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Abstract
Motivation: Sequence alignment techniques have been
developed into extremely powerful tools for identifying
the folding families and function of proteins in newly
sequenced genomes. For a sufficiently low sequence iden-
tity it is necessary to incorporate additional structural
information to positively detect homologous proteins. We
have carried out an extensive analysis of the effectiveness
of incorporating secondary structure information directly
into the alignments for fold recognition and identification
of distant protein homologs. A secondary structure simi-
larity matrix based on a database of three-dimensionally
aligned proteins was first constructed. An iterative
application of dynamic programming was used which
incorporates linear combinations of amino acid and
secondary structure sequence similarity scores. Initially,
only primary sequence information is used. Subsequently
contributions from secondary structure are phased in and
new homologous proteins are positively identified if their
scores are consistent with the predetermined error rate.
Results: We used the SCOP40 database, where only PDB
sequences that have 40% homology or less are included, to
calibrate homology detection by the combined amino acid
and secondary structure sequence alignments. Combining
predicted secondary structure with sequence information
results in a 8–15% increase in homology detection within
SCOP40 relative to the pairwise alignments using only
amino acid sequence data at an error rate of 0.01 errors
per query; a 35% increase is observed when the actual
secondary structure sequences are used. Incorporating
predicted secondary structure information in the analysis
of six small genomes yields an improvement in the
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homology detection of ∼20% over SSEARCH pairwise
alignments, but no improvement in the total number of
homologs detected over PSI-BLAST, at an error rate of
0.01 errors per query. However, because the pairwise
alignments based on combinations of amino acid and
secondary structure similarity are different from those
produced by PSI-BLAST and the error rates can be
calibrated, it is possible to combine the results of both
searches. An additional 25% relative improvement in the
number of genes identified at an error rate of 0.01 is
observed when the data is pooled in this way. Similarly
for the SCOP40 dataset, PSI-BLAST detected 15% of all
possible homologs, whereas the pooled results increased
the total number of homologs detected to 19%. These
results are compared with recent reports of homology
detection using sequence profiling methods.
Availability: Secondary structure alignment homepage at
http:// lutece.rutgers.edu/ssas
Contact: anders@rutchem.rutgers.edu;
ronlevy@lutece.rutgers.edu
Supplementary Information: Genome sequence/structure
alignment results at http:// lutece.rutgers.edu/ss fold
predictions.

Introduction
Computational biology’s most useful and widely em-
ployed contribution to science is the ability to recognize
and match DNA and protein structures as well as se-
quences based on sequence data alone (Henikoff, 1996;
Holm and Sander, 1996; Brenner et al., 1997). It is
estimated that well over 80% of our biological knowledge
concerning protein sequences is inferred from homology
(George et al., 1996). With the advent of rapid sequencing
and the capability of constructing entire genomes for
organisms, protein sequence information has increased

988 c© Oxford University Press 2000



Iterative sequence/structure homolog search

much more rapidly than the three-dimensional structural
information. Consequently there is considerable interest
in the development of improved computational tools
(Taylor, 1986; Barton and Sternberg, 1987; Russell and
Barton, 1992; Saqi et al., 1992; Holm and Sander, 1993;
Vingron and Waterman, 1994; Bryant and Altschul, 1995;
Wilmanns and Eisenberg, 1995; Rost et al., 1997; Park
et al., 1997; Altschul et al., 1997; Karplus et al., 1998;
Park et al., 1998; Geetha et al., 1999; Grundy and Bailey,
1999) to identify the functions and structures of newly se-
quenced genes (Fischer and Eisenberg, 1997; Rychlewski
et al., 1998; Teichmann et al., 1998; Wolf et al., 1999).
When the sequence identity of a new protein compared
with known protein sequences falls below a threshold
value (commonly referred to as the ‘twilight-zone’, Vogt
et al., 1995), additional information must be brought to
bear on the problem—or it will be necessary to solve the
full three-dimensional structure of the new protein.

The development of algorithms to identify folding fami-
lies and functions of gene products using less information
than the full three-dimensional structure of the target
protein is desirable because experimentally determining
the three-dimensional structure is both time consuming
and costly. Precluding a full three-dimensional structure
determination, NMR chemical shifts can be used to give
secondary structure information directly (Ayers et al.,
1999). There is a large repository of protein chemical
shifts (Seavey et al., 1991; Wishart and Nip, 1998) and
backbone chemical shifts can often be assigned even in
large proteins (where it is difficult to accurately determine
all the interproton distances).

There are a range of computational techniques that can
be used to identify protein functions of newly sequenced
genes, which stand between sequence alignments on the
one hand, and the complete three-dimensional structure
determination on the other. A promising technique is the
use of protein secondary structure information to detect
similar folds and functions. Sequences which are distantly
related to each other but which have similar functions, tend
to have highly conserved patterns of secondary structure
(Russell and Barton, 1994).

In attempting to align sequences using information
about secondary structure assignments, it is assumed
that the sequential arrangement of secondary structure
elements along the sequence is correlated with the
three-dimensional arrangement of the secondary structure
(Smith-Brown et al., 1993) and therefore highly corre-
lated with the protein folding families. There are two
approaches to including secondary structure information
in the analysis of aligned sequences, either using it as
primary information (Sheridan et al., 1985; Russell et
al., 1996; Di Francesco et al., 1997a,b; Aurora and Rose,
1998) or including it as additional constraints in a general
fold recognition scheme primarily based on amino acid

alignments (Fischel-Ghodsian et al., 1990; Liithy et al.,
1991; Fischer and Eisenberg, 1996; Alexandrov et al.,
1996; Rice and Eisenberg, 1997; Rice et al., 1997; Rost
et al., 1997; Jaroszewski et al., 1998). The subject of
this paper is the analysis of an approach to protein fold
recognition based on augmenting amino acid alignments
with secondary structures represented as strings of letters
corresponding to the secondary structure designation
of each residue in the sequence (sequence/structure
alignment). Our work differs from that of previous studies
in our use of an iterative search of the template database
while systematically varying the weights on the sequence
and structure dependent terms, and in the extent of the
statistical analysis of fold prediction reliability which
allows us to calibrate the method using a large and
relevant database.

