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ABSTRACT 
Motivation: Predicting protein interactions involving peptide recog-
nition domains is essential for understanding the many important 
biological processes they mediate. It is important to consider the 
binding strength of these interactions to help us construct more bio-
logically relevant protein interaction networks that consider cellular 
context and competition between potential binders. 
Results: We developed a novel regression framework that consid-
ers both positive (quantitative) and negative (qualitative) interaction 
data available for mouse PDZ domains to quantitatively predict in-
teractions between PDZ domains, a large peptide recognition do-
main family, and their peptide ligands using primary sequence in-
formation. First, we show that it is possible to learn from existing 
quantitative and negative interaction data to infer the relative binding 
strength of interactions involving previously unseen PDZ domains 
and/or peptides given their primary sequence. Performance was 
measured using cross-validated hold out testing and testing with 
previously unseen PDZ domain-peptide interactions. Second, we 
find that incorporating negative data improves quantitative interac-
tion prediction. Third, we show that sequence similarity is an impor-
tant prediction performance determinant, which suggests that ex-
perimentally collecting additional quantitative interaction data for 
under-represented PDZ domain sub-families will improve prediction. 
Availability and Implementation: The Matlab code for our 
SemiSVR predictor and all data used here is available at 
http://baderlab.org/Data/PDZAffinity. 
Contact: gary.bader@utoronto.ca, dengnaiyang@cau.edu.cn  
Supplementary information: 

1 INTRODUCTION  
 

  
*To whom correspondence should be addressed.  

Modular domains are the major building blocks of eukaryotic pro-
teins and interaction networks (Pawson and Nash, 2003). These 
domains usually fold independently and are present in various 
combinations within a single protein to create a rich repertoire of 
functionally diverse proteins from a more limited domain set 
(Vogel, et al., 2004). An important subclass of these domains, 
peptide recognition modules (PRMs), bind to short extended and 
linear peptide segments in target proteins to mediate protein-
protein interactions in eukaryotic cell signaling systems (Pawson 
and Nash, 2003). Characterizing the interactions of these peptide 
recognition modules will help us map and understand the many 
biological processes they mediate. 

PRMs generally bind their peptide ligands in the weak (10μM) 
affinity (binding strength) range (Castagnoli, et al., 2004), and 
sensitive in vitro experimental techniques like phage display 
(Tonikian, et al., 2009; Tonikian, et al., 2008) and peptide/protein 
microarrays (Jones, et al., 2006; Stiffler, et al., 2006) have been 
used to map the binding specificities and protein interactions of 
large sets of SH3 (Landgraf, et al., 2004; Tonikian, et al., 2009), 
SH2 (Huang, et al., 2008; Jones, et al., 2006), WW (Hu, et al., 
2004) and PDZ (Stiffler, et al., 2007; Stiffler, et al., 2006; Toni-
kian, et al., 2008) domains. However, these experimental tech-
niques are resource intensive, and cannot be readily applied to new 
members and alleles of PRMs that are increasingly being collected 
by genome sequencing projects and population-based genetic 
variation studies (The International HapMap Consortium, 2007). 
Ideally, a computational model could be developed to predict 
whether a PRM will bind to a peptide given their primary se-
quences. Such a model could be used to predict protein interactions 
from newly sequenced genomes and the effect of mutations on 
known PRM mediated protein interactions to guide subsequent 
experimental characterization. Computational domain-peptide 
interaction prediction has been studied for multiple PRMs, such as 
SH3(Ferraro, et al., 2006; Yaffe, et al., 2001), SH2 (Sanchez, et al., 
2008; Wunderlich and Mirny, 2009), PDZ (Chen, et al., 2008), 
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WW (Schleinkofer, et al., 2004) and MHC domains (Jacob and 
Vert, 2008; Nielsen, et al., 2008; Zhang, et al., 2009) (which are a 
special case of peptide binding domains that do not mediate pro-
tein-protein interactions). These approaches, except for some MHC 
studies and the pioneering work of (Chen, et al., 2008), predict 
binding qualitatively – i.e. whether or not a domain-peptide pair 
will bind. 

