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Recognition by transcription factors of the regulatory DNA ele-
ments upstream of genes is the fundamental step in controlling
gene expression. How does the necessity to provide stability with
respect to mutation constrain the organization of transcription
control networks? We examine the mutation load of a transcrip-
tion factor interacting with a set of n regulatory response elements
as a function of the factor�DNA binding specificity and conclude on
theoretical grounds that the optimal specificity decreases with n.
The predicted correlation between variability of binding sites (for
a given transcription factor) and their number is supported by the
genomic data for Escherichia coli. The analysis of E. coli genomic
data was carried out using an algorithm suggested by the bio-
physical model of transcription factor�DNA binding. Complete
results of the search for candidate transcription factor binding sites
are available at http:��www.physics.rockefeller.edu��boris�
public�search�ecoli.

The accumulation of knowledge on control of transcription in
simple and complex organisms (1–4) poses many questions

regarding its system-level function and organization. What as-
pects of control network architectures insure their stability with
respect to mutation along with their ability to adapt and acquire
new function (see ref. 1)? In its turn, could better understanding
of the general organization of these networks help to dissect
specific systems? Motivated by these questions, we formulate a
model of transcription control that captures many of the essen-
tial features of the process and can be tested against data. This
model is applied to the study of evolutionary stability of bacterial
regulons (5), each involving a transcription factor that controls
multiple genes by binding to multiple regulatory sequence
elements. Evolutionary stability, or stability with respect to
mutation, provides a sensible quantitative definition of robust-
ness (1, 6, 7). Factors with highly sequence-specific binding
impose severe constraint on regulatory sequences, increasing the
probability of failure due to mutation, whereas low specificity of
binding increases the probability of spurious interactions. Ro-
bustness is maximized by the compromise between these two
effects. From this follows a quantitative prediction relating the
number of elements in a regulon and the degree of binding site
sequence variability. Our model also suggests a method of
identifying candidate transcription factor binding sites, which we
use in the analysis of the genomic data for Escherichia coli (8).
Genomic data provides support for the prediction of the theory.

Model of Transcription Factor�DNA Interaction
In modeling the transcription control network, let us concentrate
on the flow of information from factors to genes. Active
transcription factors bind to the regulatory response element
(RE) subsequences associated with genes (2). A given gene may
be controlled by multiple repressing or activating factors acting
through multiple REs (see Fig. 1). It will suffice for now to
assume that all of the controlling factors and REs are nonre-
dundant so that the loss of factor�RE recognition results in a
significant detriment of fitness, due to the loss of regulatory
linkage.§

Binding of a factor to an RE depends on the factor concen-
tration and the binding energy of the pair which together

determine the binding probability. The interaction of a tran-
scription factor with a DNA sequence x (of length L) may be
approximated (9, 10) by the binding energy E(x) � x�� � �i�1

L

���1
4 �i

�xi
� where �i

� is the interaction energy with base � at
position i � 1, . . . , L of the DNA string and xi

� � 1 if the
sequence x contains base � at position i and is 0 otherwise. Thus
DNA binding properties of a factor are parametrized by �i

�.
It is useful to consider the distribution of binding energies E(x)

among all possible sequences, which is described by a histogram
(or density of states) �(E) as shown in Fig. 2. The vast majority
of random sequences fall into the approximately Gaussian center
of this distribution, whereas the strongest binding, or consensus,
sequence defines the leftmost edge (see Appendix A). (Note: It
is convenient to set the scale of energy by the standard deviation
of the binding energy in a random sequence ensemble and to set
the average energy—i.e. the energy of nonspecific interac-
tion—as E � 0.)

