pairs included in our dataset.
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We focused on yeast SH3 domains as an ideal domain–peptide

interaction template.

3.1 The encoding procedure

First, we want to emphasize the efficacy of the encoding procedure

that transforms both sequence and structural information in a mod-

erate number of numerical variables, thus avoiding the problem of

huge dimensionality typical of machine learning approaches (Wu,

1997, Bock and Gough, 2001, Martin et al., 2005). The encoding

requires a two-step procedure in which relevant pairs of interacting

residues (PAIRs, see Methods) are identified from sequence and 3D

structure, in order to represent the domain–peptide interaction.

Next, a numerical encoding is proposed, taking into account the

role of each PAIR in participating in the formation of the complex.

The PAIRs’ distributions Fk
(+) and Fk

(�) (see Methods), by which

we define such a role, do not always display a sharp difference, thus

producing a noisy representation of the interactions. We reduced

such noise by adding the average and the SD of the numerical codes

to the input variables used to represent the contact positions. These

supplementary variables help to discriminate binders from non-

binders (Fig. 2).

3.2 The inference of new binders

Performances of the neural network and control models are reported

in Table 2 in the form of the area under the ROC curve (AUC)

(Bradley, 1997). These results are obtained considering the entire

dataset of pep-spot and phage display interactions (see Table 1 and

Methods). The three neural approaches clearly outperform the other

models (see Table 2 and Fig. 3). For class I data, the PAIRs neural

network achieves 0.92 of averaged global accuracy, while the

Bin3D and the BinSeq networks attains a lower but considerable

performance of 0.89 and 0.88, respectively. SH3-SPOT and PSSM

attain only 0.77 and 0.60, respectively. Analogously, for class II

interactions, the NN-PAIRs accuracy is 0.92, against 0.90 and 0.88

of Bin3d and BinSeq neural networks respectively. Again, the SH3-

SPOT and PSSM performances reach only 0.74 and 0.69 respec-

tively. The NN-PAIRs method gives two pivotal advantages over

the BinSeq and the Bin3D procedures: (1) A higher AUC value is

reached, which guarantees a better overall accuracy of the model;

(2) NN-PAIRs involves a small number of parameters with respect

to BinSeq and Bin3D. This ensures that the network generalization

error (Baum and Haussler, 1990; Barron, 1994) is lower for

NN-PAIRs and that such model can also be applied in cases

with small amounts of available training data.

In order to compare the performance of our model with other

recent statistical predictors (Reiss and Schwikowski, 2004, Lehrach

et al., 2006) we applied our method to the phage display dataset

(Tong et al., 2002) largely used in those applications. In this case the

data consist of 426 interactions between 16 SH3 domains of baker’s

yeast and peptides selected by phage display experiments on a

random peptide library (Tong et al., 2002). The lower number of

interactions required a reduction of the complexity of the neural

network. Nevertheless, the performance, with an average AUC of

0.83 and a standard error of 0.04, is higher than the one of the Reiss

and Schwikowski model (AUC ¼ 0.79) (Reiss and Schwikowski,

2004) and comparable with the results of Lehrach et al. (AUC¼
0.83) (Lehrach et al., 2006). Note that both the BinSeq and the

Bin3D encoding schemes generate a redundant neural model with

a number of parameters higher than the available data and with a

performance (AUC) <0.78.

3.3 The generalization to unknown SH3 domains

In order to assess its generalization ability, our method was applied

for inferring the interaction specificity of SH3 domains, which were

not present in the training set. We selected the pep-spot interaction

data (available for the six SH3 domains: Boi1, Myo5, Rvs167, Sho1,

Yfr024 and Yhr016) as the ideal test data since they cover the entire

yeast proteome. Then we designed a ‘cross-validation sampling’

where the test set comprises the interaction data of one of the six

domains listed above and the training set consists of the interaction

data of all the remaining 15 domains of our dataset (Table 1).

The model reaches an optimal generalization capability in

predicting the specificity of Yhr016 and Yfr024 (AUC ¼ 0.91

and AUC ¼ 0.89, respectively) and displays a good inference of

the specificities of Myo5 and Rvs167 (respectively, AUC ¼ 0.74,

AUC ¼ 0.70), while the global accuracy for Sho1 and Boi1 domains

is lower (AUC ¼ 0.52 and AUC ¼ 0.41, respectively) (Fig. 4).

Table 2. Averaged AUC values for the neural network model and control

models applied to class I and class II datasets

Method Class I peptides Class II peptides

NN-PAIRs 0.922 ± 0.005 0.921 ± 0.008

NN Bin3D 0.89 ± 0.02 0.90 ± 0.01

NN BinSeq 0.887 ± 0.005 0.88 ± 0.02

SH3-SPOT 0.78 ± 0.02 0.74 ± 0.02

PSSMa 0.60 ± 0.03 0.69 ± 0.08

aPSSM performances are evaluated on 13 domains for class I peptides and on 4 domains

on class II peptides. For the remaining domains, the matrices did not resolve binders from

non-binders.
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Fig. 3. ROC curves for the NN-PAIRs, PSSM and SH3-SPOT performance

in the case of class I specificity inference. The NN curve is the closest to

the optimal point (0;1) which corresponds to the maximum sensitivity and

the minimum false positive rate. The NN curve is always above the control

curves for acceptable values of false positive rate.
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4 DISCUSSION

The problem of SH3 domain specificity in baker’s yeast was

investigated with the aim of developing a computational methodo-

logy focused on protein–peptide interaction inference and charac-

terized by some important innovations. It is worth noting that both

positive (interacting) and negative (non-interacting) experiment-

ally confirmed domain–peptide pairs were used. The use of reli-

able negative information rather than the artificial randomization

of the pairs to obtain negative cases (Bock and Gough, 2001,

Martin et al., 2005), enhanced the discrimination capability of

the method, thus making the neural network specificity particularly

significant.