To gain a better understanding of in vivo protein interaction net-
works, we also need to know the strength of domain-peptide bind-
ing, not just whether they bind or not. This information can help us 
understand the competition among multiple potential interactors 
for the same protein in the cell. Binding strength is also an impor-
tant factor in the fine-tuning of many regulatory processes, such as 
the affinity-driven sequential phosphorylation of residues on the 
FGF receptor (Lew, et al., 2009), the affinity-driven sequential 
activation of genes targeted by a common transcription factor 
(Chechik, et al., 2008), and the fine-tuning of the HOG pathway in 
response to osmolarity stress (Zarrinpar, et al., 2003). Whereas 
large sets of quantitative data have permitted quantitative predic-
tion of MHC-peptide interactions for MHC domains through data-
driven machine learning approaches (Nielsen, et al., 2008; Zhang, 
et al., 2009), sufficient quantitative interaction data has only re-
cently become available to enable similar computational ap-
proaches for modular interaction domains involved in cellular sig-
naling (Stiffler, et al., 2007). 

The first PRM with large-scale affinity data available is the PDZ 
domain (Stiffler, et al., 2007). PDZ-containing proteins are impor-
tant in ion channel and receptor regulation, cell polarity, neural 
development, and often act as scaffolds to organize the assembly 
of protein complexes in cell signaling pathways in normal and 
disease situations (Cushing, et al., 2008; Nourry, et al., 2003). 
Here, we develop a computational method, trained on the set of 
interaction data measured in (Stiffler, et al., 2007), to quantita-
tively predict PDZ domain-peptide interactions involving previ-
ously unseen PDZ domains and/or peptides from their primary 
sequences. 

Interaction data generated in (Stiffler, et al., 2007) consists of a 
positive dataset of PDZ domain-peptide interactions with binding 
affinity measurements and a negative dataset (non-interacting PDZ 
domain-peptide pairs, with no binding affinity measurements). 
Intuitively, the negative interaction data provides qualitative in-
formation on the contribution of amino acids to binding affinity 
that could improve quantitative prediction. Popularly used Position 
Weight Matrix (PWM) and conventional regression methods like 
Support Vector Regression (SVR), however, cannot incorporate 
qualitative negative data. Here, we devised a novel extension of 
SVR, termed SemiSVR that considers both quantitative positive 
and qualitative negative interaction data. We show that SemiSVR, 
being able to incorporate negative data, is better than SVR and 
PWM in identifying the stronger interactor among previously un-
seen peptides. Next, through a feature-encoding framework that 
considers both the primary sequence of PDZ domains and peptides, 
we applied SemiSVR to predict relative binding strength of PDZ 
domain-peptide interactions involving previously unseen PDZ 
domains. We find that SemiSVR’s performance is superior to a 
previously published method on the same dataset (Chen, et al., 

2008) and the naïve usage of PWM from sequence-similar PDZ 
domains. 

2 MATERIALS AND METHODS 
2.1 Data 
Our training data is that published in (Chen, et al., 2008), which is a 
cleaned subset of interactions with measured affinities originally reported 
by (Stiffler, et al., 2007), containing interactions between 82 mouse PDZ 
domains and 217 mouse genome derived (genomic) peptides. Briefly, in-
teractions were assessed using a peptide microarray followed by confirma-
tion of positives and measurement of binding affinities by fluorescence 
polarization (FP), a high quality affinity measurement method (Stiffler, et 
al., 2007). This resulted in 560 PDZ domain-peptide interactions, involving 
82 mouse PDZ domains and 93 peptides, and 1167 negative interactions, 
involving 82 mouse PDZ domains and 138 peptides, which were confirmed 
by FP. The 560 positive interactions have measured affinities (each meas-
ured as a dissociation constant, KD) of less than 100μM (high KD indicates 
weak interaction and low KD indicates strong interaction, see Fig. S1 for 
distribution of the KDs) while the affinities of the non-binding pairs are 
identified to be greater than the threshold (100μM) but KD values are not 
measured. We call the mixture of both quantitative (positive interactions) 
and qualitative (negative interactions) ‘semi-quantitative’ data. The number 
of binding peptides per PDZ domain varies widely. Among the 82 domains, 
23 have at least 10 binding peptides, which we use for training (Table S1). 