In equilibrium, the probability of any string x to bind a factor
is given explicitly by f(E(x)) � [e�E�x� � ���kBT � 1]�1, where � is
the chemical potential set by factor concentration. Provided that
the characteristic scale of binding energy is large compared to
kBT [e.g., for lac-repressor (11) Em�kBT � 10] one may as a first
approximation replace f(E) by a step function; i.e. an ‘‘all or
nothing’’ binding condition. The binding condition identifies the
subset of all possible sequences (of length L) that at a given
physiological concentration of a factor bind to it strongly:
sequence, x, belongs to such a subset for factor Fi if it satisfies
Ei(x) 	 �i. On Fig. 3, sequence subsets binding to different
factors are pictured as nonoverlapping discs. Points within a
given disk denote response elements controlled by Fi: their
number, ni, is the degree of pleiotropy of the factor. A given
factor, present in certain concentration, may be characterized by
its ‘‘binding specificity,’’ � � ln v�1, defined in terms of the
fraction, v, of random sequences (of length L) that bind strongly.
These sequences lie in the ‘‘tail’’ of energy distribution �(E)
below � (see Fig. 2). In Fig. 3 binding specificity is represented
by disk area.

In addition to regulatory response elements, DNA regions
upstream of genes contain stretches of sequence without direct
function. Some of these nonfunctional stretches are truly passive;
others, however, may become ‘‘active’’ if through mutation they
acquire a binding site for some transcription factor that can then
interfere, positively or negatively, with transcription. In Fig. 3,
such ‘‘potential cis-regulatory sites’’ are represented as points
outside the disks.

Mutation Load in Transcription Control
Let us now introduce mutations. An accumulation of point
mutations in a response element sequence corresponds to a
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random walk of the RE in sequence space (Fig. 3). A mutation
in the DNA binding domain of the transcription factor changes
its interaction energy with the sequence, �. This change would
appear in Fig. 3 as a random shift of the disc representing the
binding subset in the sequence space. Either process could lead
to an RE moving out of the binding subset of sequences,
disrupting the interaction with the factor. In our model of a
nonredundant network involving only essential genes, such
failure is assumed to be ‘‘lethal.’’ Another form of regulatory
failure involves a mutation of the potential regulatory site,
causing it to enter the domain of binding with a wrong factor (see
Fig. 3). For simplicity, this process is assumed to be lethal as well.
To discuss the robustness of any given network, we must be able
to calculate the probability (per mutation) of both modes of
failure.

For a single factor�RE link, the binding probability depends
only on the interaction energy E(x) � ��x which changes
randomly with mutations in x and �. Although this is a discrete
process, most qualitative features could be understood in the
limit where the energy changes continuously. This approxima-
tion is accurate when the binding energy has contribution from
many sites, i.e. L is large, and mutation at an individual site
results in only a small change in the total energy. Consider a
mutating ‘population’ of single factor�RE links with n(E, t)
denoting the number of links with binding energy in the E, E �
dE interval. It is possible to derive (Appendix B) an equation

which governs the time evolution of n(E, t). It has the form of
biased diffusion in the energy variable:

�tn�E, t� � �E
2 n�E, t� 	 �E
En�E, t�� [1]

where unit of time is set by the point mutation rate. In addition
we impose the boundary condition n(E, t)�E�� � 0 which
implements the assumption that ‘‘escape’’ of the RE from the
domain of binding represents a lethal failure.¶ The first term on
the right hand side represents ‘‘diffusion’’ in E arising from small
random changes of the binding energy, whereas the second term
describes the drift toward energies corresponding to the larger
number of sequences; i.e., toward higher density of states �(E)
(see Fig. 2). In the absence of selection (i.e., without the
boundary condition) Eq. 1 is solved by n(E) � exp(�E2�2)—the
Gaussian distribution that approximates the distribution of E in
random sequence ensemble (Fig. 2 and Appendix A).

After a long time the distribution of binding energies behaves
as n(E, t) � e� 
etn
�E� with 
l being the smallest eigenvalue of
Eq. 1. Thinking of the population of factor�RE links (or more
generally, transcription control networks) as a population of
‘‘organisms’’ one can draw on the ideas from population genetics
(12). The asymptotic ‘‘death rate,’’ 
l, determines the minimal
rate of replication that would be necessary to maintain a stable
population and is therefore identified as mutation load (12).

