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How to visually interpret biological data 
using networks
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Networks in biology can appear complex and difficult to decipher. We illustrate how to interpret biological 
networks with the help of frequently used visualization and analysis patterns.

Networks represent relationships. In a 
biological context, many different types 

of relationships can be measured, such as 
physical interactions between proteins or 
genetic interactions revealed by combina-
tions of mutations. When large collections 
of diverse relationships are generated from 
several different high-throughput experi-
mental analyses of a single biological system, 
network visualization and analysis can prove 
particularly useful1–3.

To illustrate how data visualized as a net-
work can be easier to interpret than long lists 
of proteins, interactions and correlations, 
we analyze an example network represent-
ing the yeast chromosome maintenance and 
duplication machinery (Fig. 1). Networks are 
often analyzed using methods—which we 
term ‘visualization and analysis patterns’—
to infer new hypotheses about protein func-
tion, pathway components and links between 
known processes. We apply these patterns to 
our example network and provide references 
for further reading to tutorials that describe 
specialized network analysis software.

Mapping biological data to a network
In Figure 1, yeast proteins involved in chromo-
some maintenance and duplication are shown 
as nodes in a network. Nodes are connected 
by links, called edges. Edges represent physical 

protein interactions that are experimentally 
measured using techniques such as yeast two-
hybrid screens or protein pull-down followed 
by mass spectrometry. We retrieved the protein 
interaction data from the BioGRID database4. 
Data about protein function and gene expres-
sion will be used to help interpret the network 
using the visualization and analysis patterns 
described below.

Visualization pattern one: layout
The first step to make a network more intel-
ligible is to organize the nodes. With no 
organization, the nodes are a jumbled mess 
(Fig. 1a). Fortunately, many automatic meth-
ods for laying out networks are available in 
easy-to-use software tools5,6. Most interac-
tion networks can be reasonably well orga-
nized using automated layout methods that 
place connected nodes near each other and 
untangle the lines (Fig. 1b and Box 1). This 
makes it easier to apply the analysis patterns 
we describe later in the text.

Visualization pattern two: visual features
Networks offer a way of seeing relation-
ships between data gathered using different 
experimental techniques. These complemen-
tary pieces of information can be conveyed 
by drawing nodes and edges with different 
‘visual features’—such as shapes, sizes, colors 
and line thicknesses. Here, we use visual fea-
tures to display protein function annotation 
and gene expression data.

In Figure 1b, node color represents the 
subcellular localization of a protein. A 
protein is colored according to whether 
it localizes to the replication fork (red), 
nucleosome (green), kinetochore (blue) or 
other chromosome components (yellow). 

We obtained these localization data from 
the Gene Ontology (GO) database7, but the 
same information could be gathered  from 
other sources, such as experiments or com-
putational prediction. 

The size of a node and the thickness of an 
edge convey gene expression data8. Larger 
nodes are proteins whose corresponding 
mRNA changes substantially over the course 
of the cell cycle. Edge thickness represents 
gene expression correlation between inter-
acting proteins: the thicker the edge, the 
more strongly correlated the gene expression 
profiles during the cell cycle. 

Simultaneously visualizing all of these 
attributes—localization (color), expression 
level (size) and expression correlation (edge 
thickness)—reveals that many green nodes are 
large and highly connected with thick edges, 
suggesting that the nucleosome (green color) 
is dynamically (large size) and coordinately 
(thick edges) regulated at the mRNA level.

Analysis pattern one: ‘guilt by 
association’ protein function prediction
A network may be used to infer protein 
function based on interactions. One com-
mon way of doing this is to infer that the 
function of an unannotated protein may be 
similar to that of its neighbors—the proteins 
it is connected to in the network—if many 
of those neighbors are annotated with the 
same function. This principle is called ‘guilt 
by association’.

In Figure 1b, the proteins Psf1, Psf2 and Psf3 
(shaded in orange) are not specifically assigned 
to the replication fork (red nodes) but are 
localized to chromosomes, according to Gene 
Ontology annotation. However, their inter-
actions with many replication fork proteins  
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exemplified by the proteins Orc1, Orc2, Orc3, 
Orc4, Orc5 and Orc6 (shaded in violet), which 
display more connections with each other than 
with other proteins. In fact, they are known 
members of the yeast origin recognition com-
plex (ORC), responsible for the loading of the 
replication machinery onto DNA. 

The ORC is an example of a known com-
plex, but this analysis pattern can also be used 

capability of Cse4 to assemble a specialized 
nucleosome on centromeric DNA, which is 
required for kinetochore assembly.