2.2 Predictor 

Fig. 1. Overview of the Quantitative Prediction Method. (A) Positive 
and negative PDZ domain-peptide pairs were previously determined by a 
combination of protein microarray and fluorescence polarization experi-
ments. PDZ domain and peptide features calculated from primary se-
quence information were used to construct a quantitative binding predic-
tor using our novel semi-quantitative support vector regression 
(SemiSVR) method, where negative data is used to help regression learn-
ing. (B) Conceptual illustration of how SemiSVR works. Sample data for 
illustration purposes were generated using the function: y = x (black 
solid line) with normally distributed noise. Quantitative data (positive) 
are shown as open black circles while the qualitative data (negative) are 
shown as filled red circles. The SemiSVR method (red dashed dot line), 
which considers the quantitative data and qualitative data, better learns 
the function (y = x) used to generate the input data compared to the SVR 
method (blue dashed line), which only considers the quantitative data 
(open circles). In this way, incorporating qualitative negative data using 
SemiSVR improves quantitative prediction. 
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We wish to predict quantitative PDZ domain-peptide interactions based on 
known interactions and affinity data. To do this, we developed a new 
method called Semi-quantitative SVR (SemiSVR), a novel extension of 
support vector regression (SVR), to learn how to predict the binding affin-
ity of PDZ domain-peptide interactions from both quantitative binding 
(positive) data and qualitative non-binding (negative) data (Fig. 1). SVR is 
an established machine learning method for nonlinear regression (Smola 
and Scholkopf, 2004). We extended this method to take advantage of nega-
tive information we have available, which is not considered by other re-
gression-based methods. In nonlinear regression, the regression function (f) 
is approximated by a kernel function K(x, y) as follows:   

f(x) = α i K(x, xi ) + b
i=1

m

∑                                      (1) 

where xi is the known training data, and α = (α1, α2,…, αm)T (T = transpose, 
m = training data set size) is the Lagrange multiplier and b is the bias 
threshold. The SemiSVR aims to determine the unknown multiplier α and 
the bias b based on the training data. Given the training data set 
S = {(xi , yi ) : xi ∈Rn , yi ∈R}i=1

m ∪ {z j : z j ∈Rn } j=1
k , where xi, zj are the 

input features for the positive and negative PDZ domain-peptide pairs, 
respectively, yi is the affinity for positive quantitative data xi, and the re-
gression value for the training data zj is greater than a threshold 
(i.e., ŷ =100μM).  

    For the positive quantitative data xi, we wish to minimize the ε-
insensitive loss function based error criterion that leads to | f(xi) - yi| ≤ ε, 
that is the regression values f(xi) on the training data xi should have less 
error than ε, i=1,2,…,m. For the negative qualitative data zj, we wish to 
make the regression value f(zj) on these data satisfy the prior knowledge 
(i.e., the regression value f(zj) is greater than the threshold ŷ =100μM): 
| f (z j ) − yj |≤ ε, and yj ≥ ŷ , j=1,2,…,k.   

