
BIOINFORMATICS Vol. 18 no. 8 2002
Pages 1102–1108

Simplifying amino acid alphabets by means of a
branch and bound algorithm and substitution
matrices
Nicola Cannata, Stefano Toppo, Chiara Romualdi and
Giorgio Valle

CRIBI Biotechnology Centre, Università di Padova, via Ugo Bassi 58/B,
35131 Padova, Italy

Received on September 6, 2001; revised on January 8, 2002; accepted on February 25, 2002

ABSTRACT
Motivation: Protein and DNA are generally represented
by sequences of letters. In a number of circumstances
simplified alphabets (where one or more letters would
be represented by the same symbol) have proved their
potential utility in several fields of bioinformatics including
searching for patterns occurring at an unexpected rate,
studying protein folding and finding consensus sequences
in multiple alignments. The main issue addressed in this
paper is the possibility of finding a general approach that
would allow an exhaustive analysis of all the possible
simplified alphabets, using substitution matrices like PAM
and BLOSUM as a measure for scoring.
Results: The computational approach presented in this
paper has led to a computer program called AlphaSimp
(Alphabet Simplifier) that can perform an exhaustive anal-
ysis of the possible simplified amino acid alphabets, us-
ing a branch and bound algorithm together with standard
or user-defined substitution matrices. The program returns
a ranked list of the highest-scoring simplified alphabets.
When the extent of the simplification is limited and the sim-
plified alphabets are maintained above ten symbols the
program is able to complete the analysis in minutes or
even seconds on a personal computer. However, the per-
formance becomes worse, taking up to several hours, for
highly simplified alphabets.
Availability: AlphaSimp and other accessory pro-
grams are available at http://bioinformatics.cribi.unipd.it/
alphasimp.
Contact: giorgio.valle@unipd.it

INTRODUCTION
DNA sequences are generally written using the standard
alphabet of four symbols (A, C, G and T) representing the
four bases, while proteins are represented by 20 symbols,
one for each amino acid. However, for particular tasks,
the use of simplified alphabets may be more convenient.
A simplified alphabet has a reduced set of symbols,

for instance we could define a two-symbol alphabet for
DNA sequences where ‘R’ stands for purines and ‘Y’ for
pyrimidines, or a two-symbol alphabet for proteins where
‘H’ stands for hydrophobic and ‘P’ for polar amino acid.
In general terms, any complex alphabet can be simplified
by grouping two or more letters of the original alphabet
together and by representing them with a new symbol.

Simplified alphabets have already been applied in sev-
eral fields of bioinformatics. For instance, the problem of
finding consensus sequences in multiple alignments has
been approached by means of different strategies includ-
ing the implementation of simplified alphabets (Karlin and
Ghandour, 1985; Sagot et al., 1997). Similarly, simplified
alphabets are used to study protein folding and in partic-
ular to investigate the problem of the minimal number of
residue types required to properly fold a protein. Although
a lot of work in this field has been done with the two-
letter polar/hydrophobic alphabet (Dill, 1985; Kamtekar
et al., 1993), different reports suggest that wider alphabets
would be more suitable (Riddle et al., 1997; Wang and
Wang, 1999; Murphy et al., 2000).

Searching unexpected patterns using simplified
alphabets
The search for patterns occurring at an unexpected rate
is an established strategy for the identification of func-
tional constraints in DNA and protein sequences. Several
methods have been developed for the identification of
such patterns (for a review see Brazma et al., 1998).
However, these strategies are less effective on patterns
with degenerated positions, such as the DNA pattern
(RRY)n that is known to be preferentially found in DNA
coding sequences (Shepherd, 1981), which would be
hardly detectable using the standard four-letter alphabet.