The probability of identifying the correct structural fold
of a query sequence depends on many features of the
underlying database used to test the recognition method,
including the basis for the proposed clustering of the
proteins into families, and the comprehensiveness of the
database with respect to both the total number of clusters
(families) and the distribution of proteins across clusters
(Park et al., 1997). In this work we use the SCOP40
database (Murzin et al., 1995; Brenner et al., 1998) which
includes a representative sample of all protein structures
in the Protein Data Bank (PDB) (Abola et al., 1987). This
database is filtered to remove all homologous sequences
which have a similarity above 40%. This ensures that
we are using only low homology sequences while at the
same time the database is large enough to ensure that the
detection of false positives remains a challenging problem.

In this paper the additional information contained in
the secondary structure is used to identify protein folding
families and compare the results with those based on
standard amino acid alignment methods to determine the
maximum amount of information that can possibly be
derived from the secondary structure assignments in a
fold recognition test. We note that the present analysis of
fold detection is similar in spirit to recent reports based on
one-dimensional pattern matching using both amino acid
and secondary structure sequence information (Fischer
and Eisenberg, 1996; Russell et al., 1996; Di Francesco
et al., 1997a,b; Rice and Eisenberg, 1997; Rost et al.,
1997; Aurora and Rose, 1998). Our results are compared
directly with those of Fischer and Eisenberg (1996) and
Rice and Eisenberg (1997). The method presented here
differs from previous work in the use of an iterative
search of a structural database to identify protein folds
and the construction of the secondary structure similarity
matrix, and in the calibration of the reliability of both
the sequence/structure alignment method and the amino
acid sequence only alignment methods using the SCOP40
clustered database. The calibration step is necessary in
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order to correlate expectation values calculated from the
alignments with errors in homology assignments and
gives an error rate that can be used to compare different
homology detection methods (Brenner et al., 1998;
Gerstein and Levitt, 1998; Park et al., 1998). Using the
idea that the error rate in fold detection can be calibrated,
we accumulate folds detected with the same reliability
by iteratively searching through a database, varying the
weights on the sequence and structure information with
each iteration. Calibration with SCOP40 establishes a
benchmark test and shows the effects of different weights,
ranging between 0 and 100%, of the amino acid sequence
and secondary structure terms used in the alignment.
Homology detection within the SCOP40 database is
investigated using both the true and predicted secondary
structures. The performance of the sequence/structure
alignment method is then compared to that of PSI-BLAST
on the SCOP40 database. Because we calibrate both meth-
ods to be at the same error rate, we are able to combine
the sequence/structure and PSI-BLAST results to produce
increased coverage relative to either method alone.

We further tested the effects of incorporating secondary
structure sequence information into homology detection in
six bacterial genomes and compared the results with sev-
eral popular alignment procedures. At an error rate of 1%
we were able to assign ∼40% more sequences to folding
families than could be assigned using FASTA (Smith and
Waterman, 1981; Pearson, 1991) or BLASTP (Altschul
et al., 1997) and 20% more assignments than SSEARCH
(Smith and Waterman, 1981; Pearson, 1991). A compara-
ble number of sequences were assigned to folding fami-
lies using PSI-BLAST alignments (Altschul et al., 1997)
as with the sequence/structure alignment method. How-
ever, because the sequence/structure alignment and PSI-
BLAST procedures produce different alignments and the
error rates can be calibrated, it is possible to combine the
results of both searches. An additional 25% improvement
in the number of genes identified at an error rate of 0.01 is
observed when the data is pooled in this way.

Materials and methods
Databases used in homology detection
The classification of proteins into groups of proteins with
similar structure and/or function is central to making the
connection between sequences and structural families. We
have used the SCOP classification scheme (Murzin et al.,
1995) to define homology of the proteins in the Protein
Data Bank (PDB) (Abola et al., 1987). SCOP classifies
protein domains based on class, fold, superfamilies, fam-
ilies, and domains. Homologous proteins (those thought
to have arisen from a common evolutionary ancestor) are
grouped together at the superfamily level, i.e. the class,
fold, and superfamily of two sequences coincide. In or-

der to concentrate on distantly related proteins it is desir-
able to remove sequences which are closely related (Bren-
ner et al., 1998). The SCOP40 database is a subset of
SCOP in which sequence pairs have less than or equal to
40% amino acid sequence identity. SCOP40 was formed
by Brenner and co-workers by first sorting all SCOP do-
mains by the quality of their structure (resolution) and
making a list. The best structure was taken for inclusion
in SCOP40 and removed from the list, and domains of
greater than 40% sequence identity to it were discarded.
The process was then repeated until the list was empty.
For SCOP this resulted in a final representative sample
of low homology sequences from the PDB of 1434 pro-
tein sequences (SCOP40 release 1.37) containing a total of
8022 ordered pairs of homologs. The SCOP40 dataset can
be downloaded from the SCOP web-server (http://scop.
mrc-lmb.cam.ac.uk/scop) or directly from the Sequence
and Structure Searching Site (http://sss.berkeley.edu). A
copy of the data can also be obtained directly from us.

For fold recognition in genomes, the open read-
ing frames (ORF) from the following genomes were
analyzed, Mycoplasma genitalium (MG) (Fraser et
al., 1995), Treponema pallidum (TP) (Fraser et al.,
1998), Methanococcus jannaschii (MJ) (Bult et al.,
1996), Borrelia burgdorferi (BB) (Fraser et al., 1997),
Haemophilus influenzae (HI) (Fleishmann et al., 1995),
and Helicobacter pylori (HP) (Tomb et al., 1997). This
sequence data was downloaded from the TIGR web-server
(http://www.tigr.org). For the fold detection within these
genomes we searched the non-redundant PDB sequence
database (PDBAA). This database contained at the
time of investigation 5569 sequences and represents all
non-redundant structures deposited in the PDB.

