Cell signaling networks

Part 1: Predicting signaling networks from the genome Part 2: Network classification of disease

Cary MP, Bader GD, Sander C Pathway information for systems biology FEBS Lett. 2005 Mar 21;579(8):1815-20 Pawson T, Nash P

Assembly of cell regulatory systems through protein interaction domains Science. 2003 Apr 18;300(5618):445-52

Donnelly Centre

Gary Bader

Donnelly Centre

University of Toronto

Mar.18 2011 - BCB420

Computational Cell Map

Read map to understand

- Cell processes
- Gene function
- Disease effects
- Map evolution

Map the cell

- Predict map from genome
- Multiple perturbation mapping
- Active cell map
- Map visualization and analysis software

Cary MP et al. Pathway information... FEBS Lett. 2005 **copyrig** Bader GD et al. Functional genomics and proteomicsTrends Cell Biol. 2003

How are biological networks in the cell encoded in the genome? Can we accurately predict biologically relevant interactions from a genome?

How do genome sequence changes underlying disease affect the molecular network in the cell?

Can we predict how well model pathways or phenotypes will translate to human?

Can we design new networks de novo?

Predicting Protein Interaction Networks From the Genome

• Ideally:

- Reality:
 - Not currently possible
 - Protein interaction prediction likely as hard as protein folding, in general e.g. induced fit

Predicting Networks

- Map via orthology relationships
 - Metabolic pathways
 - E.g. KEGG, BioCyc, metaSHARK
 - Protein-protein interactions
 - E.g. I2D(OPHID), HomoMINT
 - Signaling pathways
 - E.g. Reactome
- Infer using functional associations
 - Phylogenetic profile, Rosetta Stone

Higher accuracy (more conserved)

Lower accuracy (less conserved)

Peptide Recognition Domains

- Simple binding sites
- Well studied
- Numerous
- Biologically important
 - Eukaryotic signaling systems often involve modular proteinprotein interaction domains

http://pawsonlab.mshri.on.ca/

http://nashlab.uchicago.edu/domains/

Focus: PDZ, WW, SH3

Genome

Gene and protein prediction

Domain prediction

Specificity prediction

Protein-protein interaction prediction

Genome

Gene and protein prediction

Domain prediction

Specificity prediction

Protein-protein interaction prediction

PDZ Domains

- 80-90 aa's, 5-6 beta strands, 2 alpha helices
- Recognize
 hydrophobic C-termini
- Membrane localization of signaling components
- Neuronal development, cell polarity, ion channel regulation

Dev Sidhu

Tonikian et al. PLoS Biology Sep.2008

82 worm and human PDZ specificities mapped by phage display

Sequence Predicts Specificity

PDZ-Peptide Interaction Prediction

SVM using binding site contact map feature encoding Cross validation, independent comparison with known PPIs

Proteome scanning to predict PDZ domain interactions using SVMs

Domain Name	NN Sim	Experiment	SVM Predicted	Profile Sim	Domain Name	NN Sim	Experiment	SVM Predicted	Profile Sim
DLG1-2 Human	1	-4 -3 -2 -1 0	-4 -3 -2 -1 0	0.751	LIN7-1 Worm	1		-4 -3 -2 -1 0	0.688
DLG3-2 Human	1		-4 -3 -2 -1 0	0.682	MPZ1-6 Worm	0.69		-4 -3 -2 -1 0	0.729
MLLT4-1 Human	0.69	-4 -3 -2 -1 0		0.62	STN2-1 Worm	0.81		-4 -3 -2 -1 0	0.688
PDZK1-1 Human	0.81		-4 -3 -2 -1 0	0.691	LAP4-2 Fly	0.88		-4 -3 -2 -1 0	0.725
DLG1-3 Worm	0.94		-4 -3 -2 -1 0	0.671	LAP4-3 Fly	0.75			0.735
DSH-1 Worm	0.81			0.507	PATJ-2 Fly	0.81			0.565
Shirle							ey Hui		