The same problem applies at protein level where some
amino acids can often be replaced by others without any
significant functional alteration. Also in these cases the
identification of unexpected degenerated patterns could

1102 c© Oxford University Press 2002

Simplifying amino acid alphabets

be much easier with simplified alphabets; but since we do
not know a priori the unexpected pattern to be searched
we cannot design a specific simplified alphabet that could
make the identification easier. A possible approach for
searching unexpected degenerated patterns could be to
re-write systematically a sequence using different simpli-
fied alphabets and searching all the resulting simplified
sequences for unexpected patterns. However, to pursue
such an approach we need a tool for producing and
selecting simplified alphabets in a systematic way.

Thus, the question that we are addressing in this paper
is how many simplified alphabets can be produced from
a complex alphabet such as the 20-letter amino acid
alphabet, and how can a general strategy be designed to
score and select the resulting simplified alphabets.

SYSTEM AND METHODS
Simplified alphabets and set partitioning
In computational sciences the problem of simplifying
alphabets can be related to the topic of set partitioning.
In general terms a partition is an arrangement of a set
into disjoint (non overlapping) subsets that completely
cover the entire initial set. In this respect, a simplified
alphabet of amino acids can be seen as one of the
possible partitions of the original set of twenty letters.
For instance, Serine–Threonine could belong to one subset
and Leucine-Isoleucine to another subset, leaving the
remaining 16 amino acids alone. The resulting partition
would include 18 subsets and the corresponding simplified
alphabet could be represented by 18 symbols, two of
which representing multiple amino acids. More extreme
partitions could have only two subsets, for instance polar /
hydrophobic.

Stirling numbers and set partitioning
The first question to answer is how many different
partitions can be obtained from a n-element set, here
generically indicated as {1, 2, . . . , n}. For example, given
the set {1,2,3} we can have five different partitions that
can be written in a simplified way with the following
representation: {123}, {1,23}, {12,3}, {13,2}, {1,2,3}. To
understand the problem, we should consider that the
number of possible partitions results from the sum of those
with one single subset, plus those with two subsets, and so
on up to the partition with n subsets, that is 1 + 3 + 1 = 5
in the above example (see also the third line of the diagram
in Figure 1).

It can be easily demonstrated (see Figure 1) that the
number of partitions with k subsets from a n-element set
can be recursively calculated by the following relation,
giving S(n, 1) = S(n, n) = 1 as starting conditions:

S(n, k) = kS(n−1, k)+S(n−1, k−1) with 2 � k � n−1

Fig. 1. The number of all the n-elements partitions with k subsets
is known as Stirling number or S(n, k), and is reported in bold
at the centre of the cells of the figure. The value of each S(n, k)

can be calculated from the previous (n − 1) line because all the
S(n, k) partitions can either derive by adding the new element
independently within each of the k subsets of each of the S(n −1, k)

partitions or by adding it as a separate subset to the S(n − 1, k − 1)

partition (see also Figure 3). As a result we have S(n, k) = kS(n −
1, k) + S(n − 1, k − 1). The sum of the S(n, k) values of the n line
is the total number of partitions of n elements.

This produces a series of numbers known as Stirling
numbers, which are represented in bold at the centre of the
cells of Figure 1. For any given n, the values of k range
between 1 and n and the sum of the n resulting S(n, k)

values gives the total number of possible partitions of a set
of n elements:

P(n) =
n∑

k=1

S(n, k)

Figure 2a shows the total number of possible partitions
for the first 20 values of n, while Figure 2b shows the
twenty individual values of S(n, k) for n = 20. The huge
number of possible partitions can be easily appreciated
from Figure 2.