Analysis pattern two: highly 
interconnected nodes (clusters)
Dense interconnections in protein interac-
tion networks are characteristic of protein 
complexes or pathways. In Figure 1b, this is 

suggest that they are involved in DNA replica-
tion. In fact, they are known members of the 
GINS complex, responsible for the assembly 
of the DNA replication machinery. Similarly, 
the interaction partners of Cse4 (red arrow) 
belong to the kinetochore and nucleosome, 
suggesting a multifunctional role for Cse4 
at the interface between these two systems. 
This inference is consistent with the known 
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Figure 1  Network visualization of chromosome 
maintenance and duplication machinery in 
baker’s yeast, Saccharomyces cerevisiae. 
Nodes represent proteins that are annotated 
as being located on the chromosome by the 
Gene Ontology project7 (for clarity, the suffix ‘p’ 
has been removed from yeast protein names). 
Node colors specify chromosomal location 
subcategories: red, replication fork; green, 
nucleosome; blue, kinetochore; yellow, other 
chromosome components. Edges represent 
protein-protein interactions that were manually 
extracted from publications by BioGRID database curators4 (which could include small- and large-scale experiments). (a) Without specific layout, the network 
looks like a ‘jumbled mess’ and cannot be interpreted. (b) The same network after applying the force-directed layout and adding gene expression data of cells 
monitored during one round of the cell cycle are visually annotated on the network (data are from ref. 8). Edges are drawn thicker when the Pearson correlation 
between transcript profiles is higher. Node size corresponds to the transcriptional amplitude (root mean square of the time-course expression values), which 
is a measure of how much expression changes over the cell cycle. The network was visualized using Cytoscape software6. Interesting regions were manually 
emphasized (shading and red arrow) and node labels placed for clarity using Adobe Illustrator.

Methods to automatically organize networks (that is, layout 
algorithms) enable interesting relationships within data to be 
seen more easily. Most networks can be visualized by using a 
‘spring-embedded’ or ‘force-directed’ layout algorithm, based on 
the idea of edges ‘pulling together’ nodes that ‘repel’ each other. 
Other, more specific, layout algorithms are available, such as 
‘hierarchical’ algorithms, which are useful for displaying taxonomy 
trees or regulatory cascades. Edge length is determined by the 
layout algorithm only for visualization purposes and does not convey 
biological information. Typical network visualization software 
contains many layout options. A practical approach to choose 
among these is to try a force-directed layout first, or hierarchical if 
the network is tree-like, and then try others to see which one best 
arranges a given network.

Automatic network layout works well for many small- and medium-
sized networks (e.g., 50–500 nodes). It is rarely perfect, however, 
and most networks are more easily interpreted after subsequent 
manual node rearrangement that can be performed using network 
visualization software5,6. Larger networks, especially those with 
many edges, are often too tangled to be effectively visualized and 
interpreted, resulting in the ‘hairball’ network phenomenon (Fig. 
1a). In these cases, it can be useful to break down the network 
into smaller parts, such as specific pathways or interesting sets of 
proteins, and explore them separately. Exceedingly tangled networks, 
lacking apparent structure, can also result from the presence of too 
many false positives or weak interactions. One way to address this 
problem is to reduce the number of edges, such as by increasing 
stringency to keep only the edges with the highest confidence.

Box 1  How to lay out a network

PR IMER
©

20
09

 N
at

ur
e 

A
m

er
ic

a,
 In

c.
  A

ll 
ri

gh
ts

 r
es

er
ve

d.



NATURE BIOTECHNOLOGY   VOLUME 27   NUMBER 10   OCTOBER 2009 923

participants (substrate, enzyme and product). 
Also, hierarchical structure in networks, such 
as in a pathway with subprocesses or a complex 
with subunits, is not easily represented.

Alternative network representations that 
more faithfully represent biological systems 
have been proposed10–12 (http://www.biopax.
org/), but no general and standard solution has 
yet emerged. Nonetheless, in many situations 

dynamic nature of a physical system—such as a 
biological pathway with many molecular com-
ponents and states that vary in concentration 
and location over time—is not easily mapped 
to a static two-dimensional network represen-
tation. Relationships involving more than two 
objects are also difficult to represent in a net-
work of pairwise edges. For example, biochemi-
cal reactions typically involve at least three 

to identify novel complexes of unnanotated 
proteins and new components of known 
systems. For instance, in an application of 
the guilt-by-association pattern, we might 
predict that uncharacterized proteins that 
cluster with a known complex are unidenti-
fied members of that complex9.