The lowest eigenvalue of Eq. 1 can be computed (Appendix B)
as a function of binding specificity �, yielding 
l(�) � ��2,
accurate for � �� 1. This computation makes quantitative the
intuitive expectation that more specific interaction is more
sensitive to mutation. The same calculation (Appendix B) deter-
mines n
(E), which gives the distribution of factor�RE binding

¶This evolution equation may be readily generalized to include binding-energy-dependent
‘‘fitness’’ term V(E)n(E,t).

Fig. 1. Schematic model of transcription control. Fs are active transcription
factor proteins, xs are response element subsequences upstream of the coding
regions of the genes, G. Arrows indicate regulatory interactions.

Fig. 2. Typical energy histogram, �(E), for a transcription factor interacting
with a random DNA subsequences. In equilibrium, strings corresponding to
energies below the chemical potential, � (set by factor concentration), bind
the factor with high probability given explicitly by 
e�E � ��/kBT � 1]�1.

Fig. 3. Response elements (dots) and factor binding subsets (disks) in
sequence space. RE located within a disk binds the corresponding factor. Black
dots lying outside the discs represent potential cis-regulatory sites, which must
not bind transcription factors in order to avoid interference with transcription
control. Arrows represent random changes in the sequence of REs (and of
potential cis-regulatory sites) due to mutation.
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energies in a population after many mutations. This distribution
exhibits a sharp maximum near the boundary of the domain of
binding, E � �, meaning that most of the response elements are
about as far from the consensus sequence (the sequence which
binds most strongly) as the binding condition permits. The
reason is that there are many more possible sequences (i.e.,
higher density of states) near the boundary of the domain than
at its center. The entropic, or sequence-space volume effects
dominate the evolution of response elements!

To calculate the rate with which a factor can acquire a spurious
regulatory site, we compute the rate with which a sequence
outside the domain of binding, E � � would ‘‘diffuse’’ in. This
requires solving Eq. 1 with the same boundary condition as
before, but in the range E � �. The probability (per mutation),

sp(�), with which a spurious site enters the domain of binding
is given by (Appendix C) 
sp(�) � (��2)�e�� (computed as
before in the high specificity limit). This rate is exponentially
small, because now most of the sequence space is outside the
domain of binding. However, because the number of potential
cis-regulatory sites, NcR, is large, the total probability for the
factor to acquire a spurious regulatory target, NcR
sp(�), may
not be negligible. The two modes of failure, 
sp and 
l have the
opposite dependence on binding specificity and their balance
will determine the optimal choice for the latter.

Robustness Optimization for a Regulon
Let us now estimate the total rate of mutation induced failure,
�, in a control network consisting of Nf factors with factor i
controlling ni genes (or operons) by the same number of
response elements. It is given by the sum of failure rates� for all
of the links plus the total ‘‘spurious site’’ acquisition rate

� � �
i � 1

Nf

ni
l��i� 	 �
i � 1

Nf

NcR 
sp��i�. [2]

As we already noted, the total rate of failure, �, or ‘‘death rate’’
per mutation in a population of network ‘‘organisms’’ evolving
under a selection constraint, is also known as mutation load (12).
It sets the minimal rate of replication that would sustain a steady
population. An organism (or network architecture) more stable,
or robust, with respect to mutation has lower mutation load and
has an evolutionary advantage. In fact we can quantitatively
define evolutionary robustness as the inverse mutation load, ��1.
(Note that the connection with the lowest eigenvalue of the
evolution operator means that this definition is readily gener-
alizable.) Evolutionary interpretation makes it meaningful to
minimize the total mutation load � in Eq. 2 with respect to
binding specificities, �i. This yields

ni�NcR � ��ie��i, [3]

which relates the optimal binding specificity of a factor with the
number of its regulatory targets—its degree of pleiotropy—ni.
Because �i � ln vi