The aim of the work described in this paper was to
develop an algorithm that, once a scoring system for the
partitions was defined, would allow to rank and select the
best partitions in an exhaustive and efficient way. The
evaluation of set partitioning is not an easy computational
task, being a well known NP-hard problem (Balas and

1103

N. Cannata et al.

n values
(no. of

elements)

Number of possible
partitions

k values
(no. of

subsets)

S(20, k) values
(partitions with

 k subsets)

1 1 1

2 2 2 524,287

3 5 3 580,606,446

4 15 4 45,232,115,901

5 52 5 749,206,090,500

6 203 6 4,306,078,895,384

7 877 7 11,143,554,045,652

8 4,140 8 15,170,932,662,679

9 21,147 9 12,011,282,644,725

10 115,975 10 5,917,584,964,655

11 678,570 11 1,900,842,429,486

12 4,213,597 12 411,016,633,391

13 27,644,437 13 61,068,660,380

14 190,899,322 14 6,302,524,580

15 1,382,958,545 15 452,329,200

16 10,480,142,147 16 22,350,954

17 82,864,869,804 17 741,285

18 682,076,806,159 18 15,675

19 5,832,742,205,057 19 190

20 51,724,158,235,372 20 1

(a) (b)

1

Fig. 2. The table on the left shows the total number of possible
partitions of n-element sets, for values of n between 1 and 20,
calculated as described in the text and in Figure 1. On the right
are shown the partitions of 20 elements, divided according to the
number of subsets. Therefore there are more than 51 × 1012 ways
to make simplified amino acid alphabets and more than 15 × 1012

simplified alphabets where the twenty amino acids are represented
by a reduced set of eight symbols.

Padberg, 1976). Given some scoring parameters, the
task of searching for partitions above a given threshold is
generally addressed by means of heuristic methods. In this
paper we describe a simple algorithm based on a branch
and bound approach, that under a variety of conditions al-
lows a very rapid and exhaustive computation of partition
weighting. We also describe an implementation of this
algorithm to generate and select simplified alphabets of
amino acids, on the basis of the substitution matrices such
as PAM (Schwartz and Dayhoff, 1978) and BLOSUM
(Henikoff and Henikoff, 1992) that are commonly used in
computational biology.

ALGORITHM
A recursive algorithm to explore the set of
partitions
As discussed in Figure 1, the number of possible partitions
of a n-element set can be calculated recursively. Similarly,
each individual partition can be generated using a recur-
sive approach, as can be worked out from Figure 3 where
partitions are shown as nodes within a graph structure.

Each node is linked to the nodes of the next order and

Fig. 3. Each individual partition is shown as a node within a graph
structure. As a new element is added, each partition of k subsets
will generate k + 1 new partitions, following a very simple rule
(described in the text). Given any partition it is possible to generate
all the partitions of order n + 1. Thus, we could develop a recursive
procedure that is at the base of the branch and bound approach
described in the text. The resulting algorithm will explore the graph
following the arrows, but will enter only the branches that can lead
to useful partitions.

every time we add an element each partition will generate
a series of new partitions following a precise rule, that
applies to all the nodes of the graph:

ADDING PROCEDURE
(add a new element to an individual partition)

a) Generate new partitions by adding the new element into each
individual subset, thus generating as many partitions as the
number of subsets

b) Generate a further partition by adding the new element to the
partition as a single element subset

Every time a new partition is generated, the above
adding procedure call itself in a recursive way. The
only required control is for the maximal number of
elements that should be verified every time we enter the
adding procedure. Thus, every time the current number
of elements reaches n, a full n-element partition has been
completed and the program will return to a lower order
continuing on the next branch of the graph (see Figure 3).
For n = 4, the first steps of path will be as follows:
{1}, {12}, {123}, {1234}, {123}, {123,4}, {12}, {12,3},
{124,3},. . . (where the partitions with the full set of four
elements are underlined).

By means of this approach we can generate all the possi-
ble partitions of a n-element set. A simple implementation
of this algorithm is shown in the program listed in Fig-
ure 4, written in the Perl language.

