
The GeneMANIA prediction server: biological
network integration for gene prioritization
and predicting gene function
David Warde-Farley1, Sylva L. Donaldson2, Ovi Comes2, Khalid Zuberi2,

Rashad Badrawi2, Pauline Chao2, Max Franz2, Chris Grouios2, Farzana Kazi2,

Christian Tannus Lopes2, Anson Maitland2, Sara Mostafavi1, Jason Montojo1,2,

Quentin Shao2, George Wright2, Gary D. Bader1,2,3,4,* and Quaid Morris1,2,3,4,*

1Department of Computer Science, 2Donnelly Centre for Cellular and Biomolecular Research, 3Department of
Molecular Genetics and 4Banting and Best Department of Medical Research, University of Toronto, Toronto,
Ontario, Canada

Received February 24, 2010; Revised May 27, 2010; Accepted May 28, 2010

ABSTRACT

GeneMANIA (http://www.genemania.org) is a
flexible, user-friendly web interface for generating
hypotheses about gene function, analyzing gene
lists and prioritizing genes for functional assays.
Given a query list, GeneMANIA extends the list
with functionally similar genes that it identifies
using available genomics and proteomics data.
GeneMANIA also reports weights that indicate the
predictive value of each selected data set for the
query. Six organisms are currently supported
(Arabidopsis thaliana, Caenorhabditis elegans,
Drosophila melanogaster, Mus musculus, Homo
sapiens and Saccharomyces cerevisiae) and
hundreds of data sets have been collected from
GEO, BioGRID, Pathway Commons and I2D, as
well as organism-specific functional genomics
data sets. Users can select arbitrary subsets of the
data sets associated with an organism to perform
their analyses and can upload their own data sets to
analyze. The GeneMANIA algorithm performs as
well or better than other gene function prediction
methods on yeast and mouse benchmarks. The
high accuracy of the GeneMANIA prediction algo-
rithm, an intuitive user interface and large
database make GeneMANIA a useful tool for any
biologist.

INTRODUCTION

The input to GeneMANIA is simple—the user enters a list
of genes and, optionally, selects from a list of data sets that
they wish to query (Figure 1A). GeneMANIA then extends
the user’s list with genes that are functionally similar, or
have shared properties with the initial query genes, and
displays an interactive functional association network,
illustrating the relationships among the genes and data
sets. For example, if the user enters protein complex
members, such as yeast ARP2 and ARP3, GeneMANIA
will output other complex components, and highly weight
co-expression and protein interaction data sets. If the query
genes are involved in disease, such as a mouse leukemia
model, OMIM and phenotype data sets may receive high
weight and GeneMANIA will output genes that likely are
involved in the same process (Figure 1B). Users interested
in prioritizing genes for planning a functional screen can
use GeneMANIA to return ranked lists of genes likely to
share phenotypes with those in the query list based on
GeneMANIA’s large and diverse data collection.

Another helpful feature of GeneMANIA is that it
assigns weights to data sets based on how useful they
are for each query. Individual data sets are represented
as networks, and in the basic algorithm, each network is
assigned a weight primarily based on how well connected
genes in the query list are to each other compared with
their connectivity to non-query genes. However,
GeneMANIA’s adaptive weighting methods also detect
and down-weight redundant networks. This network
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Figure 1. Images from http://www.genemania.org. (A) The initial query screen, with the advanced options panel expanded, providing the user the
ability to select desired networks, choose a network weighting method and the number of genes to return. (B) The results page for the mouse default
query, which is a set of genes involved in leukemia. Users can examine information associated with each gene and network by expanding their entries
on the corresponding panel. We include linkouts to model organism databases (FlyBase, WormBase, SGD and TAIR) and to the Arabidopsis
resource BAR (19) that is useful to plant users.
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weighting feature is particularly useful for determining
how genes in a gene list are connected to one another,
or for determining which types of functional genomic
data are most useful to collect for finding more genes
like those in the query list.