Secondary structure sequences
For the known structures we collected the secondary
structure information from the DSSP (Kabsch and Sander,
1983) library, available from the DSSP WEB-server
(http://www.sander.embl-heidelberg.de/dssp). For se-
quences in the SCOP database that are based on domains,
the corresponding secondary structure elements were as-
sembled according to the deposited amino acid sequence.
The true secondary structure was only assigned in the
cases that full atomic coordinates had been deposited in
the PDB. Structures consisting of only Cα atoms were as-
signed a secondary structure according to the DEFINE S
program (Richards and Kundrot, 1988). In the cases
where the secondary structure is not known, or we want
to gauge the effect of predicting the secondary structure,
we used the PREDATOR algorithm (Frishman and Argos,
1996, 1997a,b) to convert an amino acid sequence to a
secondary structure sequence. For the 29 sequences that
could not be processed with PREDATOR because of
minimal length requirements, we used the DSC procedure
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(King and Sternberg, 1996). In order to predict the
secondary structure each sequence was initially aligned
with the non-redundant sequence database at NCBI
(340 186 sequence in December 1998) using FASTA
(Pearson, 1991) and homologous sequences were passed
on to the PREDATOR/DSC program. For the secondary
structure sequences predicted with DSC a multiple se-
quence alignment using CLUSTALW (Thompson et al.,
1994) was initially performed. PREDATOR contains an
option to copy the secondary structure assignment directly
from the PDB database if the query sequence is found in
its database of PDB chains with less than 30% sequence
identity. With the option of using database sequences in
the PREDATOR program turned off the overall accuracy
of the secondary structure prediction was 68.5%, with the
individual helix (H), sheet (E) and loop (L) predictions
at 67.8, 49.9 and 78.3%, respectively. These predictions
are in agreement with the recent benchmarks by Cuff
and Barton (1999) on the PREDATOR program in which
they report an accuracy of 68.6% for a carefully selected
set of 396 proteins. Using the option to include database
sequences in the prediction program gave an enhanced
overall accuracy of 77% with predictions at 76, 68 and
83% for the H, E, and L elements respectively. This option
was chosen for the prediction of the secondary structure
elements of the genomes studied.

Secondary structure similarity matrix
We have based the evaluation of the secondary structure
similarity matrix on the 3D ali data bank collated by Pas-
carella and Argos (1992) and Pascarella et al. (1996). This
database contains 455 proteins arranged in 86 structural
families and was downloaded from the EMBL web-server
(http://www.embl-heidelberg.de/argos/ali/ali.html). Each
protein group contains two or more aligned structures.
The proteins themselves are collected from the PDB
(Abola et al., 1987). Both x-ray and NMR structures
are included among the 455 proteins. The secondary
structure elements were assigned by Pascarella and Argos
according to the definitions of Kabsch and Sander (1983).
Only three distinct secondary structure elements were re-
tained for our analysis: helical segments (H) including the
regular α-helix as well as the 310-helix, β-sheets (E); all
other elements were placed by us in a ‘loop’ category (L),
regardless of assigned structure.

The similarity matrix reflects the probability of occur-
rence of secondary structural elements paired in the three-
dimensional alignment, e.g. how often a helical residue
is aligned with another helical residue. The probability
of occurrence is calculated as outlined by Henikoff and
Henikoff (1992) for the calculation of similarity matrices
for amino acids. The probability of finding paired struc-
tural elements i and j in an alignment of sequence A and
B is denoted Pi j . The similarity matrix elements are nor-

Table 1. The derived secondary structure similarity matrix Mss
i j . The

elements of the similarity matrix were calculated from log-odds scores based
on the three-dimensional alignments in 3D ali. A positive value indicates a
favorable pairing; a negative value indicates that the structural elements are
unlikely to be found together

H E L
H 2
E −15 4
L −4 −4 2

malized by the probability of finding the same pair in a
randomly aligned sequence Pex

i j ,

Mss
i j = 2 log2(Pi j/Pex

i j ). (1)

The matrix elements are thus a measure of how often such
a pairing occurs relative to the random case. A positive
value of the matrix element, Mi j , indicates a favorable
score. The probabilities Pi j and Pex

i j were calculated from
the aligned secondary structure sequences of the database.
In order to minimize the influence of improper structural
alignments in the database, only aligned proteins with
greater than 70% secondary structure identity were used
to generate the secondary structure similarity matrix. At
70% secondary structure identity the database contained
590 pairwise sequence alignments resulting in 187 634
structural element pairs. The values of the Mss

i j are given in
Table 1. Gap opening and gap elongation parameters were
set to −12 and −2, respectively.

Alignment method
To align two sequences we use the Smith–Waterman algo-
rithm (Smith and Waterman, 1981). The alignment pro-
gram SSEARCH was extracted from the FASTA pro-
gram package suite (Lipman and Pearson, 1985; Pearson
and Lipman, 1988; Pearson, 1990) and modified to con-
sider an alignment of both amino acid (aa) and secondary
structure (ss) elements. The similarity score, w, between
two aligned sequences A and B is then formulated as

wαβ =
mab∑

k

(αMaa
ak ,bk

+ βMss
ak ,bk

) + Nogo + Nege. (2)

Maa corresponds to the amino acid similarity matrix
(BLOSUM 50) (Henikoff and Henikoff, 1992), and Mss

corresponds to the secondary structure similarity matrix
defined above. mab is the number of paired elements in the
alignment between sequences A and B. α and β determine
the weighted importance of the amino acid and secondary
structure sequence respectively. In the expression above
equation (2) ak , bk denotes the kth amino acid pair or
secondary structure element pair of the aligned sequences
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A and B. The number of gap openings No is multiplied
by the gap opening penalty go, and the number of gap
elongations Ne is multiplied by the gap extension penalty
ge.

Score evaluation and quality of homology detection
In order to evaluate the accuracy of an alignment we need
to evaluate how many non-homologous sequence pairs
have the same or better score. The non-homologous scores
generated from the alignment are distributed according to
the extreme value distribution (Karlin and Altshul, 1990;
Altschul et al., 1994; Pearson, 1995, 1996, 1998). This
provides us with a consistent way of determining how
many errors we are expected to make when investigating
a database of size Ndbs. The expectation value, E or e-
value, is the total number of non-homologous sequences
in the database which have the same or better score,

E(Ndbs, x) = Ndbs P(x), (3)

where P(x) is the normalized probability of finding a non-
homologous sequence pair with the same or higher score x
drawn randomly from the extreme value distribution. If a
query sequence is aligned against a database of sequences
and one alignment has a score that results in an e-value of
1, we can expect by chance that within this database there
is at most one non-homologous sequence pairing that has
a score that is at least as large as this alignment score.

In order to evaluate an alignment method for detecting
homologous proteins we need to determine how many
homologous pairs can be detected at a specified error
rate. This is accomplished using the following quanti-
ties obtained from the alignment: M true

pos (m), M true
neg (m),

M false
pos (m), M false

neg (m). The superscripts true/false refer
to whether or not the pair of sequences are homologous,
and the subscripts pos/neg refer to the correct/incorrect
identification of the homologs with the given method.
These quantities are then used to calculate the coverage,
specificity, and errors per query, which give a measure
of how many of the total homologs are detected and the
reliability of the detection.