1104

Simplifying amino acid alphabets

#!/usr/bin/perl
program name: partition

split argument string into individual elements
@elem=split(//, $ARGV[0]);
$n=@elem; # stores number of elements in $n
die"Usage: partition abcdefg\n" unless $n>0;
&add ("", 0);
exit(0);

This subroutine adds the m-th element
to the current partition stored in $s
sub add() {

my ($s, $m) = @_;
my ($tmp, $i, $j, @c);
check for end of elements
if ($m > $n) {
 # partition $s available for analysis

print "$s\n";
}
else { # last element not yet reached

split partition on commas
@c = split(/,/, $s);
add the new element into each subset
for ($i=0; $i<@c; $i++) {

$tmp="";
for ($j=0; $j<@c; $j++) {

$tmp .= $c[$j];
$tmp .= $elem[$m] if($j==$i);
$tmp .= "," if($j<(@c-1));

}
proceed recursion at m+1 level
&add ($tmp, $m+1);

}
add new element to current partition
$s .= "," if($s);
proceed recursion at m+1 level
&add ("selem[$m]", $m+1);

}
}

Fig. 4. This simple program is written in Perl and implements the
recursive algorithm described in the text and in Figure 3. It will
produce a list of all the partitions of a given string. Within a partition
the subsets are separated by commas.

It can be easily demonstrated that all the partitions of
a n-element set can be generated by this way. Starting
from an empty set, the first partition is generated by the
step b of the adding procedure and is represented by the
symbol ‘1’ at the top of the graph in Figure 3. It is obvious
that this is the only possible partition of a single element
set. Assuming that we know all the partitions of a given
level n (set of n elements), we can apply the above adding
procedure to each of them thus generating all the partitions
of level n + 1. In fact, all the newly generated subsets will
still be disjoint because the new element can be inserted
only in one subset; furthermore, since there will always
be one subset containing the new element we satisfy the
conditions (disjoint and complete coverage) to have valid
partitions. Finally, all the possible partitions are obtained
because we add the new element in all possible ways. By
induction we can extend the validity of this approach to
any value of n.

Branch and bound using substitution matrices
The recursive algorithm described in the previous section
easily allows the creation of all the possible partitions
of a set; furthermore, it provides the basis for selecting
partitions in an efficient way, using a branch and bound
approach. In fact, given a scoring method for assessing
simplified alphabets, we can define the cost of a simplified
alphabet as a score difference from the fully implemented
alphabet. Then, if we set a maximal cost, we can start
to build partitions following the different branches of the
graph shown in Figure 3. As we add a new element to
a branch, we can verify the cost that has been so far
accumulated in that branch and if the cost exceeds the
fixed limit then the branch can be abandoned as it will not
be able to yield suitable partitions. Thus we can limit our
search only to the regions of the graph that can actually
produce valid partitions.

Substitution matrices such as PAM (Schwartz and
Dayhoff, 1978) and BLOSUM (Henikoff and Henikoff,
1992) are widely used for scoring alignments of protein
sequences. In practical terms the score of an alignment
can be calculated as a sum of all the substitution values
defined in the matrix. If we use a simplified alphabet,
then the score of the alignment of two sequences will be
less accurate. However, some simplified alphabets will be
better than others, depending on the degree and kind of
simplification.

In our implementation the evaluation of a simplified
alphabet reflects the approximation with which we can
assign a score to the alignment of two identical sequences
of twenty different amino acids.

Given a substitution matrix, we assume that the full
alphabet of 20 amino acids has a score equal to the sum
of the 20 exact matches, that is the score of the alignment
of two identical sequences of 20 different amino acids. If
we generate a new symbol, for instance {AR} representing
either ’A’ or ’R’, then when we align {AR}:{AR} we
should assume four possibilities: A:A, A:R, R:A and R:R.
Without any further constraint, each possibility has a 25%
chance to be correct. Therefore, assuming that SAA, SAR
and SRR are the scores for the corresponding amino acid
pairs, then for a {AR}:{AR} match we should calculate an
average score of (SAA+2SAR+SRR)/4, against an average
score of (SAA + SRR)/2 that we would obtain with two
identical sequences using the original alphabet.