Organisms and identifiers

We currently support six organisms: yeast (Saccharomyces
cerevisiae), worm (Caenorhabditis elegans), fly (Drosophila
melanogaster), mouse (Mus musculus), Arabidopsis
thaliana and human (Homo sapiens), and 747 data sets
(276 co-expression networks, 232 physical interaction,
24 genetic interaction, 14 co-localization, 5 pathway,
176 predicted and 12 shared protein domain information).
The network breakdown by organism is: yeast, 163; worm,
76; fly, 60; mouse, 129; Arabidopsis, 94; and human, 225.
We currently support standard genes symbols; Ensembl,
Entrez, UniProtKB, and RefSeq database identifiers; and
unique gene synonyms. Since we use Ensembl as a primary
identifier source, we do not recognize ambiguous gene
names that map to multiple Ensembl genes within the
same organism.

Data sources

Data sets are collected from publicly available databases,
including co-expression data from Gene Expression
Omnibus (GEO) (1); physical and genetic interaction
data from BioGRID (2); predicted protein interaction
data based on orthology from I2D (3); and pathway
and molecular interaction data from Pathway
Commons, which contains data from BioGRID (2),
Memorial Sloan-Kettering Cancer Center, Human
Protein Reference Database (4), HumanCyc (5), Systems
Biology Center New York, IntAct (6), MINT (7),
NCI-Nature Pathway Interaction Database (8) and
Reactome (9). Individual data sets relevant to specific or-
ganisms are also collected, such as protein sub-cellular
localization in yeast. Networks are produced from the
data either directly (as in the case of protein or genetic
interactions) or using an in-house analysis pipeline to
convert profiles to functional association networks (e.g.
mRNA expression data are converted to co-expression
networks). This pipeline is described in detail in (10). In
summary, co-expression networks are filtered to remove
weak correlations, which we have shown decreases
compute time without impacting prediction accuracy
(10). A default set of networks has been selected for
each organism; however, users can choose which
networks to include in their analysis in the advanced
options panel, found directly below the gene query text
box on both the initial and results pages. Using this
panel, users can select or deselect all networks from a
given data source, or select or deselect individual
networks, using a system of check boxes.

Uploading data sets

Users can upload their own data sets in tab-delimited text
format to include in their analyses. The required format
for uploaded data sets is described in ‘Upload Help’,

which is beside the Upload button in the advanced
options panel. These data sets are stored only during a
user’s session, accessible only to the user who uploaded
them and can be used seamlessly with the preloaded
GeneMANIA data sets.

Network weighting methods

By default, the GeneMANIA prediction server uses one of
two different adaptive network weighting methods. For
longer gene lists, GeneMANIA uses the basic weighting
method [called GeneMANIAEntry-1 in (10) and called
‘assigned based on query genes’ on the web site] and
weights each network so that after the networks are
combined, the query genes interact as much as possible
with each other while interacting as little as possible with
genes not in the list. GeneMANIA learns from longer gene
lists, allowing a gene list-specific network weighting to be
calculated. Shorter gene lists do not contain enough infor-
mation for GeneMANIA to learn which networks mediate
the underlying functional relationship among the genes.
For short gene lists, GeneMANIA uses a similar principle
to weight networks, but tries to reproduce Gene Ontology
(GO) biological process co-annotation patterns rather
than the gene list. This method is described in detail in
(11). The user may choose other adaptive and
non-adaptive weighting methods in the advanced options
panel, found directly under the gene query text box. The
two non-adaptive methods are the most conservative
options and work well on small gene lists (10). These
methods allow users to choose either to weight every indi-
vidual network equally, or weight each class (e.g.
co-expression and protein interaction) of network
equally. Network weights can also be assigned based on
how well they reproduce GO co-annotation patterns for
that organism in the molecular function, biological process
or cellular component hierarchies. Note that the
annotation-based weighting may slightly inflate weights
for networks on which current annotations are based or
for networks that were derived based on co-annotation
patterns of genes. The networks most affected by this in-
flation are the older, smaller scale protein and genetic inter-
action studies and networks classified as ‘predicted’.
However, this inflation does not seem to have a large
impact on weights and may be largely avoided by only
using networks derived from high-throughput assays
with the annotation-based schemes.