�1, Eq. 3 implies that up to logarithmic
corrections, ni is proportional to the volume fraction vi. Note
that a linear scaling would also hold for the number of binding
sites within a segment of random DNA of length N, ni

rand � Nvi.
The similarity is accidental: in deriving Eq. 3 we considered
nonrandom response elements, which evolve under selection,
and in contrast with the random case, the proportionality
constant ni�(viNcR) is not equal to 1. The decrease of the optimal
specificity with the increasing degree of pleiotropy is forced by
the need to reduce the mutation induced failure rate per RE,
which is achieved by allowing corresponding REs to occupy a
larger fraction of sequence space.

The predicted, approximately linear, scaling of vi with ni,
which follows from Eq. 3 arises largely from the exponential
dependence of 
sp on �, which in its turn is due to the fact that
potential regulatory sites have an exponentially large fraction of
sequence space to ‘‘diffuse’’ in without interfering with any of the
transcription factors. We expect this conclusion to persist if the
sharp ‘‘viability’’ boundary defined by the ‘‘lethal failure’’ thresh-
old in our model is replaced by a smoother fitness landscape.

Specificity and Pleiotropy for E. coli Transcription Factors
The optimal specificity argument, presented above, may be
applied in the context of prokaryotic regulons (2, 5). In E. coli
a single operon is positively or negatively controlled by a small
number of transcription factors. A single factor regulates a
variable number of operons ranging from one (e.g., LacI) to
perhaps hundreds, as in the case of cAMP-receptor protein
(Crp) (5). Thus, factors have different degrees of pleiotropy.
From the known functional binding sites one deduces that factors
bind with different specificity: e.g., the dimeric target sites of
LacI are very specific, whereas Crp sites are not (an effect due
in large degree to a difference in intracellular concentration of
the respective factors). A collection of known chromosomal
binding sites for a set of 55 transcription factors has been
assembled (8). This data set gives us the opportunity to look for
an empirical correlation between specificity and degree pleiot-
ropy indicated by Eq. 3.

We use an algorithm (described in Appendix D) to estimate the
characteristic parameters (�j, �j) of each factor (dimer or
monomer, as appropriate) from the binding sites in E. coli
transcription factor database (8). We then search the intergenic
regions of E. coli genome for sequences, s, satisfying �j�s 	 �j
condition. Assuming that the number of these candidate sites, nj,
is not vastly different from the number of the true binding sites,
we use it as an estimate of the degree of pleiotropy. The binding
specificity �j is computed from the fraction of random back-
ground sites satisfying the same binding condition (see support-
ing information, http:��www.physics.rockefeller.edu��boris�
public�search�ecoli). Fig. 4 presents the number of (candidate)�Assuming for simplicity that different transcription factors do not bind the same REs.

Fig. 4. The number of (candidate) response element sites, n, obtained from
the E. coli genomic data versus factor binding specificity � (circles). Note that
exp(��) is the fraction of random sequences which bind the factor. Red line:
expected number of binding sites for the random sequence background
(reproducing the base frequency and nearest neighbor correlations of the
noncoding segments). Green line: asymptotic fit to the predicted specificity�
pleiotropy relation, Eq. 3.

2074 � www.pnas.org�cgi�doi�10.1073�pnas.022388499 Sengupta et al.