More generally, given a symbol representing a list of
j amino acids, its score for a self-match will be the
average value of the scores found at the corresponding
intersections in the substitution matrix (see Figure 5).
The cost for merging the j amino acids in one symbol
will be calculated as the difference of the sum of the
corresponding j scores taken from the fully implemented
alphabet minus the sum of the analogous j scores of the
simplified symbol. For instance, the cost for merging {I,

1105

N. Cannata et al.

(a)

(b)

(c)

Fig. 5. (a) Shows the self-aligned sequence of 20 different amino acids, represented by the full alphabet, giving a score of 172 calculated
as the sum of the 20 perfect matches found in the BLOSUM40 substitution matrix (panel b) (c) Shows the same alignment obtained with a
simplified alphabet in which (I, L, M) and (S, T) are grouped in two subsets. The cost of each composite symbol and the cost of the entire
simplified alphabet can be calculated as the differences from the original alphabet.

L, M} in the example of Figure 5 will be (6 + 6 + 7) −
(3.44+3.44+3.44) = 8.68. The global cost of a simplified
alphabet will result from the sum of the costs of the new
symbols. Figure 5 shows an example of this calculation.

More sophisticated scoring procedures could be de-
signed to take into consideration the frequency of each
amino acid in normal protein sequences or the approxi-
mation deriving from scoring mismatches with simplified
alphabets. However, the procedure proposed in this paper
is very simple to understand and to implement, yielding
simplified alphabets suitable for most applications.

IMPLEMENTATION
A fully functional program based on the above strategies
has been developed using the C programming language
and has been named AlphaSimp for ‘Alphabet simplifier’.
The program is freely available at the web site: {http:
//bioinformatics.cribi.unipd.it/alphasimp}. In this section
of the paper we will refer to alphabets and symbols
rather than partitions and subsets, but we would like to

emphasize that an alphabet is equivalent to a partition and
a symbol to a subset.

Five arguments must be passed to the AlphaSimp
program. The first is the name of the file containing a
valid substitution matrix in the standard format in which
the first line contains the list of one-letter symbols and
the following lines the substitution values. In the current
implementation the original alphabet can be any size
between 1 and 20 symbols that must be encoded by one
single character and the values of the matrix must be
integers in the range from −127 to +128.

The evaluation of alphabets is done on the basis of four
different parameters: (1) maximal number of symbols (i.e.
maximal number of subsets per partition); (2) minimal
number of symbols; (3) maximal cost per subset; (4)
maximal cost for the entire simplified alphabet. These
four conditions are checked every time the add procedure
is entered. Thus, the branch and bound strategy can be
exploited not only to discard branches that exceed the
threshold for the maximal cost of a simplified alphabet,
but also for the conditions defined by the other parameters.

1106

Simplifying amino acid alphabets

Figure 6 displays some results obtained with AlphaSimp
using the BLOSUM40 substitution matrix (Henikoff and
Henikoff, 1992). The BLOSUM40 matrix was used as an
example; however other matrices could be used, including
those based on chemical features of amino acids, leading
to different results.

The example of Figure 6 shows two different ways to run
AlphaSimp. The normal way will produce the full list of
alphabets satisfying the parameters, producing an output
similar to that of Figure 6b that shows a selection taken
from the top 130 16-symbol alphabets, with the maximal
cost of each subset set to 16.0 and the maximal cost of the
alphabet also set to 16.0. The running time to produce such
a list is about one second on a normal personal computer
such as the 600 Mhz PentiumIII system running under
Linux OS, that was used in the trials presented in this
paper.

Alternatively, if the maximal cost for the entire simpli-
fied alphabet is set to zero, AlphaSimp will return only the
best alphabet and the parameter defining the maximal cost
for a subset will be interpreted as a percentage value of the
total cost. In Figure 6a the 20 best alphabets with number
of symbols between 1 and 20 are reported together with
their global cost and time required for the calculation.