Analysis pattern three: global system 
relationships
Once known or new systems (pathways or 
complexes) have been identified using protein 
function annotation or clustering, a broad over-
view of the network reveals global system-level 
relationships. In Figure 1b, the nucleosome and 
replication fork are characterized by high corre-
lation within group members (thick edges) and 
consistent transcriptional modulation over the 
cell cycle (large node sizes). They are not directly 
physically connected, however, and there is no 
evidence of transcriptional correlation between 
their members, which indicates that they play 
roles at different points in the cell cycle.

Pros, cons and challenges of network 
representation
We’ve described above the basics of network 
representation. The approach is valuable for 
data integration and may increase data cover-
age and confidence. Coverage of a biological 
system is increased by combining complemen-
tary perspectives from different types of experi-
ments, each able to reveal different aspects of 
the system. Data confidence may be assessed 
by identifying regions of the network where 
independent experimental techniques agree 
and are therefore more likely to be correct. This 
is particularly valuable when studying high-
throughput or other data sets affected by noise 
and incompleteness.

Networks are well-defined mathematical 
objects (Fig. 2). Thus, analysis patterns can 
be implemented computationally, enabling 
automated and unbiased hypothesis genera-
tion2,6. Such approaches are powerful, in that 
they can efficiently find and calculate statistical 
significance for specific patterns in very large 
data sets. Even so, as automated methods take 
time to develop and may not always be accurate, 
experts are still needed to interpret the results 
and ensure biological relevance.

Networks may also be used to represent 
many types of biological data, not just physi-
cal interactions. For instance, protein sequence 
similarity can be mapped to edges and protein 
families can be defined as clusters. Box 2 reviews 
interaction types commonly encountered in 
molecular biology and genetics.

Not all aspects of biological systems are eas-
ily represented using a network approach, so 
information can be lost in the mapping. The 
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Figure 2  Mathematical representation of networks and three alternate visualizations of the same data. 
(a) List of relationships with optional ‘weight’ (often denoted with the letter w), which represent attributes 
such as relationship significance or stength. Relationships can be undirected (e.g., A3 A5, shown 
in blue) or directed (e.g., A5  A4, shown in green). (b) Network view. Networks are mathematically 
grounded in the field of graph theory, in which they are commonly denoted G = (V,E), (G, graph; V, a set 
of vertices or nodes; E, a set of edges). Some commonly encountered mathematical concepts include 
the node degree (ki), which is the number of edges attached to a node, and the clustering coefficient 
(ci), which counts the number of edges among the neighbors of a node, divided by the maximal possible 
number of such edges. If edges have directions, it is useful to distinguish between the in-degree (kin

i) and 
the out-degree (kout

i). The node degree distribution and average clustering coefficient have been used to 
characterize different types of networks13. (c) Heat map view. Nodes are represented along the sides of 
the heat map and elements of the map (small squares) are colored according to edge weight, with higher 
weights having a darker color. Similar rows and columns are placed adjacent to each other, as shown by 
the similarity tree on each map axis. This view is useful for finding nodes with similar neighbors14.

Box 2  Examples of node relationships in biology

Numerous types of node relationships occur in biological networks. The most common 
can be organized into several categories.

Physical interactions. These occur between biomolecules in direct contact. For instance, 
protein-protein interactions are important in processes such as protein-complex 
formation, signal transduction and transport15.

Regulatory interactions. These are directed activation or inhibition events. For instance, 
in gene-expression regulation, a transcription factor is connected to its targets by 
directed edges16.

Genetic interactions. These connect genes whose concurrent genetic perturbation leads 
to a phenotypic result different than expected from the combination of single effects. 
For instance, synthetic lethal interactions connect genes that weakly affect organism 
viability when deleted individually, but are lethal when deleted in combination. Genetic 
interactions are useful to study gene function, and to identify complexes and pathways 
that work together to control essential functions17.

Similarity relationships. These link biological objects that are similar according to a common 
attribute. Many different similarity measures can be used, such as protein sequence 
similarity or gene coexpression based on correlated transcriptional profiles. Similarity 
relationships are useful to identify groups of functionally related genes or proteins18.
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commonly encountered in molecular and cell 
biology, the use of simple networks combined 
with the patterns described here can be and have 
been effectively applied to arrive at novel bio-
logical insights. Being aware of these patterns 
should make it easier to see how they have been 
used and refined in network-based studies.
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