target sites versus the binding specificity (or the sequence
volume fraction v � exp(��). For comparison, the red line on
Fig. 4 gives, as a function of specificity, the number of binding
sites, Nrand, expected in a stretch of random DNA of length (N �
5.4 � 105) equal to the length of noncoding part of the E. coli
genome examined in the search. The extent to which n exceeds
Nrand is a measure of statistical significance of the results of the
sequence search: we have set the cutoff at 3 standard deviations
(i.e., we have excluded six cases where n is within 3 standard
deviations of Nrand) so that the counts above the red line
plausibly correspond to functional sites.** Green line is a
possible asymptotic fit to Eq. 3 (with NcR � N�12). Note, that
although NcR—the number of potential regulatory sites in the
promoter regions—is a property of the biological system, it is not
known and is determined here only as a fitting parameter. For
high specificity�low pleiotropy factors, where very few example
binding sites are known, our algorithm overestimates specificity
because of overfitting. However, despite the very considerable
scatter (note the logarithmic scale of the plot) there is a clear
correlation between the two quantities that plausibly follow Eq.
3 in the high pleiotropy regime where our considerations apply.
This provides empirical support to the prediction of the robust-
ness optimization argument. Future experimental determination
of functional response elements in the E. coli will allow more
direct and precise determination of both the binding specificity
and the degree of pleiotropy of transcription factors.

Coevolution of Factors and Response Elements
So far we have focused on the mutation of response elements. As
long as mutations in the DNA-binding domain of the factor
produce only small random changes in �, their effect on fac-
tor�RE recognition is still described by Eq. 1 with appropriately
adjusted rate of ‘‘diffusion’’ in energy E. For a factor interacting
with n REs comprising a regulon, the contribution of factor
mutations is small compared to that due to RE mutations and
has been neglected in Eq. 2. Factor mutation however is the
limiting step in the evolutionary drift of the consensus sequence
of the REs of the regulon. It is possible to estimate how the rate
of coevolution of the factor together with its n regulatory targets
depends on their number. A calculation of the effective rate of
diffusion in sequence space of the consensus RE of a regulon
(Appendix E) predicts that it should decrease as 1�n. It is well
recognized that more pleiotropic factors are more conserved.
Our result however makes a falsifiable quantitative prediction
(distinct from the result of ref. 13), which can be checked by
comparing orthologous factors between different species of
prokaryotes (N. Rajewsi, N. Socci, M. Zapotocki, and E. D.
Siggia, unpublished work; ref. 15).

Discussion
In this paper we analyzed the mutation load of the regulon
control architecture as a function of specificity of transcription
factor binding and found that minimization of the mutation load
predicts a correlation between specificity and pleiotropy of the
factor. Provided that the sequence dependent contribution
to factor�DNA interaction energy is much larger that kBT,
binding specificity can be optimized simply by changing factor
concentration.

Our analysis was based on the ‘‘all or nothing’’ fitness model,
which associated each violation of the E 	 � binding condition
with lethal failure. This model is an abstraction from a more
realistic situation where fitness is determined by the ability of a

given gene to be switched ‘‘on’’ or ‘‘off’’ by a change in the
concentration of the controlling transcription factor. This means
that the binding energy of the RE in question must lie in between
the �on, �off values—the chemical potentials corresponding to
the on and off concentrations. Thus, one expects the fitness to
be a smooth function of E with a peak at some finite value. Eq.
1 can be extended to this case by effectively replacing each ‘‘disk’’
in Fig. 3 with an annulus. Mutation load on a single RE then still
decreases as � with decreasing specificity, because, as in the
analysis above, the mutation load is dominated by the outward
drift due to larger number of sequences with lower binding
energy. The analysis may be readily extended to include muta-
tion-induced variation in transcription factor concentration lev-
els, by including in the evolution Eq. 1 diffusion in �. This
extension would introduce into the model consideration of
robustness with respect to concentration fluctuations. However,
the genetic mechanisms controlling transcription factor levels
were not presently included in the model.

Another realistic complication arises from the fact that dif-
ferent genes even in the same regulon may be required to turn
on at different levels of the transcription factor. For example,
operons for metabolism of preferred alternatives of glucose have
stronger binding sites for CRP (16) and therefore get turned on
at lower concentrations of activated CRP. Hence, REs of
different genes comprising the same regulon may have individual
constraints on their binding energy. The mutation load on such
a factor is still a sum of contributions of regulated genes, but
is no longer given simply by ni
l(�i) term as it was in Eq. 2.
The measure of specificity of such a factor would be defined by
some weighted average over different thresholds. Yet the scaling
of mutation load with (inverse) specificity should still hold
because of the phase space considerations—i.e., mutation load
on any of the REs being determined by the number of distinct
sequences with binding energy E near the corresponding switch-
ing threshold.