GENEMANIA OUTPUT

Determining the network weights

The constructed composite network is a weighted sum of
individual data sources; each edge (link) in the composite
network is weighted by the corresponding individual data
source. The network weights are non-negative, sum to
100% and reflect the relevance of each data source for
predicting membership in the query list. Given the com-
posite network, we use label propagation (12) to score all
non-query genes. These scores are used to rank the genes.
The score assigned to each gene reflects how often paths
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that start at a given gene node end up in one of the query
nodes and how long and heavily weighted those paths are.
For more details on these algorithms, refer to (10). These
scores are presented to the user in a table that allows
interaction with the composite network display.

Effects of network selection

Choosing different parameters in GeneMANIA can
change the results. For example, selecting different data
sets to use in the analysis produces different networks. The
yeast default query (cell cycle), using all default param-
eters is illustrated in Figure 2A. By only selecting shared
protein domain networks, the network changes drastically
(Figure 2B) where only genes that have the same protein
domains are linked.

Effects of network weighting method selection

Different results can be produced from the same gene list
and set of networks by changing the network weighting
method, as illustrated in Figure 3 for a human DNA
repair and replication and the default network selections.
Figure 3A shows the results produced with the default
network weighting method, the GeneMANIA algorithm
(10). As none of the pathway data sets in GeneMANIA
link members of the query gene list, the pathway category
receives zero weight. In contrast, the network in Figure 3B
was generated using the ‘Equal by data type’ network
weighting method, which forces all selected network
categories (i.e. data types) to be weighted equally, regard-
less of the number of networks selected in that category.
The resulting networks are different, with different inter-
actions and three different predicted genes that are linked
to the query list by a pathway. These added levels of query
customization enable users to tweak their results appro-
priately for their query.

Saving GeneMANIA results

GeneMANIA allows users to save the results of their
analysis by clicking on ‘Save’ in the menu above the
network. By selecting options in this menu, users can
generate a report that includes any or all of the network
image, the network weights, recommended genes and/or
the query parameters. Users can also download the
network weights and genes in the generated composite
network as a tab-delimited text file.

ALGORITHM AND SOFTWARE VALIDATION

Tests of the predictive accuracy have been performed on
all algorithms used by the GeneMANIA prediction server.
The ‘assigned based on query genes’ weighting method
boasts state-of-the-art performance on gene function pre-
diction benchmarks in yeast (10) and mouse (13) for gene
lists longer than 10 genes. The annotation-based weighting
methods have state-of-the-art performance for smaller
gene lists in a variety of model organisms (11). In
Supplementary Figure S1, we compare the newer
network weighting algorithms with the older ‘assigned

based on query genes’ (called GM-2008 in
Supplementary Figure S1) for each of the six organisms
in GeneMANIA, using a range of data sets (Table 1), by
assessing their ability to recover GO annotations in
10-fold cross-validation. Further details about assessing
performance using shared GO terms are available in
(11). The performance of the original GeneMANIA algo-
rithm was used as a benchmark. The algorithms were
tested on 12 282 GO terms across the six organisms. In
many tests, we found the new methods perform as well,
or better than, the original algorithm (Supplementary
Figure S1). We have also extensively tested all
GeneMANIA functionality using unit tests and functional
testing across popular web browsers (Firefox 3, Safari and
Internet Explorer 7) to ensure a high-quality user
experience.