Let Ndbs be the number of sequences in a given
database; some of these sequences are homologous to
other sequences in the database. The homologies can be
established independent of any sequence alignment algo-
rithm, i.e. from structural and functional characteristics.
Let Mhom be the number of true homologous pairs.

In evaluating the results from the alignment we count
the number of protein pairs that are actually homologous
which we have detected; they are the true positive
homologs, M true

pos (m), where m is a measure such as an
alignment score or expectation value. Likewise, we count
the number of protein pairs that are correctly identified
as not homologous; they are the true negative homologs,

M true
neg (m). One can also determine false positives and false

negatives. The coverage, i.e. the fraction of true homologs
detected as a function of m, is the number of true homolog
pairs detected M true

pos (m) divided by the total number of
homologous pairs in the database,

coverage (m) = M true
pos (m)/Mhom (4)

= M true
pos (m)/(M true

pos (m) + M false
neg (m)).

(5)

The coverage is thus parametrically dependent on the
measure m that we choose to use to select homologous
proteins from alignment results. The goal is to have as
high a coverage with as little error as possible for a given
measure m to detect the homologs.

The error in homology detection made as we try to
increase the coverage can be quantified in two different
ways: (1) how many errors are made for each query
against a database of sequences (Brenner et al., 1998); and
(2) the fraction of true homologs of all assigned homologs
(specificity) (Rice and Eisenberg, 1997). These quantities
are defined as,

errors per query (m)=M false
pos (m)/Nquery (6)

specificity (m)=M true
pos (m)/(M true

pos (m) + M false
pos (m)),

(7)

where Nquery is the number of query sequences submitted
for alignment. Thus the errors per query (EPQ) should
be as low as possible while having as large as possible
coverage, while specificity should be as high as possible
for a given coverage.

The errors per query (EPQ) gives information about
what fraction of the putative homologs identified by
alignments are false. Thus, choosing a threshold value
m to identify homologs which have been calibrated
to achieve an EPQ equal to 0.01, if the database is
queried with 1000 sequences, a total of ten false positive
answers are expected. The specificity, or fraction of all
the pairs which are identified as homologs which are
true homologs, is used to determine the confidence in the
results of the alignment, thus a specificity of 0.90 indicates
that 90% of all alignments with a score greater than or
equal to m returned from the alignments are true. For the
databases investigated in this work we have chosen an e-
value threshold to give us a homology detection error rate
of 0.01 errors per query.

Calibration with the SCOP database
Using the SCOP classification of proteins (Murzin et
al., 1995; Brenner et al., 1998) as a benchmark we can
evaluate the different alignment methods, i.e. since we
know the ‘true’ homologs based on the classification,
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we can explicitly calculate which sequence relations are
correctly identified by the procedure (Park et al., 1997;
Brenner et al., 1998; Gerstein and Levitt, 1998). We have
used the SCOP40 1.37 dataset to calculate the errors per
query accumulated during the ‘all-against-all’ alignments
of the sequences in the SCOP40 database using both PSI-
BLAST and the sequence/structure alignment method
as a function of stated e-values. The PSI-BLAST runs
were performed using the entire non-redundant sequence
database in excess of 300 000 entries to construct position
specific scoring matrices. By aligning all sequences of the
SCOP40 dataset for different e-values and calculating the
errors per query we can calibrate the e-values with EPQ.
Adopting a value of 0.01 errors per query in this work, the
expectation value threshold used in the sequence/structure
alignments is 0.005. The PSI-BLAST algorithm was
calibrated to yield an EPQ of 0.01 by first setting a cutoff
value of 1.0 × 10−3 for sequences to be included in
each iteration and by applying a final e-value cutoff of
1.0 × 10−9 in the final iteration to determine whether
sequence pairs are homologous or not. The low e-value
cutoff is comparable to those found in similar studies
(Park et al., 1998) on a slightly smaller version of the
SCOP40 database used here. Similar results concerning
e-values have been reported in other recent studies using
PSI-BLAST to find remote homologs (Aravind and
Koonin, 1999).

Results and discussion
We have conducted several different computer experi-
ments to benchmark the combined sequence/structure
alignment method using variable weights on the amino
acid sequence and secondary structure sequence terms.
We first focus on a large dataset where the structures
are known and the corresponding sequences have been
categorized as belonging to a particular protein family,
i.e. the homology relationships are known a priori. After
calibrating the sequence/structure alignment method, we
proceed to evaluate success rates in finding structural
homologs for six small genomes.

Homology detection with pure amino acid or
secondary structure sequence alignments
An informative way to assess sequence comparison
methods for identifying homologous sequences is by
constructing coverage versus specificity (or error) plots
(Rice et al., 1997; Brenner et al., 1998; Park et al.,
1998). The coverage is defined as the fraction of homol-
ogous sequence pairs that have alignment scores above
a threshold. The specificity is defined as the fraction of
all sequence pairs that have alignment scores above a
selected threshold which are actually homologous. The
goal of any fold recognition algorithm is to maximize the
coverage as the specificity increases.
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Fig. 1. Homology detection as a function of specificity for either
pure amino acid sequence or pure secondary structure sequence
alignments. In this graph we compare the SCOP40 (Brenner et al.,
1998) database and the database assembled by Rice and Eisenberg
(1997). Our calculations based on the SCOP40 database employed
a range of expectation values to parameterize the coverage versus
specificity curve, whereas the data taken from Rice and Eisenberg
employed z-scores. To interpret the graph we can look at a point
for a particular expectation value or z-score that corresponds to a
specificity of 90% and a coverage of 20%, this implies that there is
a 90% probability that a sequence pair with score greater than this
expectation value or z-score is homologous; however, 80% of the
homologous pairs have scores less than this and would fail to be
detected at this threshold.

In Figure 1 we compare the coverage/specificity for two
different databases using either amino acid sequences or
pure secondary structure sequences. We have calculated
all possible alignments for the SCOP40 database and have
also included the published result reported by Rice et
al. (1997) in the figure. The results of the amino acid
alignments carried out using the SCOP40 database shown
in Figure 1 correspond closely to the results presented
by Brenner et al. (1998), these authors compared several
different scoring schemes and statistical measures for
constructing coverage/specificity plots.