The key role of the multiplicity of genetic states corresponding
to the same phenotype has been emphasized in the ‘‘neutral’’
evolution theory (17) and specifically in the context of RNA
folding (6, 18). In the context of transcription control, the
neutrality of mutations that preserve the binding energy is
plausible to the extent that the regulatory phenotype is deter-
mined entirely by the probability of factor�RE binding deter-
mined by the binding energy. The multiplicity of response
element sequences corresponding to the same binding energy
allows the ‘‘population’’ of factor�RE links to spread out over
the ‘‘equi-fit’’ (i.e., same binding energy) manifold. This spread-
ing generates an entropic contribution to fitness. Of two network
architectures with the same phenotype (and replication rate), the
one with larger neutral volume will have the lower mutation load
and thus higher rate of growth. Estimating the mutation rate per
nucleotide at 10�9 per generation in bacteria, we expect the
mutation load effects to act on the time scale of 10,000 years.
Much work has been done on the effect of finite size of
populations on evolution (19). In small populations, random
events can dominate over a small selection pressure. The con-
dition for this to happen is that the difference of mutation load
is smaller than the inverse of the population size. We assume that
over sufficiently long time separate bacterial colonies exchange
genetic information, so that the effective size of bacterial
population is large enough (�109 to 1010) for the finite size
effects, or ‘‘genetic drift’’ (19), to be ignored. It will be very
interesting to investigate the diversity of regulatory binding sites
between different strains of E. coli and between related bacterial
species.

Our quantitative definition of the ‘‘effective fitness’’ or ro-
bustness of a transcription factor network by mutation load (and
the lowest eigenvalue of the operator describing the evolution of
a population of networks) can be extended to complex networks

**The number of candidate binding sites found for DnaA, GlpR, Hns, MetJ, RpoD, RpoS, and
SoxS is within 3 standard deviations of that expected in the random ensemble. Their
significance must be established by further work. We note however that excess over
random ‘‘background’’ is not required for the functionality of sites, but is rather an
internal check on the bioinformatic approach to motif discovery.
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mapping factor activation patterns into patterns of gene expres-
sion. Mutations tend to spread the distribution of network
parameters (e.g., RE sequences) over the whole domain con-
sistent with the selected phenotype (i.e., factor�gene activity
patterns). This domain will in general have very complex struc-
ture dependent on the network: different network architectures
will have different mutation load (which can be determined
numerically) and hence most robust network architecture for a
given regulatory task can be identified on a firmly quantitative
basis. The term ‘‘robustness’’ has been used with different
meanings and is often interpreted as complete insensitivity to
parameters, leaving an ambiguity as to which parameters should
be considered (or excluded from the consideration) and what the
quantitative measure should be. Identifying robustness with
(inverse) mutation load solves both difficulties. All and only the
parameters subject to mutation enter robustness consideration.
Quantitative measure of robustness is provided by comparison of
mutation loads for different architectures.

Our present analysis illustrates how modeling in conjunction
with genomic data can be used to extract general features of
control network organization. Many more of the fundamental
principles underlying the organization of genetic networks are
yet to be discovered.