OTHER GENE FUNCTION PREDICTION
PROGRAMS

Other gene function prediction web-based interfaces
include N-Browse (14), the bioPIXIE system (15),
MouseNet (16), STRING (17) and Functional Coupling
(FunCoup) (18). The GeneMANIA prediction server
offers a number of advantages in flexibility, data represen-
tation and predictive accuracy over these methods [see,
e.g. (10)]. N-Browse boasts an elegant graphical user
interface (GUI), with interactivity between the network
display and node and edge information, and the
networks involved in the analysis can be changed by the
user; however, N-Browse functions as a Java web start,
which is less convenient for the casual user. The bioPIXIE
and MouseNET servers provide users with a fixed
network (or networks) to query, built by incorporating
multiple yeast and mouse genomic data sets. Similarly,
STRING impressively supports 630 organisms, but gives
users little choice about which functional association
network data to use for their query. In contrast, the
GeneMANIA prediction server generates results
customized to the queried genes and the user-selected
data sources so that the resulting network can be specif-
ically tailored to the prediction task at hand. Although
FunCoup has a similar functionality, it assigns weights
using a naive Bayes framework that cannot detect redun-
dancy among data sets. In addition to its ability to detect
and compensate for data redundancy, GeneMANIA’s
prediction server also has an advantage due to the
state-of-the-art predictive accuracy of its label propaga-
tion algorithm (10,13). Direct comparison of predictive
accuracy of GeneMANIA with other web servers is diffi-
cult, as every server collects different data sets and
processes them differently. However, GeneMANIA is
faster and achieves higher area under the receiver-
operator characteristic (ROC) curve than bioPIXIE in
predicting GO annotation using only 5 (of
GeneMANIA’s 163) yeast networks (10) and performs
very well against a suite of gene function prediction
methods (most of which are too slow to be deployed in
a web server) in a carefully controlled function prediction
challenge in mouse (13).
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Figure 2. Effects of data set selection on network topology. GeneMANIA showing the results of two yeast queries. (A) The yeast cell-cycle default
query, using all default parameters. (B) The yeast cell-cycle default query, using default network weighting method. Only shared protein domain data
sets are selected.
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Figure 3. Effects of network weighting method selection on network topology. GeneMANIA showing the results of two human queries. (A) The
human DNA repair and replication default query, using all default parameters. (B) The human DNA repair and replication default query, using the
default data set selection but with the ‘Equal by data type’ network weighing method selected. Some genes and interactions found in this query that
were not present in the default query (shown in A) are indicated by arrows.
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CONCLUSIONS

We have developed GeneMANIA for gene function pre-
dictions, consisting of a highly adaptive algorithm, easily
extendable database and interactive, intuitive interface. In
addition to the introduction presented here, we have an
extensive user manual that is accessible by clicking ‘Help’
on the initial query page, or in the bottom left row in
the network browser. We are currently working with
OpenHelix to develop an online tutorial for
GeneMANIA. Our functional prediction algorithm is
organism independent and remains an area of active
research in our laboratories. We are currently
investigating modifications to make it faster and more
accurate which we expect to have integrated by the end
of the year. We currently support six organisms, but over
time we will be adding additional model organisms and
new large-scale data sets as they become available.
GeneMANIA is an open source project. Please contact
the corresponding authors for access to the source code.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 1. Number of networks per organism

Network type Organism

Arabidopsis
thaliana

Worm Fly Human Mouse Yeast

Co-expression 56 10 40 69 46 55
Physical interaction 11 8 8 113 28 64
Genetic interaction 1 4 2 1 0 16
Shared protein domains 2 2 2 2 2 2
Co-localization 1 1 7 2 2 1
Pathways 0 0 0 5 0 0
Predicted interaction 23 50 1 33 48 21
Other 0 1 0 0 3 4

Co-expression and shared protein domain network links are weighted
continuously from 0. . .1, physical and genetic interaction networks are
binary. The ‘other’ category consists of organism-specific functional
genomics networks, such as from the MouseFunc competition.
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