For specificities greater than 20%, the coverage of the
SCOP40 database using amino acid sequence alignments
is always higher than for the secondary structure align-
ments (see Figure 1). This indicates that in order to find
homologs with high specificity when searching large
databases, recognition based on the alignment of sec-
ondary structure sequence patterns alone is not effective.
None of the alignments using only secondary structure
sequences provided new information about homologs
beyond what can already be determined using the amino
acid sequences for these datasets (at high specificity).
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Even though it may be true that the organization of
secondary structure elements in space determines the
fold of a protein, the matching of these elements between
sequence families when represented as a one-dimensional
string is not sufficient to differentiate between sequence
families any better than amino acid sequences. This is
due in part to the use of a three letter secondary structure
sequence alphabet versus a twenty letter amino acid
alphabet. We have investigated the behavior of fold
recognition in the SCOP40 database using a number of
amino acid alphabets of reduced sizes (Murphy et al.,
2000), and we found that an alphabet reduced to three
letters retains almost no coverage relative to the twenty
letter alphabet. Interestingly however, the three letter
secondary structure sequence alphabet used here retains
more coverage of SCOP40 than the reduced three letter
amino acid alphabet.

Rice et al. (1997) have published an analysis of cover-
age/specificity plots for several different one-dimensional
alignment models containing varying amounts of
structural information. They include in their work cov-
erage/specificity plots for ‘pure’ amino acid sequence
alignments and ‘pure’ secondary structure sequence
alignments separately, and their results can be directly
compared with ours as shown in Figure 1. Our results are
significantly different from theirs. Using a protein fold
database of their own construction based on the SCOP
classification, they find that at very low specificities
(e.g. 0.1), the coverage has already decreased to very
low values (∼0.1) when the database is searched for
homologies using either amino acid sequence comparison
or secondary structure sequence comparison as the search
tool. Thus, they report a much steeper degradation of
coverage with increasing specificity than we observe
for either alignment scheme, amino acid sequence or
secondary structure sequence alignment. The differences
are likely due to differences in the underlying protein
databases used to test the fold recognition algorithms;
apparently the Rice and Eisenberg database contains
many more distant homologs as a fraction of the total
when compared with SCOP40.

This points to the essential role of the protein sequence
databases used to construct the coverage/specificity plots
in the assessment of the apparent accuracy of the query
method. The data in Figure 1 provide an illustration
of the dependence of coverage/specificity plots on such
features of the underlying protein database as: the total
number of entries, the number of protein families, and the
clustering among and within families, i.e. the distribution
of cluster sizes and the filtering of high sequence identity
pairs within the clusters. With the availability of a large
clustered database representative of the full PDB such
as SCOP40, more robust tests of homology detection
methods are possible.

Synergy between amino acid sequence and secondary
structure information

It has been recognized for some time that secondary struc-
ture information can be useful as an adjunct to sequence
data for aligning sequences and for fold recognition.
This has lead to the construction of expanded similarity
matrices which incorporate information about secondary
structure propensities of amino acids in the alignment
(Fischel-Ghodsian et al., 1990; Fischer and Eisenberg,
1996; Alexandrov et al., 1996; Rice and Eisenberg, 1997;
Rice et al., 1997; Rost et al., 1997). Aligning sequences
by both their amino acid similarity and secondary struc-
ture similarity, separately and in combination, makes it
possible to analyze the synergistic effects of these two
alignment procedures for fold recognition.

The sequence/structure alignment technique employed
here consists of running eleven different sets of alignments
for each query with evenly spaced weights (pairs of values
of α and β; see Section Materials and methods) on amino
acid and secondary structure sequences, starting from a
100% weight on the amino acid sequence. The output from
these alignments is then scanned for results which have
e-values below a given threshold, and the unique pairs
are collected as the final output. Only novel homologies
arising from the use of secondary structure information in
the alignment are gathered once the first alignment pass,
based only on the amino acid sequence, is carried out.

The procedure used to calibrate and compare the
fold detection results based on mixing amino acid and
secondary structure sequence information in different
proportions relies on first determining the error rate as a
function of expectation value and then collating results
at the desired error rate. We have constructed plots of
coverage versus error rates for different values of α and
β in equation (2). The resultant errors per query versus
coverage (parametrically dependent on the expectation
values) is shown in Figure 2 for some selected weights.
Figure 3 displays the individual and the cumulative
coverage of detected homologs as a function of increasing
secondary structure weight for a given error per query
fixed at 0.01. This information provides a way of estimat-
ing the synergistic effects of combining amino acid and
secondary structure information when aligning sequences.

Fold detection based on the use of amino acid sequence
similarities is clearly better than the results obtained us-
ing only secondary structure similarities, but an exami-
nation of Figures 2 and 3 reveals that when both amino
acid and secondary structure sequence information is in-
cluded in appropriate amounts it is possible to identify
homologous proteins for sequences that could not be as-
signed homologs based on the alignments of amino acid
sequences. In addition Figure 3 displays the results ob-
tained when using predicted secondary structure instead
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Fig. 2. Coverage based on alignments using different weights on
amino acid sequence and secondary structure sequence information.
The results shown correspond to an ‘all-against-all’ analysis of the
SCOP40 1.37 database. The maximum coverage at any error level is
achieved by weighting equally the secondary structure and amino
acid information. The true secondary structure was employed in
these alignments, the corresponding figure for predicted secondary
structure is not shown but displays no additional coverage above that
detected by the pure amino acid sequence.

of the true structure. In this case the coverage is a decreas-
ing function of the amount of secondary structure incor-
porated into the alignments. Using only the predicted sec-
ondary structure, and with an e-value threshold set so that
the error per query is 0.01, there is no homology detec-
tion for pure secondary structure alignments beyond those
detected by aligning amino acid sequences.