    The above constraints assume that the final regression function f(x) 
can approximate all the data (S) with ε precision. Sometimes, however, we 
want to allow for some errors. As with standard SVR, a slack variable ξ  
and ξ  can be introduced to cope with otherwise unsatisfiable constraints. 
Considering all of this and similar to previous work on knowledge-based 
nonlinear kernel approximation (Mangasarian and Wild, 2007), the linear 
programming form of Semi-quantitative SVR is given as: 

min
α,b,Y ,ξ,ξ

|| α ||1 + C1 ξi
i=1

m

∑ + C2 ξ j
j=1

k

∑     (2) 

       s.t.   α i K(xi , xi ) + b − yi − ξi ≤ ε
i=1

m

∑ ,    (3) 

yi − α i K(xi , xi ) − b − ξi ≤ ε
i=1

m

∑ ,     (4) 

α i K(xi , z j ) + b − yj − ξ j ≤ ε
i=1

m

∑ ,     (5) 

yj − α i K(xi , z j ) − b − ξ j ≤ ε
i=1

m

∑ ,     (6) 

 
yj ≥ )y,      (7) 

ξi ≥ 0,ξ j ≥ 0,   i = 1,2,L , m; j = 1,2,L , k,   (8)  
where ε is a user defined constant which contributes to the ε-insensitive loss 
function which measures the error of the regression on the training data, 
and is defined as | ξ |ε = 0 , if | ξ |< ε , and equal to | ξ |− ε , otherwise. C1, 
C2 > 0 are the penalty parameters determining the trade off between the 
regularization term (in order to avoid over-fitting) and the empirical error 
(according to ε-insensitive loss function). Here, we drive the error down by 
minimizing the 1-norm of the errors and together with the 1-norm of α for 
complexity reduction or stabilization. Previous work shows the alternative 

1-norm for 2-norm regularization achieves equivalent performance (see 
(Mangasarian, et al., 2004; Mangasarian and Wild, 2007)). Constraints (3-
4) ensure the positive pairs lie in ε-precision with some allowed errors 
while constraints (5-7) ensure the negative pairs satisfy the prior knowledge 
within some allowed errors. In practice, all affinities are scaled to the range 
[-1,1] after taking log10, which makes the data easier to work with. We 
select parameters C1, C2, ε and the kernel parameters (σ or p) using grid 
search (Chang and Lin, 2001). 

The input of the semi-quantitative SVR model is the encoded representa-
tion of the PDZ domain-peptide pair (see below) and the corresponding 
binding affinity while the output is the predicted affinity score for each pair 
(Higher scores mean weaker interaction while lower scores mean stronger 
interaction, similar to the scale of biochemical KDs). All software was 
developed in Matlab 2008 and source code is available on the website 
(http://baderlab.org/Data/PDZAffinity). 

 As a benchmark, we also developed a Nearest Neighbor SemiSVR for 
each test PDZ domain, that was trained on the closest PDZ domain with 
both its binding and nonbinding peptides. We only trained a predictor if the 
closest PDZ domain has >=10 binding peptides (changing this threshold to 
nearby values does not affect our conclusions). 

Generally, there are two strategies to build predictive models for peptide 
recognition domain mediated interactions. A single-domain model is 
trained only on the interactions of an individual PDZ domain (one domain 
and its binding peptides) while a multi-domain model uses interaction data 
from multiple PDZ domains. 

We tested our models using leave-one-PDZ-domain-out cross-validation, 
as domain sequence is important for performance. For the single-domain 
model, we trained on one single PDZ domain associated with all the inter-
action data, and tested for the held-out PDZ domain. For the multi-domain 
model, at each run, we trained the SemiSVR model on interaction data 
involving all PDZ domains but one, and then predicted the relative binding 
strength of all peptides interacting with the held-out PDZ domain. 