Since the costs of simplified alphabets increase with
the extent of the simplification, the option of defining
a maximal number of symbols may be very useful,
although it is not compulsory. For instance, the command
‘alphasimp blosum40 20 1 15 15’ will employ the
BLOSUM40 substitution matrix to produce simplified
alphabets of any number of symbols (from 20 to 1) with
a maximal cost of 15. Thus, there will be no restriction
on the number of symbols. As a result 4 063 simplified
alphabets will be produced in a couple of seconds, as
follows:

1 alphabet of 20 symbols, cost 0
175 alphabets of 19 symbols, costs ranging from 1.5 to 15

2461 alphabets of 18 symbols, costs ranging from 5.0 to 15
1385 alphabets of 17 symbols, costs ranging from 8.5 to 15

41 alphabets of 16 symbols, costs ranging from 13.0 to 15

No other simplified alphabets will be produced as the
minimal cost for an alphabet of 15 or less symbols will
be above the threshold of 15. For some applications
it may be useful to produce a list of all simplified
alphabets, without any restriction regarding the number
of symbols (as above). However it is advisable to set a
threshold for a maximal cost, otherwise the entire set of
51 724 158 235 372 simplified alphabets will be produced.

A further option that may be useful is the possibility
to set a maximal cost for symbols. For instance, the
command ‘alphasimp blosum40 20 1 5.5 60’ will
find in about one second all simplified alphabet of any
size, with the only restriction that a symbol cannot have
a cost higher than 5.5, this will produce 1990 simplified

(a)
Subsets Best partitions Cost Time

1 ARNDCQEGHILKMFPSTWYV 190.500 00:00.00

2 ARNDCQEGHKPST,ILMFWYV 160.462 00:00.03

3 ARNDQEGHKPST,C,ILMFWYV 140.583 00:11:12

4 ARNDQEGHKPST,C,ILMFYV,W 120.917 02:42:00

5 AGPST,RNDQEHK,C,ILMFYV,W 105.705 08:46:07

6 AGPST,RNDQEK,C,H,ILMFYV,W 92.967 13:44:52

7 ANDGST,RQEK,C,H,ILMFYV,P,W 81.000 11:57:31

8 ANDGST,RQEK,C,H,ILMV,FY,P,W 69.167 05:42:47

9 AGST,RQEK,ND,C,H,ILMV,FY,P,W 58.500 02:03:10

10 AGST,RK,ND,C,QE,H,ILMV,FY,P,W 50.000 00:47:05

11 AST,RK,ND,C,QE,G,H,ILMV,FY,P,W 41.667 00:14:00

12 AST,RK,ND,C,QE,G,H,IV,LM,FY,P,W 35.167 00:04:13

13 AST,RK,N,D,C,QE,G,H,IV,LM,FY,P,W 28.667 00:01:07

14 AST,RK,N,D,C,Q,E,G,H,IV,LM,FY,P,W 23.167 00:00.17

15 A,RK,N,D,C,Q,E,G,H,IV,LM,FY,P,ST,W 18.000 00:00.03

16 A,RK,N,D,C,Q,E,G,H,IV,LM,F,P,ST,W,Y 13.000 00:00.00

17 A,R,N,D,C,Q,E,G,H,IV,LM,K,F,P,ST,W,Y 8.500 00:00.00

18 A,R,N,D,C,Q,E,G,H,IV,LM,K,F,P,S,T,W,Y 5.000 00:00.00

19 A,R,N,D,C,Q,E,G,H,IV,L,K,M,F,P,S,T,W,Y 1.500 00:00.00

20 A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V 0.000 00:00.00

(b)
Ranking Partitions

Total

costs

Max

subset

1 A,RK,N,D,C,Q,E,G,H,IV,LM,F,P,ST,W,Y 13.000 4.500

2 AS,RK,N,D,C,Q,E,G,H,IV,LM,F,P,T,W,Y 13.500 4.500

3 A,R,N,D,C,Q,E,G,H,IV,LM,K,FY,P,ST,W 13.500 5.000

4 AST,R,N,D,C,Q,E,G,H,IV,LM,K,F,P,W,Y 13.667 8.667

5 A,R,N,D,C,QE,G,H,IV,LM,K,F,P,ST,W,Y 14.000 5.500

6 AG,R,N,D,C,Q,E,H,IV,LM,K,F,P,ST,W,Y 14.000 5.500

7 A,RK,N,D,C,Q,E,G,H,ILV,M,F,P,ST,W,Y 14.000 6.000

8 AS,R,N,D,C,Q,E,G,H,IV,LM,K,FY,P,T,W 14.000 5.000

...