Affinity Predicted from Sequence

Incorporating Negative Data Improves Quantitative Performance

Measure	Feature encoding	SemiSVR	SVR
Spearman	WS_118AAs	0.605	0.501
	BS_16AAs	0.594	0.425
	CoreBS_10AAs	0.594	0.487
Pearson	WS_118AAs	0.653	0.574
	BS_16AAs	0.636	0.556
	CoreBS_10AAs	0.649	0.585

Average Performance Across all PDZ Domains

For WS_118AAs, BS_16AAs and CoreBS_10AAs feature encoding, polynomial kernel with p=2 was used for both PDZ domain and peptide sequence. The Pearson correlations were calculated after taking log10 on the actual K_D .

Xiaojian Shao, Chris Tan

Comparison with existing methods

Comparison	Performance	S	Spearman correlation			Pearson correlation		
with existing	PDZ domain	SemiSVR 118AAs	SemiSVR 38pairs	BackFit	SemiSVR 118AAs	SemiSVR 38pairs	BackFit	
with existing	CHAPSYN-110_2/3	0.936	0.921	0.802	0.936	0.942	0.793	
methods	CHAPSYN-110_3/3	0.891	0.831	0.593	0.874	0.834	0.501	
	GM1582_2/3	0.653	0.344	0.356	0.580	0.586	0.185	
Chen et al. Nat Biotech	HTRA3_1/1	0.527	0.006	0.2	0.646	0.254	0.130	
2008	LIN7C_1/1	0.612	0.394	-0.37	0.682	0.588	-0.168	
16	MAGI-2_2/6	0.700	0.724	0.113	0.769	0.845	0.206	
	MAGI-2_6/6	0.637	-0.135	0.278	0.689	-0.464	0.169	
12	MAGI-3_1/5	0.816	0.699	0.544	0.876	0.797	0.516	
	MALS2_1/1	0.545	0.592	0.172	0.612	0.736	0.147	
4 15	OMP25_1/1	0.528	0.519	0.318	0.504	0.458	0.366	
5 13	PDZK3_1/1	-0.197	-0.621	-0.224	0.039	-0.544	0.018	
10 6 -2	PDZ-RGS3_1/1	0.310	0.125	-0.081	0.027	0.117	0.072	
9 7 3	PSD95_2/3	0.965	0.905	0.526	0.917	0.897	0.663	
° -4)	PSD95_3/3	0.747	0.817	0.223	0.880	0.899	0.165	
Method: BackFit	PTP-BL_2/5	0.356	0.608	0.184	0.401	0.709	0.159	
Factures 28 Dairs	SAP102_2/3	0.968	0.94	0.907	0.938	0.938	0.936	
realures. 38 Pairs	SAP97_1/3	0.345	0.37	-0.164	0.755	0.563	0.138	
	SAP97_2/3	0.952	0.942	0.766	0.949	0.927	0.852	
	SCRB1_3/4	0.479	0.515	0.697	0.694	0.625	0.776	
SemiSVR does better in	SHANK1_1/1	0.976	0.942	0.954	0.980	0.968	0.956	
many cases	SHANK3_1/1	0.358	0.517	0.687	0.509	0.639	0.700	
Ş	G1-SYNTROPHIN_1/1	0.172	0.268	0.524	0.129	0.247	0.483	
	ZO-1_1/3	0.643	0.186	0.263	0.646	0.217	0.164	
Xiaojian Shao, Chris Tan	Average Performance	0.605	0.496	0.359	0.653	0.556	0.388	

Performance Increases if Similar Sequence in Training Set

Correlation = 0.498 P-value = 0.0157 SHANK1 1/1 MAGI-3_1/5 0.8 Spearman correlation 0.6 HTRA3_1/1 0.4 RGS3 1/1 G1-SYNTROPHIN 1/1 0.2 PDZK3 1/1 -0.2 -0.2 0.3 0.8 0.9 0.4 0.5 0.6 0.7 Identity to its nearest neighbor

Identity between each tested PDZ to its nearest neighbor is calculated to the other 81 PDZ domains from the 118AAs of the PDZ domain sequence.