2.3 Feature Encoding 
We represented a PDZ domain-peptide as a vector of descriptors including 
sparse vectors of either the full domain (118AA) or different definitions of 
the domain binding site (16 or 10AA) and the peptide ligand (10AA) and 
links between domain and peptide positions. Specifically, a PDZ domain = 
(P1, P2,..., Pn) and a peptide = (pep1, pep2, ..., pepk), where Pi and pepj repre-
sent amino acids at a given position (ith on the PDZ domain or jth on the 
peptide) - in our case, n=118 and k=10. A PDZ domain-peptide pair is 
encoded as a tensor (outer) product between descriptor PDZ and peptide: 
PDZ*peptide = (P1pep1, P1pep2, ..., P1pepk, P2pep1, ..., Pnpepk). Since the 
inner product between two tensor product vectors (each one encoding one 
domain-peptide pair) can be rewritten as a product of two inner products 
(Jacob and Vert, 2008), we compute the inner product between vectors of 
any two PDZ domains or vectors of any two peptides. Furthermore, kernels 
on sequences can replace the inner product between the vectors of any two 
domains or any two peptides (the kernel trick), such as K(PDZ1*peptide1, 
PDZ2*peptide2) = K(PDZ1, PDZ2) × K(peptide1, peptide2). Thus, when 
sequences are used as the input for the kernels, one can rewrite the poly-
nomial kernel as follows: Kpoly(x, y) = (Kbaseline(x,y)+1)p, where Kbaseline is 
simply the number of letters the input sequences (domain sequences or 
peptide sequences, respectively) have in common at the same positions. In 
practice, all kernels were normalized to 1 on the diagonal by Knormalize(x,y) = 
Kpoly(x, y) / K poly (x, x) × K poly (y, y)  to make computation easier. 

To encode the PDZ domain, we used the same alignment as published by 
Chen et al. (Chen, et al., 2008) since we want to compare our method to 
Chen’s method using the same encoding (e.g. the same 16 binding sites). 
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This alignment represents the conserved part of the domain containing all 
conserved secondary structure elements and the canonical binding site. See 
supplementary notes for details and Fig. S2 for the pairwise identity distri-
bution of all pairs of 82 PDZ domain sequences based on this alignment. 
For the peptide, we use the entire length of 10 amino acids in all experi-
ments.  

There are many different feature encodings and kernels that could be 
used for our prediction task. We tried encoding PDZ domains using Profeat 
features (Li, et al., 2006), which includes amino acid physicochemical 
properties, sequence pattern frequency and correlations; conventional 
sparse encoding where each position is represented as a vector of length 20 
(one element for every amino acid type) has a one in the element corre-
sponding to the amino acid at that position and the rest of the 19 elements  
are set to zeros, and then all vectors are concatenated; encoding peptides 
using 5 factors (William R. Atchley, 2005) and 11 factors (Liu, et al., 
2006), which are also based on amino acid physicochemical properties. We 
encoded the peptide using all above encodings, except for Profeat, for 
which the peptide sequence is too short. However, none of these encodings 
(Gaussian kernel) resulted in better performance than using the above de-
scribed sequence-based encoding with a polynomial kernel (Table S2). 

3 RESULTS 
Our goal is to predict binding strength of a previously unseen PDZ 
domain-peptide pair based on the primary sequence of the domain 
and peptide and quantitative interaction data. To address this, we 
applied regression analysis to published PDZ domain-peptide bind-
ing affinity data obtained using a combination of protein microar-
ray and fluorescence polarization experiments (Chen, et al., 2008; 
Stiffler, et al., 2007). 

3.1 Incorporating Negative Data for Quantitative In-
teraction Prediction 

3.1.1 Single domain models. Often, peptides that bind a PDZ do-
main will be modeled using a PWM, one per domain. The PWM 
method has been shown to capture binding energy (Stormo, 2000) 
and is often used for predicting PRM domain-peptide interactions 
(Tong AH, 2002; Tonikian, et al., 2008). As a basic test of the 
modeling capability of the SemiSVR method and to compare it to 
the established PWM method, which was trained on quantitative 
data only, we trained it using positive quantitative and negative 
peptide data of an individual PDZ domain. We then tested the abil-
ity of each method to distinguish the stronger binding peptide 
among a pair of peptides randomly held out from the training pep-
tide set (run for all possible peptide pairs, either two binders or a 
binder and a non-binder) and generated a percentage success rate 
for each of the 23 PDZ domains that bound at least 10 peptides. 
We found that the SemiSVR method performs better than the 
PWM method at the same task for the vast majority of PDZ do-
mains (21/23, average performance of 0.79 vs. 0.72, Table 1). We 
had similar results when comparing to SVR (Table 1). Hence, in-
corporating negative data in regression analysis through SemiSVR 
improves quantitative prediction of interacting peptides and even a 
simple application of the SemiSVR method given a set of peptides 
per domain is useful. 