Appendix A: Calculating �(E) Distribution
Consider the probability of finding a random oligomer that binds
to the factor with free energy between E and E � dE:

��E� � �
�E � x����x , [4]

where �� � ��s denotes an unrestricted average over the sequences
x. To calculate �(E) let us introduce a Laplace transform

��E� � �d�e�E�e��x���x � max
�

e�E 	 lnZ���, [5]

where the latter expression is the leading term of the saddle-
point approximation to the � integral. We have introduced a
‘‘partition function’’

Z��� � �e��x���x � �
i � 1

L �
�

e����ip� , [6]

where p� is the frequency of base �. The analogy with the
canonical and microcanonical ensembles is evident with the
thermodynamic limit implicit in this analogy corresponding to L
3 
. To evaluate �(E) from Eq. 5 one must determine
corresponding � from the saddle-point condition

E � �
�

��
ln Z��� � �

i

�� ��ie����ip�

�� e����ip�

. [7]

We also have the x ensemble analogue of ‘‘entropy,’’ ln �(E),
consistent with the definition � � � ln ���E.

Quite generally, for large L, �(E) near its peak at E � 0 is well
approximated by a Gaussian �(E) � exp(�E2�2�2) with �2 �
�2���2 ln Z(�)���0 � �i�1

L �� p���i
2 , which provides a measure

of sequence specificity of the factor in question. (Note that
addition of sequence sites with small �i

2 does not contribute much
to �!) Away from the center deviations from Gaussianity appear.
In fact, the support of �(E) is finite with the bottom of the
‘‘band’’ Em � �i min� �i� (and the top at EM � �i max� �i�). Note
that to simplify notation in the main text we have chosen the
energy units so that �2 � 1. However, when comparing weakly
specific factors (i.e., ��kBT � 1) the relative magnitude of their
�’s becomes important.

For the purpose of establishing the significance of genomic
search results it is useful to redo the calculation of �(E) in the
random ensemble, which reproduces not only the single base
statistics of the genome, but includes the correlations between
neighboring bases and hence provides an improved representa-
tion of genomic ‘‘background.’’ Fig. 4 uses specificity � estimated
on the basis of the latter ensemble. The details of this calculation
can be found at http:��www.physics.rockefeller.edu��boris�
public�search�ecoli.

Appendix B: Derivation of the Evolution Equation
Let n(E, t) denote the number of sites to have binding energy

in the E, E � dE interval, which is expressed in terms of the
number of occurrences of site x: �(x, t).

n�E, t� � �
�E � x�����x, t��x [8]

As a result of mutations occurring with probability � per unit
time the sequence changes by �x � x� � x and we have

d
dt

��x, t� � � �
�x


��x � �x, t� � ��x, t�� [9]

d
dt

n�E, t� � � �
�x

�
�E � x���
��x � �x, t� � ��x, t���x

[10]

� �
�

�E �
�x

��x��
�E � x�����x, t��x [11]

	 �
1
2

�2

�E2 �
�x

���x���2
�E � x�����x, t��x· · · [12]

� �
�

�E
n�E, t��

�x

��1�E����x���
�E � x����x [13]

	 �
1
2

�2

�E2 n�E, t��
�x

��1�E����x���2
�E � x����x· · ·, [14]

where the last line was derived by assuming that �(x, t) is the
same for all x’s with E(x) within a narrow shell, E, E � dE.
Observing that

���x���
�E � x����x � ��E��
i

�
�

p� �
�

p�e����i���i � ��i�

�
�

p�e����i

� E��E� [15]

and defining the effective ‘‘diffusivity’’ in energy

D�E� �
1
2

��1�E����x���2
�E � x����x

�
1
2 �

i

�
�

p� �
�

p�e����i���i � ��i�
2

�
�

p�e����i
[16]

we arrive at the evolution equation
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d
dt

n�E, t� � �n�E, t� � �� �

�E
En�E, t� 	

�2

�E2 D�E�n�E, t�	 .

[17]

In the region where E � � � �L, � � E��2 � 1��L, we
have D(E) � D(0) � �2 (the corrections being order of �, which
is small when L is large). To simplify notation in the main text
we have rescaled energy to eliminate � and time to absorb �.
Thus we have derived Eq. 1.