Xiaojian Shao, Chris Tan

Genome

Gene and protein prediction

Domain prediction

Specificity prediction

Protein-protein interaction prediction

In vivo Protein Interaction Prediction

In vivo Interaction Regulation

Conclusions – Part 1

- Specificity and affinity predicted from sequence for PDZ domains
 - Also for WW, but likely not as easy for SH3 and SH2
- Which PDZ to study next? (target selection)
- Negative binding information is extremely useful
- Need more data across species and from different experimental methods

Mapping SH3 Networks Across Species

- Yeast*
- 27 SH3 domains cloned
 - Phage
 - Peptide display
 - Y2H
- High confidence binding site resolution interaction network
 - Bayesian (benchmark)

Philip Kim

- Worm
- 80/84 SH3 domains

<u>– P</u>hage, Y2H

- Xiaofeng Xin
Boone, Sidhu• (AD)-ORFeome and AD-
cDNA Y2H prey libraries
 - 1889 PPIs, incl 13 hubs and 893 full length hits
 - High confidence binding site resolution interaction network
 David Gfeller

– Phage & Y2H

* Raffi Tonikian, Xiaofeng Xin, Christopher P. Toret, David Gfeller, Christiane Landgraf, Simona Panni, Serena Paoluzi, Luisa Castagnoli, Bridget Currell, Somasekar Seshagiri, Haiyuan Yu, Barbara Winsor, Marc Vidal, Mark B. Gerstein, Gary D. Bader, Rudolf Volkmer, Gianni Cesareni, David G. Drubin, Philip M. Kim, Sachdev Sidhu, Charles Boone – PLoS Biology, Oct.2009

SH3 Specificity Conserved from Yeast To Worm

Yeast & Worm Networks Enriched in Endocytosis

Network is Heavily Rewired

Example **Case 1: Domain Changes** ACT-2 STAM-1 STAM-1 SH3 BS P_xR_LK P_x_R_LK Worm: ALPHAILRLDLAGRD ₽₄₽₌₭₌ Yeast: **SLPHAILR I DLAGRD** SH3 ≥bs Hse1p Hse1p Act1p Case 2: Binding Site Changes SDPN-1 YMFI-1 SDPN-1 BS KsAPeeP KSEAPER SH3 Worm: SRNGINRKPI DIFAT KEPPPPF SRNIPPPPPPPPKP Yeast: SH3 BS Bzz1p#1 Yta12p Bzz1p#1 Case 3: Both change STAM-1 HUM-1 BUB-1 P_xPLK ѕнз 🗋 BS Worm: ₽₄₽₅К ₽_₽₽_₩ Yeast: QDLPSSQPPVVPKST SH3) BS Myo3p Bub1p

Homolog SH3 domains involved in this case

7 ortholog pairs, 5 with yeast & worm profiles No conserved interactions!

David Gfeller

 Genes predicted to have a role in endocytosis using our high confidence protein interaction network

Conclusions – Part 2

- Endocytosis role of SH3 domains is conserved functionally but not structurally
- Low number of yeast/worm SH3 orthologs
 Higher between worm and human
- Increased coverage may change this conclusion
- Interolog methods will fail in this case
- Functional orthologs?
- Need to experimentally map SH3 networks in additional species

Cell map exploration and analysis

Pathguide» the pathway resource list

Navigation Protein-Protein Interactions Metabolic Pathways Signaling Pathways Pathway Diagrams Transcription Factors / Gene Regulatory Networks Protein-Compound Interactions Genetic Interaction Networks **Protein Sequence** Focused Other Search Organisms All • Availability All ▼ Standards All

Reset Search Statistics

•

Analyze Pathguide

Contact Comments, Questions, Suggestions are Always Welcome!

Vuk Pavlovic

Complete Listing of All Pathguide Resources

Pathguide contains information about 222 biological pathway resources. Click on a link to go to the resource home page or 'Details' for a description page. Databases that are free and those supporting BioPAX, CelIML, PSI-MI or SBML standards are respectively indicated.