3.1.2 Multi-domain model. We next trained the SemiSVR on in-
teraction data of multiple PDZ domains to predict quantitative 
domain-peptide interactions involving previously unseen PDZ 
domains. We tested this using leave-one-PDZ-domain-out cross-
validation, where we trained the SemiSVR model on interaction 
data involving all PDZ domains but one, and then predicted the 
relative binding strength of all peptides interacting with the held-
out PDZ domain. To measure performance, we correlated the 
SemiSVR score with actual binding affinities using Pearson and 
Spearman’s correlation coefficients. Since too few data points lead 
to inconclusive correlation results, we assessed the performance 
only for the 23 PDZ domains that bound to 10 or more peptides. 

To enable the SemiSVR to learn from interaction data of multi-
ple PDZ domains, the primary sequence of each PDZ domain and 
peptide in our training set was encoded as a feature vector (as 
compared to single domain testing where only peptides were en-
coded). We evaluated various ways of encoding these features (see 
Materials and Methods and Table S2). For every PDZ domain-
peptide interaction, we combined the feature vectors with the inter-
action binding affinity for regression analysis. We used a pairwise 
encoding with a polynomial kernel, which captures all pairs of 
amino acids between all domain and peptide positions, as this pre-

Table 1. Performance Comparison of Single Domain 
SemiSVR, SVR and PWM on 23 PDZ Domains in Leave Two 
Domain-peptide Interactions Out Cross-validation Testing. 
Numbers indicate the average percentage of correct predictions. 

PDZ domain SemiSVR SVR PWM 
CHAPSYN-110_2/3 0.75 0.57 0.71 
CHAPSYN-110_3/3 0.86 0.60 0.79 
GM1582_2/3 0.74 0.64 0.68 
HTRA3_1/1 0.73 0.66 0.70 
LIN7C_1/1 0.89 0.59 0.76 
MAGI-2_2/6 0.85 0.55 0.73 
MAGI-2_6/6 0.71 0.67 0.69 
MAGI-3_1/5 0.71 0.49 0.64 
MALS2_1/1 0.55 0.40 0.60 
OMP25_1/1 0.77 0.63 0.65 
PDZK3_1/1 0.78 0.64 0.70 
PDZ-RGS3_1/1 0.82 0.80 0.68 
PSD95_2/3 0.69 0.37 0.65 
PSD95_3/3 0.82 0.70 0.80 
PTP-BL_2/5 0.83 0.60 0.77 
SAP102_2/3 0.81 0.63 0.66 
SAP97_1/3 0.74 0.57 0.69 
SAP97_2/3 0.74 0.50 0.71 
SCRB1_3/4 0.84 0.59 0.75 
SHANK1_1/1 0.91 0.88 0.81 
SHANK3_1/1 0.88 0.82 0.80 
G1-SYNTROPHIN_1/1 0.87 0.58 0.79 
ZO-1_1/3 0.75 0.51 0.75 
Average Performance 0.79 0.61 0.72 

Table 2. Performance Comparison of SemiSVR and SVR on 23 
PDZ Domains with Associated Peptides for Multi-domain Model 
Testing. Performance comparison based on leave-one-PDZ-domain 
out cross validation. A pairwise polynomial kernel (p=2) using the 
whole PDZ (118AA) and whole peptide (10AA) as feature input was 
used for both predictors. Bold numbers indicate the best performance. 