Appendix C: Calculating Mutation Load
To calculate the probability of failure we must impose the
binding condition E 	 � as the selection constraint. This effect
is included by imposing an ‘‘absorbing’’ boundary condition
n(�, t) � 0. In the long time limit, solution of Eq. 1 has the form
n(E, t) � e�
(�)tn
(E), where 
 is the smallest magnitude
eigenvalue of the evolution operator � (17). 
 is the rate at which
sequences move outside the binding region. n
(E) is given in
terms of the parabolic cylinder function U(x, a) (20)

n
�E� � cst � U��E��, �1�2 � 
����D� [18]


(�) as a function of � is given by


��� 
 �2�4 

1
2�� �

1
2

ln� 	 · · ·� for � � 0, �����1

[19]


 
�

2
e��2/2

�

4



�

2
�e�� for � � 0, �����1 [20]

derived from asymptotics of parabolic cylinder functions. Spec-
ificity in terms of � is given by � � ln v�1 � �2�22 � 1

2
ln(2��2).

Thus, rate of losing a response element from inside the
binding region is �loss(�) � 
(�). We can similarly calculate the
rate of a string outside the binding region to diffuse in. This
process controls the rate of spurious activation (see text). The
rate is �sp(�) � 
(��) when � is not too far from the modal
value of energy. One interesting thing about the asymptotic
distribution of energy n
(E), for � 	 0, is that most of the
weight is concentrated near the boundary, E � �. Hence most
response elements found in the organism would be the ‘‘mar-
ginally’’ bound elements, rather different from the sequence

that binds most strongly. This is one more example of how the
entropy�phase-space effects dominate the evolution of re-
sponse elements.

Appendix D: Empirical Determination of �, � Parameters
Given a set of known binding sites (8) for the jth factor, we find
parameters �(j) and �j such that all the known binding site
sequences for this factor (the ‘‘example sequences’’) s(k) satisfy
s(k)��(j) � �j 	 0 with the maximal possible �j

2 (and �(j)��(j) �
1 constraint). Because specificity increases for large negative
thresholds, �, maximizing �2 insures that our model of the factor
[i.e., �(j) and �j] has the highest specificity consistent with the
data. This procedure minimizes the probability for a random
sequence to satisfy the binding condition and therefore mini-
mizes the number of ‘‘false-positive’’ sites in a genomic search for
possible binding sites.

Restated in terms of a scaled variable �̃(j) � �(j)����, the
problem becomes that of minimization of a quadratic form
�̃(j)��̃(j) � 1��2 subject to a set of linear constraints �̃(j)�s(k) 	 �1.
This problem is solved by ‘‘quadratic programming’’ (14). Our
string search algorithm is different from the widely used weight
matrix (9, 10) procedure. Its key advantage is the parsimony in
the number of the candidate binding sites it generates for the low
specificity factors where the weight-matrix approach (8) pro-
duces too many genomic ‘‘hits.’’ The detailed results of
the search are available electronically at http:��www.physics.
rockefeller.edu��boris�public�search�ecoli.

Appendix E: Estimate of Coevolution Rate
Consider a transcription factor controlling n binding sites. How
fast can its consensus sequence and the whole domain of binding
drift through sequence space? Suppose a mutation of the factor
causes a change in its DNA interaction so that �3 � � 
� with
probability P(
�). Such a mutation may cause each of the n RE
links to fail with probability 1 � e�q(
�), so that the survival
probability per mutation is given by p � �d(
�)P(
�)e�nq(
�).
The effective diffusivity in � is given by the variance of the
‘‘nonlethal’’ 
� shift per mutation: D� � p�1 �
d(
�)P(
�)e�nq(
�)(
�)2. Assuming that mutation induces only
small shifts in �, we can approximate q(
�) � cnst � (
�)2 and
for n �� 1 we arrive at D� � n�1 scaling. This provides a
falsifiable quantitative prediction for the rate of evolutionary
drift as a function of the degree of pleiotropy.
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