Because the alignments depend on both the amino
acid and secondary structure content of each sequence,
different homologs are detected as the weights on the
sequence versus structural data in the similarity score
are changed. If the datasets are scanned with different
combinations of amino acid and secondary structure
weights in the alignments, the unique homologs detected
at the same fixed error rate can be collected cumulatively.
This is shown in Figure 3; there is an increase of the
total coverage as more weight is added to the secondary
structure similarity score (when weights of more than 50%
secondary structure information are used the increase in
the cumulative coverage is negligible). For the sequences
that were aligned using weighted combinations of amino
acid sequence and secondary structure data based on
the true secondary structure sequence, it is possible to
collect additional homologs that were not detected by
the amino acid sequence alone. For example at an errors
per query rate of 0.01, there is 13% coverage using
sequence data alone, compared with 17% coverage when
additional structural data is used. This corresponds to
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Fig. 3. Homology detection in the SCOP40 1.37 database as a
function of weights on the amino acid/secondary structure similarity
matrices at a constant error rate (0.01 errors per query). The solid
lines give the coverage using true secondary structure sequences and
the dashed lines that using predicted secondary structure sequences.
The database was searched in increments of 10% changes in
amino acid/secondary structure weightings. The lines with plot
symbols give results for the number of homologs found at each
AA/SS combination; the 100/0 values correspond to pure amino
acid alignments. Using true secondary structure additional coverage
above that of amino acid alignment alone is obtained at some AA/SS
combinations, while using predicted secondary structure there is
no additional coverage. The lines without plot symbols give the
cumulative number of unique homologs up to the given points in
the sequence/structure alignment, thus the values at 0/100 reflect
the total benefit of using sequence/structure alignment over simple
amino acid sequence alignment. Use of the true secondary structure
sequences is clearly superior to predicted secondary structure; a
cumulative relative increase over pure amino acid alignments of
35% is obtained using true secondary structure versus 8–15% using
predicted secondary structure.

a 35% relative enhancement of fold detection when the
structural data is used together with the sequence data.
In contrast there is only a 8–15% relative increase in the
detection of homologs in this database when the predicted
secondary structure is used instead of the true secondary
structure in the alignments. The lower estimate reflects
a true prediction from the secondary structure prediction
program PREDATOR (Frishman and Argos, 1997b), and
the upper limit reflects the use of a small secondary
structure database in conjunction with PREDATOR, see
Section Materials and methods. These results suggest
that currently the full potential of the sequence/structure
alignment method cannot be achieved without additional
experimental information to augment predicted secondary
structure (Ayers et al., 1999; Geetha et al., 1999).

The results of all-against-all alignments of the SCOP40
database using the PSI-BLAST method are indicated
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in Figure 3 in order to compare that method with the
sequence/structure alignment method. At an EPQ level
of 0.01 there is a 15% coverage using PSI-BLAST.
PSI-BLAST performs better than pairwise amino acid
alignments (13%) and the sequence/structure alignment
method using predicted secondary structure (14%), but
the sequence/structure method performs better than
PSI-BLAST when the true secondary structure is used
(17%). Because the sequence/structure alignment and
PSI-BLAST methods produce different alignments and
the error has been calibrated, the results of both searches
can be combined to yield the total number of unique
homologs detected. This combined result is also indicated
on the figure; the combined result (19%) gives increased
coverage over that of either method alone.

To illustrate how the use of secondary structure helps
in the identification of homologs with low amino acid
sequence identity, Figure 4 shows two hemoglobins (PDB
codes 1ash and 2 lhb), represented as ribbon diagrams
with segments of alignments between the two sequences
indicated in the figure. Both proteins are all-α-helical
globins containing six helices which function in the
storage and transport of oxygen through binding of a heme
group. 1ash is Ascaris hemoglobin (domain one) from the
pig roundworm with SCOP 1.37 classification 1.1.1.1.34,
and 2 lhb is obtained from the sea lamprey with SCOP
1.37 classification 1.1.1.1.33 (Murzin et al., 1995). Due
to the low sequence identity (15%), amino acid alignment
does not identify the sequences as homologs at an error
level of 0.01 EPQ, although visual examination of the
structures shows their obvious similarity. The sequences
do have high secondary structure identity (83%), and
when 50% predicted secondary structure is used in the
alignments they are correctly identified as homologs
with the AA/SS method. PSI-BLAST misses this pair of
homologs at 0.01 EPQ. At this stringent error level there
are 85 ordered pairs of sequences detected as homologs
using 50% secondary structure; two of these are pairs
of distant homologs (sequence identity equal to or less
than 15%), with the remaining pairs having between 15
and 40% sequence identity. The two pairs of domains
with equal to or less than 15% amino acid identity in the
SCOP40 database that are identified as homologous at the
50% secondary structure iteration are the above example
and the DNA clamp proteins proliferating cell nuclear
antigen (1plq region 127–258) and DNA polymerase III
beta subunit (2pol region 245–366). PSI-BLAST does not
identify either of these homologous pairs.

The SCOP40 benchmark test can be compared with
the results of Fischer and Eisenberg (1996). In this test
set 68 probe sequences were used against a library of
301 known target structures with a maximum sequence
identity of 30% between probes and target sequences.
Fold detection was studied for a variety of similarity

matrices, including ones containing secondary structure
information. The SCOP40 dataset contains at least
one member of each protein superfamily as defined
by SCOP—8022 homologous pairs are contained in
this dataset among a total of more than two million
sequence pairs. Whereas the general trend of improved
fold recognition by incorporation of structural data is
similar between the two datasets, around +35% for top
ranked scores, there is lower fold recognition within
the SCOP40 benchmark based on secondary structure
alone than the Fisher and Eisenberg benchmark set.
This discrepancy is a reflection of the very much larger
number of non-homologous sequences that have to be
discriminated amongst in the SCOP40 dataset, and the in-
creased likelihood of sequences having similar secondary
structure patterns in different homologous superfamilies.
Other recent studies of homology detection (Jaroszewski
et al., 1998; Ayers et al., 1999; Geetha et al., 1999)
using secondary structure information find similarly that
secondary structure augments fold recognition, although
they employ much smaller datasets than studied here.

Geetha et al. have also recently reported a comparison
of protein sequence-based methods with predicted sec-
ondary structure-based methods for identifying remote
homologs (Geetha et al., 1999). They compared existing
sequence comparison methods, including local amino
acid sequence similarity by BLASTP, and hidden Markov
models (HMMs) of sequences of protein families, with
HMMs based on amino acid sequence motifs and sec-
ondary structure motifs. The test set was relatively small,
consisting of 45 proteins from nine structural families in
the CATH database (Orengo et al., 1997). These authors
find, similar to our results, that pure secondary structure
pattern recognition does not improve upon pure amino
acid sequence based homolog detection overall (they did
not study the effects of combining the amino acid and
secondary structure pattern recognition within the same
search). For the most remote homologs, however, with
sequence identities less than 15% they did observe a clear
advantage to using secondary structure to identify ho-
mologs, when the actual secondary structures are used for
the pattern recognition. Interestingly, they also observed
significant degradation in coverage and specificity when
predicted secondary structure patterns are substituted for
the actual patterns.