If you know of a pathway resource that is not listed here, or have other questions or comments, please send us an e-mail.

Protein-Protein Interactions

Database Name (Order: alphabetically by web popularity 0)	Full Record	Availability	Standard
3DID - 3D interacting domains	Details	Free	
ABCdb - Archaea and Bacteria ABC transporter database	Details	Free	
AfCS - Alliance for Cellular Signaling Molecule Pages Database	Details	Free	
AllFuse - Functional Associations of Proteins in Complete Genomes	Details	Free	
ASEdb - Alanine Scanning Energetics Database	Details	Free	
ASPD - Artificial Selected Proteins/Peptides Database	Details	?	
BID - Binding Interface Database	Details	Free	
BIND - Biomolecular Interaction Network Database	Details	Free	PSI-MI
BindingDB - The Binding Database	Details	Free	
BioGRID - General Repository for Interaction Datasets	Details		PSI-MI
BRITE - Biomolecular Relations in Information Transmission and Expression	Details	Free	
CA1Neuron - Pathways of the hippocampal CA1 neuron	Details	Free	
Cancer Cell Map - The Cancer Cell Map	Details	Free	BioPAX
CSP - Cytokine Signaling Pathway Database	Details	Free	
CTDB - Calmodulin Target Database	Details	Free	
DDIB - Database of Domain Interactions and Bindings	Details	Free	
DIP - Database of Interacting Proteins	Details		PSI-MI
Doodle - Database of oligomerization domains from lambda experiments	Details	Free	
DopaNet - DopaNet	Details	Free	
DRC - Database of Ribosomal Crosslinks	Details	Free	
DSM - Dynamic Signaling Maps	Details	#	
FIMM - Functional Molecular Immunology	Details	Free	
FusionDB - Prokarvote Gene Fusion Events	Details	Free	

>300 Pathway **Databases!**

Many new search options are available

Get the Stats Detailed Pathguide resource statistics now available

Pathguide Published Please cite the Pathouide

Biological Pathway Exchange (BioPAX)

Reduces work, promotes collaboration, increases accessibility

BioPAX Pathway Language

- Represent:
 - Metabolic pathways
 - Signaling pathways
 - Protein-protein, molecular interactions
 - Gene regulatory pathways
 - Genetic interactions
- Community effort: pathway databases distribute pathway information in standard format

BioPAX Supporting Groups

Current Participants

- Memorial Sloan-Kettering Cancer Center: E.Demir, M. Cary, C. Sander
- University of Toronto: G. Bader
- SRI Bioinformatics Research Group: P. Karp, S. Paley, J. Pick
- Bilkent University: U. Dogrusoz
- Université Libre de Bruxelles: C. Lemer
- CBRC Japan: K. Fukuda
- Dana Farber Cancer Institute: J. Zucker
- Millennium: J. Rees, A. Ruttenberg
- Cold Spring Harbor/EBI: G. Wu, M. Gillespie, P. D'Eustachio, I. Vastrik, L. Stein
- BioPathways Consortium: J. Luciano, E. Neumann, A. Regev, V. Schachter
- Argonne National Laboratory: N. Maltsev, E. Marland, M.Syed
- Harvard: F. Gibbons
- AstraZeneca: E. Pichler
- BIOBASE: E. Wingender, F. Schacherer
- NCI: M. Aladjem, C. Schaefer
- Università di Milano Bicocca, Pasteur, Rennes: A. Splendiani
- Vassar College: K. Dahlquist
- Columbia: A. Rzhetsky

Collaborating Organizations

- Proteomics Standards Initiative (PSI)
- Systems Biology Markup Language (SBML)
- CellML
- Chemical Markup Language (CML)

Databases

BioCyc, WIT, KEGG, PharmGKB, aMAZE,
 INOH, Transpath, Reactome, PATIKA,
 eMIM, NCI PID, CellMap, NetPath