122 AG,R,N,D,C,QE,H,IV,LM,K,F,P,S,T,W,Y 16.000 5.500

123 A,RK,ND,C,Q,E,G,H,IV,L,M,F,P,ST,W,Y 16.000 6.500

124 AG,RK,N,D,C,Q,E,H,ILV,M,F,P,S,T,W,Y 16.000 6.000

125 A,RK,N,D,C,Q,E,G,H,ILMV,F,P,S,T,W,Y 16.000 11.500

126 A,R,N,DE,C,Q,G,H,IV,L,K,M,FY,P,ST,W 16.000 6.000

127 A,R,N,DE,C,Q,G,H,IV,LM,K,FY,P,S,T,W 16.000 6.000

128 A,RK,N,D,C,QE,G,H,ILV,M,F,P,S,T,W,Y 16.000 6.000

129 A,RK,N,D,C,Q,E,G,H,I,LMV,F,P,ST,W,Y 16.000 8.000

130 A,RK,N,D,C,Q,E,G,H,IMV,L,F,P,ST,W,Y 16.000 8.000

Fig. 6. (a) Shows a list of the best twenty simplified amino
acid alphabets, with a number of symbols between 1 and 20,
calculated using the BLOSUM40 substitution matrix without any
discrimination for unbalanced subsets. The global cost and time
required for the calculation on a normal personal computer are also
shown. (b) Shows a selection taken from the top 130 alphabets of 16
symbols, without any discrimination for unbalanced subsets. The
total cost for the simplified alphabet is also shown together with the
maximal cost for a single subset. The running time to produce such
a list is about one second on a normal personal computer.

alphabets with a number of symbols between 13 and 20
and with global scores between 0 and 36.5.

DISCUSSION
From Figure 2 it can be noticed that most of the 51 × 1012

possible simplified amino acid alphabets have a number
of symbols between 7 and 9, with a clear peak at 8 that
can produce more than 15 × 1012 simplified alphabets.

1107

N. Cannata et al.

This figure does not seem to agree with Figure 6a that
shows the times required for identifying the best simplified
alphabets. It could seem plausible that given a target
number of symbols (k), the execution time would reflect
the number of possible alphabets with such a number
of symbols. Instead it appears that it is much shorter
than expected when the number of symbols is higher. For
instance, there are 61 × 109 possible 13-symbol alphabets
and the program can find the best in 67 seconds (see
Figure 6a). In contrast, there are ‘only’ 45 × 109 possible
four-symbol alphabets, but it takes 2 hours 42 minutes
(about 120 times longer) to find the best. This discrepancy
is due to the branch selection procedure that is much
more effective when the maximal allowed cost for the
alphabets is smaller and therefore more selective enabling
the program to discard more branches (see Figure 3),
taking a better advantage of the branch and bound strategy.
And it is obvious that the cost of alphabets increases with
the level of simplification (see Figure 6a).