Performance Measure SemiSVR SVR 
Spearman 0.605 0.501 
Pearson 0.653 0.574 
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dictor performed best in initial experiments (see Materials and 
Methods and Table S2). Input PDZ domain sequences were de-
fined with 118 positions according to the PDZ domain multiple 
sequence alignment (Chen, et al., 2008) and peptides were all of 
length 10AA. 

For comparison, we trained an SVR model exactly as for the 
SemiSVR model, but only on quantitative positive data, while the 
SemiSVR was trained on both quantitative positive data and quali-
tative negative data. The SemiSVR performed better than SVR 
(Table 2), thus negative information is useful for regression and 
we used the multi-domain SemiSVR for further experiments. 
Closer inspection of the output score of SemiSVR and SVR indi-
cates that both methods can predict relative, but not absolute, bind-
ing affinities (Fig. S3). 

3.1.3 Comparison with a published method. We next tested if our 
new SemiSVR method performs better than the only published 
method for quantitative prediction of PDZ domain interactions 
applied to the same PDZ affinity dataset (Chen, et al., 2008). This 
method uses input features that represent pairs of domain-peptide 
amino acids that spatially contact based on a PDZ domain-peptide 
structure. The contribution of each of the resulting 38 pairs to the 
interaction was learned from the affinity data (Chen, et al., 2008). 
The published method was developed for both binary and quantita-

tive prediction, but here we only compared SemiSVR to the quan-
titative version. We used leave-one-PDZ-domain-out cross-
validation and Spearman and Pearson correlation to measure per-
formance of each method on the 23 PDZ domains that bound 10 or 
more peptides. The SemiSVR method performed better for the vast 
majority (20 of 23) of PDZ domains (Table 3). As a second test, 
we trained the SemiSVR model using the same ‘38pairs’ input 
feature encoding developed by Chen. Again, the SemiSVR per-
formed better in the majority of cases (18 of 23 PDZ domains) 
(Table 3) – see section 3.2 for an investigation into the domains 
which were poorly predicted. Thus, our SemiSVR is superior in 
method and input feature encoding compared to a previously pub-
lished method. 

3.2 Performance Determinants of Quantitative Pre-
diction 

To explore which aspects of our input features are most important 
for prediction performance, we trained a multi-domain SemiSVR 
model using subsets of PDZ domain sequences. We used 16 bind-
ing positions from the a1-syntrophin PDZ (a1synPDZ) structure 
described in (Chen, et al., 2008), and also 10 core binding posi-
tions derived from the intersection of all binding sites in nine 
available PDZ domain-peptide structures described in (Tonikian, et 
al., 2008). Using the whole PDZ sequence gave better overall per-
formance, although the binding site encoding gives comparable 
performance (Table S3), achieving Spearman correlation of 0.605, 
0.594, 0.594 and Pearson correlation of 0.653, 0.636, 0.649 for 
whole PDZ sequence, 16 binding positions and 10 core binding 
positions respectively. This suggests that additional information is 
present in non-binding site positions that improves performance.  

Next, we assessed the relationship between the predictor per-
formance and percent sequence identity of the test PDZ to its near-
est domain in the training set. We observed a positive correlation 
between performance and sequence identity (Fig. 2, Spearman’s 
correlation, 0.498, P-value = 0.0157). To further study this trend, 
we progressively removed all training PDZ domain interactions 
that are above a sequence similarity threshold to the test PDZ do-
main and retrained a SemiSVR model for each test domain (whole 
PDZ, pairwise polynomial kernel). We observed that the average 
SemiSVR performance decreased as the level of similarity of the 
test PDZ domain to the closest PDZ domain in the training set 
decreased (Fig. S4). Hence, sequence similarity between a test 
PDZ domain and PDZ domains in the training set is a determinant 
of predictor performance. 