We have used the detection of homologs within
the SCOP40 database to calibrate the combined se-
quence/structure alignment method on a clustered
database of proteins with low sequence identity that is rep-
resentative of the entire PDB. In the next section, homol-
ogy detection via sequence/structure alignment is com-
pared with other alignment procedures for a more practical
fold recognition test, i.e. finding structural homologs to
all sequences in six complete bacterial genomes.
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Amino Acid Alignment:
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d1ash_ YTRELLDRHARDHVHMPPEVWTDFWKLFEEYLGKKTTLDEPT

d2lhb_ KLRNLSGKHAKSFQVD PEYFKVLAAVIADTVAAGDAGFEKL
100 110 120 130

Sequence/Structure Alignment  50/50:
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Fig. 4. Illustration of how secondary structure helps in the identification of homologs with low amino acid identity. These two hemoglobins
have low sequence identity but obvious structural similarity. Amino acid alignments do not identify these sequences as homologs, but when
50% secondary structure is used they are correctly detected.

Fold recognition in genome databases using secondary
structure information
The sequences from six small complete genomes were
used to search for structural homologs in the non-
redundant sequence database of all PDB structures
(PDBAA). Predicted secondary structure sequences were
used together with amino acid sequence information
to search for structural homologs in the non-redundant
sequence database. The genomes investigated range
from 479 predicted open reading frames (ORF) of MG
to 1771 ORF of MJ, representing a small selection of
different bacterial and archebacterial organisms (Fraser et
al., 1995; Fleishmann et al., 1995; Bult et al., 1996; Fraser
et al., 1997; Tomb et al., 1997; Fraser et al., 1998). For
the purposes discussed here a genome sequence is defined
to be homologous to a database sequence when at least
one sequence in the database has an expectation value that
is lower than a threshold value. The results for amino acid
sequence searches using four different popular alignment

programs (BLASTP, PSI-BLAST, Altschul et al., 1997,
and FASTA, SSEARCH, Smith and Waterman, 1981;
Pearson, 1991) and for the sequence/structure alignment
technique described here are summarized in Table 2.

The number of structural homologs identified in these
genomes is relatively small at the very low error rate of
0.01, ranging from about 15–30%, indicating that a large
fraction of these proteins cannot be positively identified
as related to sequences in the PDB when a stringent
cutoff is applied. The use of sequences together with
predicted secondary structure data significantly increases
the number of structural homologs detected compared
to other pairwise alignment methods such as BLASTP,
FASTA, and SSEARCH—the relative increase ranges
between 12 and 51% for different genomes, with an
increase of 21% when compared with the results of
SSEARCH averaged over all the genomes.

The superiority of the PSI-BLAST method as compared
to pairwise amino acid alignment methods lies in its use
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Table 2. Enhanced homology detection using secondary structure information

Genome ORF BLASTP PSI-BLAST1 PSI-BLAST2 FASTA SSEARCH AA/SS Combined

MG 479 110 116 149 111 121 149 181
TP 1031 185 197 270 191 217 267 327
BB 1638 193 222 289 193 224 292 358
MJ 1771 273 306 405 258 312 369 573
HI 1707 412 432 542 406 445 498 649
HP 1577 287 318 396 291 338 415 489

Six different genomes ranging in size from 479–1771 genes were searched for structural homologs to the non-redundant PDB sequence database at an error
rate of 0.01 errors per query. Four different programs were used to search the database using only amino acid sequence information, BLASTP, PSI-BLAST,
FASTA, and SSEARCH. The expectation value threshold for detection is set to 0.01 for the BLASTP, FASTA, and SSEARCH programs. Two
implementations of the PSI-BLAST program were run, 1using only the sequences within the PDB and 2using all sequences in the non-redundant sequence
database to generate position specific interactions, but only collecting the results for sequences that are actually present in the PDB. The expectation value
threshold used for the second PSI-BLAST runs and the sequence/structure alignment were calibrated using SCOP40 1.37 as a manual standard with a
resultant error per query level of 0.01 (see Section Materials and Methods). The number of homologs detected using these programs are collected in the
third through seventh columns. The number of homologs detected using the sequence/structure alignment method is given in the eighth column (AA/SS).
The ninth column gives the total number of homologs found by combining the results of the sequence/structure alignments and PSI-BLAST at an error rate
of 0.01 EPQ. Predicted secondary structure sequences were used for all genes.

of a position-specific scoring matrix constructed from
multiple sequence information. In Figure 5 the number
of structural homologs detected in the six genomes
by sequence/structure alignment and by PSI-BLAST
searches are compared. The number of homologs detected
by the sequence/structure alignment and PSI-BLAST
methods is very similar. However, because the expectation
values obtained from the alignments using these methods
have been calibrated using the SCOP40 database, it is
possible to combine the unique homologs assigned using
sequence/structure alignment with those assigned using
PSI-BLAST. When the results are pooled, the average
increase in sequences assigned for the genomes shown in
Figure 5 is about 20% above those assigned using either
sequence/structure alignment or PSI-BLAST alone.

Several groups have reported fold predictions for the
MG genome (Fischer and Eisenberg, 1997; Bork et
al., 1998; Huynene et al., 1998; Rychlewski et al.,
1998; Teichmann et al., 1998). It is difficult to directly
compare these results because of the different definitions
of ‘significance’ used by the authors when assigning
homologs, as well as differences in the sizes of the
sequence and structure databases that were searched for
homologs in these studies. In an early report of fold
predictions in MG by profiling, Fischer and Eisenberg
reported the functional identification of 22% of the genes
in this genome. Subsequently, Huynene et al. (1998)
used an iterative PSI-BLAST search in combination
with several filters to predict the function for at least
one domain in 37% of the genes. Rychlewski et al.
(1998) reported positive identification of 38% of all
genes in the MG genome using a profiling algorithm and
position-specific probability distributions derived from
homologous sequences. Teichmann et al. (1998) used
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Fig. 5. Comparison of the number of homologs found for the
genomes studied via PSI-BLAST, sequence/structure alignment,
and combining the information from both methods at a fixed error
rate of 0.01 EPQ as determined via the SCOP40 calibration.

multiple sequence alignment programs to match all or
substantial portions of 191 sequences, to yield an overall
prediction rate of 41% of the proteins in the genome. The
cutoff value used in their PSI-BLAST searches was set to
1.0 × 10−5 from a calibration of an edited version of the
SCOP95 dataset to remove those sequences that are likely
to produce false matches with low e-values.