Wouldn't be possible without

Gene Ontology

Protégé, U.Manchester, Stanford

Grants/Support

- Department of Energy (Workshop)
- caBIG

Pathway Commons: A Public Library

Books: PathwaysLingua Franca: BioPAX

Index: cPath pathway database software

•Translators: translators to BioPAX

http://www.genemania.org

Join our mailing list - Contact us - CCBR - About GeneMANIA - Help

- Guilt-by-association principle
- Biological networks are combined intelligently to optimize prediction accuracy
- Algorithm is more fast and accurate than its peers

Gene Function Prediction

Quaid Morris (CCBR) Rashad Badrawi, Ovi Comes, Sylva Donaldson, Christian Lopes, Farzana Kazi, Jason Montojo, Harold Rodriguez, Khalid Zuberi

Acknowledgements

PDZ & SH3 Data Dev Sidhu (Phage) **Bader Lab Genetic Intx, Pathways:** Raffi Tonikian, Yingnan **Domain Interaction Team** Anastasia Baryshnikova Zhang, Andreas Chris Tan lain Wallace Ernst, Heike Held, Shirley Hui Magali Michaut Stephen Sazinsky, **Shobhit Jain** Ron Ammar Yan Wu Brian Law Daniele Merico Charlie Boone, Marc Jüri Reimand Ruth Isserlin Vidal (Y2H) Vuk Pavlovic Former: Xiaofeng Xin Igor Rodchenkov **David Gfeller** Xiaojian Shao www.GeneMANIA.org Quaid Morris (Donnelly) Rashad Badrawi, Ovi Comes, Sylva Funding Ontario Genomics Institute Donaldson. CIHR IRSC **Genome**Canada Christian Lopes, NSERC Farzana Kazi, Jason CRSNG C. Ontario Canada Foundation for Innovation Montojo, Harold Rodriguez, http://baderlab.org Khalid Zuberi

Acknowledgements

Cytoscape

Trey Ideker (UCSD) Mike Smoot, Kei Ono, Peng Liang Wang (Ryan Kelley, Nerius Landys, Chris Workman, Mark Anderson, Nada Amin, Owen Ozier, Jonathan Wang)

Lee Hood, Ilya Schmulevich (ISB)

Sarah Killcoyne (Iliana Avila-Campillo, Rowan Christmas, Andrew Markiel, Larissa Kamenkovich, Paul Shannon)

Benno Schwikowski (Pasteur) Mathieu Michaud (Melissa Cline, Tero Aittokallio, Andrea Splendiani)

Chris Sander (MSKCC) Ethan Cerami, Ben Gross (Robert Sheridan)

Annette Adler (Agilent) Allan Kuchinsky, Mike Creech (Aditya Vailaya)

Bruce Conklin (UCSF) Alex Pico, Kristina Hanspers Yeyejide Adeleye (Unilever) Noel Ruddock

Scooter Morris (UCSF)

David States (Texas)

Pathway Commons Chris Sander

Ethan Cerami Ben Gross Emek Demir Igor Rodchenkov Nadia Anwar Ozgun Babur

Agilent Technologies

GenomeCanada

Unilever

Ontario

Ontario Genomics Institute

http://baderlab.org

Network classification of disease

- Traditional: Gene association
- Limitations: Too many genes reduces statistical power
- New: Active cell map based approaches combining network and molecular profiles

Liu M, Liberzon A, Kong SW, Lai WR, Park PJ, Kohane IS, Kasif S Network-based analysis of affected biological processes in type 2 diabetes models PLoS Genet. 2007 Jun;3(6):e96

Chuang HY, Lee E, Liu YT, Lee D, Ideker T Network-based classification of breast cancer metastasis Mol Syst Biol. 2007;3:140. Epub 2007 Oct 16

Efroni S, Schaefer CF, Buetow KH Identification of key processes underlying cancer phenotypes using biologic pathway analysis PLoS ONE. 2007 May 9;2(5):e425

Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009 Feb 1