To speed up the running time of AlphaSimp it is possible
to set a limit for the cost of a single subset. If this
limit is fixed to a moderate value, often there will be
a negligible variation of the results with a gain in the
performance. As the limit becomes more selective, all the
unbalanced partitions will be progressively filtered out. An
extreme case of unbalanced partition is shown in Figure 5a
that shows the best three-symbol alphabet calculated
with the BLOSUM40 matrix is {ARNDQEGHKPST,
C, ILMFWYV}. This is a very unbalanced partitions
since the three subsets have a respective cost of 92.583,
0.000 and 48.000, giving a total cost of 140.583. If
we run the program after setting the maximal cost for
a single subset not greater than 35% of the total cost,
we obtain the following three-letter alphabet {ACGPST,
RNDQEHK, ILMFWYV}, where the three subsets have
a cost of 48.571, 47.167 and 48.000 giving a total cost
of 143.738. As expected, the time required to run the
program decreases quite dramatically, from 672 seconds
to 79 seconds.

To make an approximate estimate of the gain obtained
by applying the branch and bound algorithm, we pro-
duced a program that performs the same operations of
AlphaSimp without skipping any branch, thus producing
and analysing every possible simplified alphabet. We
could calculate that on our computer the average scanning
rate was about 6 million simplified alphabet per minute,
with an estimate time of 17 years to complete the analysis
of the 51 × 1012 possible simplified amino acid alphabets!

In conclusion, the approach presented in this paper
allows an exhaustive analysis of all the possible simplified

amino acid alphabets, using a branch and bound algorithm
together with standard or user-defined substitution matri-
ces that are used for scoring the alphabets. The perfor-
mance of the program is extremely good when the ex-
tent of the simplification is contained and the simplified
alphabets are maintained above ten symbols. Under these
conditions the program is able to complete the analysis
in minutes or even seconds with a normal personal com-
puter. However, the performance becomes worse, taking
up to several hours, for highly simplified alphabets.

ACKNOWLEDGEMENT
The financial support of Telethon (Italy) grant number
B.57 is gratefully acknowledged. N.C. is supported by the
grant Cofin99 ‘Bioinformatica e Genomica’.

REFERENCES
Balas,E. and Padberg,M.W. (1976) Set partitioning: a survey. SIAM

Review, 18, 710–760.
Brazma,A., Jonassen,I., Eidhammer,I. and Gilbert,D. (1998) Ap-

proaches to the automatic discovery of patterns in biosequences.
J. Comput. Biol., 5, 279–305.

Dill,K.A. (1985) Theory for the folding and stability of globular pro-
teins. Biochemistry, 24, 1501–1509.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution
matrices from protein blocks. Proc. Natl Acad. Sci. USA, 89,
10915–10919.

Kamtekar,S., Schiffer,J.M., Xiong,H., Babik,J.M. and Hecht,M.H.
(1993) Protein design by binary patterning of polar and nonpolar
amino acids. Science, 262, 1680–1685.

Karlin,S. and Ghandour,G. (1985) Multiple-alphabet amino acid
sequence comparison of the Ig-kappa chain constant domain.
Proc. Natl Acad. Sci. USA, 87, 8597–8601.

Murphy,L.R., Wallqvist,A. and Levy,R.M. (2000) Simplified amino
acid alphabets for protein fold recognition and implications for
folding. Protein Eng., 13, 149–152.

Riddle,D.S., Santiago,J.V., Bray-Hall,S.T., Doshi,N.,
Grantcharova,V.P., Yi,Q. and Baker,D. (1997) Functional
rapidly folding proteins from simplified amino acid sequences.
Nat. Struct. Biol., 4, 805–809.

Sagot,M.F., Viari,A. and Soldano,H. (1997) Multiple sequence
comparison—a peptide matching approach. Theor. Comp. Sci.,
180, 115–137.

Shepherd,J.C. (1981) Method to determine the reading frame of
a protein from the purine/pyrimidine genome sequence and its
possible evolutionary justification. Proc. Natl Acad. Sci. USA,
78, 1596–1600.

Schwartz,R.M. and Dayhoff,M.O. (1978) Matrices for detecting
distant relationships. Atlas of protein structure, 5, 353–358.

Wang,J. and Wang,W. (1999) A computational approach to simpli-
fying the protein folding alphabet. Nat. Struct. Biol., 6, 1033–
1038.

1108