Summarizing the results in Table 2, the sequence/structure
alignment technique identified a total of 1990 sequences
at an error rate of 0.01 in the six genomes, as compared
with 1657 sequences identified by the best pairwise
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alignment method, and 2051 sequences identified by
PSI-BLAST at the same error rate. Comparing the se-
quence/structure alignment method with other pairwise
sequence alignment procedures, there was a 40% increase
on average in new fold designations over BLASTP and
FASTA, and a 20% increase over SSEARCH results.
When the results using the PSI-BLAST search are pooled
with those based on sequence/structure alignment, an
additional 466 structural homologs are detected at the
same error rate based on the same sequence information.
This results in an over 50% increase on average in fold
recognition over the best pairwise alignment techniques,
and a 25% increase on average over either PSI-BLAST or
sequence/structure alignments used alone. The combined
PSI-BLAST and sequence/structure procedure yields a
fold assignment for an average of 32% of all genes in the
six genomes studied at an error rate of 0.01 errors per
query. The complete dataset is available from the URL:
http://lutece.rutgers.edu/ss fold predictions.

Concluding remarks
Sequence alignment techniques provide an extraordinarily
powerful way to find structurally and functionally homol-
ogous proteins using sequence data alone. Advances in the
methodology, including multiple sequence alignments,
will make it possible to detect homology relations among
proteins over even greater evolutionary distances than is
possible today. Even so, there exists a far larger number of
structurally homologous proteins than have been detected
using current sequence alignment algorithms. By one
recent estimate (Brenner et al., 1998) over 60% of the
structural homologs have diverged to the point where evo-
lutionary relationships can no longer be detected through
amino acid sequence comparisons alone. Thus significant
effort is being devoted to the incorporation of additional
structural, biological, and chemical information into 1D
sequence comparisons—this is the basis of so called
‘sequence profiling’ methods (Bowie et al., 1991; Rice
and Eisenberg, 1997). The incorporation of secondary
structure information into sequence profiles is a natural
idea that has been exploited by several groups (Fischer
and Eisenberg, 1996; Russell et al., 1996; Di Francesco et
al., 1997a,b; Rost et al., 1997; Aurora and Rose, 1998),
but the question of how far it is possible to go towards
predicting protein structural and functional homologies
based on secondary structure sequence comparisons has
received less attention (Geetha et al., 1999). Through
a better understanding of how well homologs may be
detected using secondary structure sequence information
to supplement the information contained in the amino acid
sequence, we hope to develop protocols for exploiting
this information in two ways—by using experimental
NMR secondary structure information to detect homologs

through secondary structure sequence comparisons, and
by further improvements in the use of secondary struc-
ture information as a component of sequence/structure
alignment.

In order to critically assess the performance of homolog
detection by sequence or sequence/structure alignment
methods and make a comparison of the different ho-
mology detection methods, it is necessary to calibrate
the error level at which the alignments are performed.
The calibration step is necessary in order to correlate
expectation values calculated from the alignments with
errors in homology assignments and gives an error rate
that can be used to compare different methods.

Calibration of the alignment methods also requires using
a protein database for which the homologies are already
known. We used a large representative database that
covers all protein structures known in the PDB and which
has filtered out highly similar sequences. The SCOP40
database (Murzin et al., 1995; Brenner et al., 1998) used
in the present study provides a good benchmark test
for homology detection using a combination of amino
acid and secondary structure sequence information. The
identification of protein families based on the addition of
secondary structure information to amino acid sequence in
sequence alignments provides extra information beyond
what can be achieved using amino acid sequence alone.
These fold identifications represent new information that
can be used for investigating novel sequence relationships
and as a starting point for refined homology modeling
that directly incorporates the structural information in the
alignments themselves.

Acknowledgements
This project has been supported by the National Institutes
of Health Grant GM-30580 and by the High Performance
Computing Project at Rutgers University.

References
Abola,E.E., Bernstein,F.C., Bryant,S.H., Koetzle,T.F. and Weng,J.

(1987) Protein data bank. In Allen,F.H., Bergerhoff,G. and Siev-
ers,R. (eds), Crystallographic Databases—Information Con-
tent, Software Systems, Scientific Applications Data Commission
of the International Union of Crystallography, Bonn, pp. 107–
132.

Alexandrov,N.N., Nussinov,R. and Zimmer,R.M. (1996) Fast pro-
tein fold recognition via sequence to structure alignment and con-
tact capacity potentials. In Hunter,L. and Klein,T.E. (eds), Bio-
computing: Proceedings of the 1996 Pacific Symposium World
Scientific, Singapore, pp. 53–72.

Altschul,S.F., Boguski,M.D., Gish,W. and Wootton,J.C. (1994)
Issues in searching molecular sequence databases. Nature Genet.,
6, 119–129.

Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-

999



A.Wallqvist et al.

BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389–3402.

Aravind,L. and Koonin,E.V. (1999) Gleaning non-trivial structural,
functional and evolutionary information about proteins by itera-
tive database searches. J. Mol. Biol., 287, 1023–1040.

Aurora,R. and Rose,G.D. (1998) Seeking an ancient enzyme in
Methanococcus jannaschii using ORF, a program based on
predicted secondary structure comparisons. Proc. Natl. Acad.
Sci. USA, 95, 2818–2823.

Ayers,D.J., Gooley,P.R., Widmer-Cooper,A. and Torda,A.E. (1999)
Enhanced protein fold recognition using secondary structure
information from NMR. Protein Sci., 8, 1127–1133.

Barton,G.J. and Sternberg,M.J.E. (1987) Evaluation and improve-
ments in the automatic alignment of protein sequences. Protein
Eng., 1, 89–94.

Bork,P., Dandekar,T., Diaz-Lazcoz,Y., Eisenhaber,F., Huynen,M.
and Yuan,Y. (1998) Predicting function: from genes to genomes
and back. J. Mol. Biol., 283, 707–725.
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