Since two interacting partners establish a network of contacts

between residues, protein–peptide interaction can be analyzed in

the light of residue–residue contacts across the crystal structure

interaction interface. In this context, we identified the ‘PAIRs’ as

crucial elements of our approach to the inference of domain inter-

action specificity.

The PAIR’s representation can be used to characterize domain–

peptide and, more generally, protein–protein interacting pairs. The

transformation of the partner sequences into a set of encoded PAIRs

projects the interaction information in a numerical space that com-

prises the input space of the neural network classifier. The PAIR’s

input space is characterized by a manageable dimension, an impor-

tant property that makes it possible to circumvent the curse of

dimension (Bishop, 1995). Moreover, the numerical variables

thus introduced [<60 in this application corresponding to the

orthogonal encoding of three residues (Baldi and Brunak, 1998)]

have a precise meaning, since they represent the contact positions

involved in an SH3–ligand 3D crystal complex. Notice that a small

number of variables describing putative interacting partners would

make it possible in future to add further variables representing other

biophysical properties of proteins.

The integration of the encoded PAIRs with a complex model like

neural network makes the inference of new interactors of SH3

domains extremely accurate.

Specifically, the overall performance of the NN-PAIRs is 92%

for both class I peptides and class II peptides. It outperforms SH3-

SPOT and PSSM results for both classes of peptides. Our method

also performs well when compared with recently developed proba-

bilistic tools.

Our methodology is based on two innovative features: a structure-

based model which allowed the selection of a relatively low number

of residue–residue pairs involved in the binding, and a knowledge-

based encoding which allowed us to summarize the interaction

information in a very compact and comprehensive form.

In order to dissect the different contributions, two control pro-

cedures were designed: BinSeq, where the orthogonal encoding was

applied to the whole domain and peptide sequences (�70 residues),

and Bin3D, where the orthogonal encoding was applied to the

residues selected for belonging to the domain–peptide complex

interface (�40 residues).

The structure-based selection of residues involved in the binding

results in a better performance of the Bin3D over the BinSeq control

procedure. The knowledge-based encoding introduced in this work

allows a further improvement of the results, as shown by the better

statistical parameters attained and shown in Table 2. Moreover, the

reduced input space of NN-PAIRs enlarges the application capa-

bility of the model to small sized training data.

It should be noticed that our methodology, based on a represen-

tative encoding of the domain–peptide pairs, is strongly dependent

on the quality and dimension of the training set. Nevertheless, it

reveals a capability of generalization that permits the inference of

the specificity of unknown SH3 domains. Obviously, such capabil-

ity is influenced by the similarity of the new domain to the domains

used to train the model (Fig. 4).

It is well known that interaction data obtained through high-

throughput in vitro experiments often exhibit cases of false nega-

tives and false positives. Even if the procedure described in this

work benefits from such experiments, it must be emphasized that the

problem of false negatives and positives has been neglected, our

main interest being the methodological approach of protein–peptide

interaction inference.

Nevertheless, we have shown that, by merging a suitable rep-

resentation of the interacting partners, an appropriate encoding of

the variables, and a complex model such as a neural network, it

is possible to identify new SH3–domain binding peptides, based

on the information enclosed in the residue–residue contacts of

known interactors. This suggests that structural complexes contain

more information on specificity than a mere sequence consensus

derived from known binders: Facing residues of two binding

partners define affinity and specificity of the interaction and

make it possible to characterize protein–protein interactions

more accurately.

In the near future we intend to apply the method to other families

of protein domains and, subsequently, to further develop this

approach in order to provide experimentalists with a powerful com-

putational support for the construction of peptide libraries and for

the investigation of domain–peptide interactions.
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Fig. 4. The generalization capability of the model depends on the similarity

of the unknown SH3 domain with the domains belonging to the training set.

Closest similarities correspond to higher level of generalization. The phylo-

genetic tree in the figure is obtained from the multiple alignment of the 16 SH3

domains considered in this work. The figure also displays the level of accu-

racy that the model reaches for the six domains on which we tested the

generalization capability. Yfr024 and Yhr016 show considerable accuracy

owing to their strong sequence similarity (89 with 79% of sequence identity)

and to a broad sharing of interacting peptides. Analogously, the good accura-

cies evaluated for Myo5 and Rvs167 are related to the similarity with Myo3

and the tern Yhl002, Yfr024 and Yhr016, respectively.
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