3.3 A Global Approach Improves the Prediction Per-
formance 

One potential advantage of our encoding framework approach is 
that we can incorporate interaction data of multiple PDZ domains 
(global) rather than just close neighbors (local) to improve predic-
tion. To investigate this, we trained a set of ‘nearest neighbor’ 
SemiSVR predictors using only interaction data of the single do-
main with the highest sequence similarity to each test PDZ do-
main, ensuring enough interaction data is used to create a viable 
predictor, and compared their performance to our multi-domain 
SemiSVR. In addition, since the SemiSVR’s performance is corre-
lated with the sequence similarity of a test PDZ domain to those in 
training data, we also assessed how the naïve usage of PWM based 

Table 3. Performance Comparison of Different Prediction Algo-
rithms. Performance comparison based on leave-one-PDZ-domain out 
cross validation.  Performance, measured by Spearman and Pearson 
correlation coefficients for each domain are shown. The performance of 
SemiSVR with whole PDZ sequence (118AAs) and SemiSVR with 38 
contacting residue position pairs and Chen’s Backfitting method are 
listed in columns two to four. For the SemiSVR using 38 contacting 
residue position pairs as feature input, the linear kernel was used. The 
Chen method was run using the published implementation. All methods 
used all 10AA positions of the peptide. Bold numbers indicate the best 
performance for a given domain. 
Performance measure  Spearman correlation/Pearson correlation 

PDZ domain 
SemiSVR 

WholePDZ-
118AA 

SemiSVR 
38pairs Chen 

CHAPSYN-110_2/3 0.94/0.94 0.95/0.93 0.80/0.79 
CHAPSYN-110_3/3 0.89/0.88 0.60/0.57 0.59/0.50 
GM1582_2/3 0.65/0.58 0.41/0.35 0.36/0.19 
HTRA3_1/1 0.53/0.65 0.24/0.36 0.20/0.13 
LIN7C_1/1 0.61/0.68 0.47/0.56 -0.37/-0.17 
MAGI-2_2/6 0.70/0.77 0.63/0.78 0.11/0.21 
MAGI-2_6/6 0.64/0.69 0.63/0.52 0.28/0.17 
MAGI-3_1/5 0.82/0.88 0.73/0.68 0.54/0.52 
MALS2_1/1 0.55/0.61 0.33/0.37 0.17/0.15 
OMP25_1/1 0.53/0.50 0.51/0.51 0.32/0.37 
PDZK3_1/1 -0.20/0.04 -0.13/0.02 -0.22/0.02 
PDZ-RGS3_1/1 0.31/0.03 -0.002/-0.05 -0.08/0.07 
PSD95_2/3 0.97/0.92 0.82/0.87 0.53/0.66 
PSD95_3/3 0.75/0.88 0.597/0.68 0.22/0.17 
PTP-BL_2/5 0.36/0.40 0.34/0.53 0.18/0.16 
SAP102_2/3 0.97/0.94 0.91/0.92 0.91/0.94 
SAP97_1/3 0.34/0.76 0.46/0.63 -0.16/0.14 
SAP97_2/3 0.95/0.95 0.91/0.92 0.77/0.85 
SCRB1_3/4 0.48/0.69 0.37/0.47 0.697/0.78 
SHANK1_1/1 0.98/0.98 0.51/0.44 0.95/0.96 
SHANK3_1/1 0.36/0.51 0.94/0.91 0.69/0.70 
G1-SYNTROPHIN_1/1 0.17/0.13 0.21/0.16 0.52/0.48 
ZO-1_1/3 0.64/0.65 0.61/0.64 0.26/0.16 
Average Performance 0.61/0.65 0.52/0.56 0.36/0.39 
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on the peptides of the nearest PDZ neighbor performs for quantita-
tive interaction prediction.  

We tested different ways to identify the nearest neighbor using 
whole PDZ, 16 and 10 position binding sites, and based on amino 
acid identity and scoring matrix BLOSUM62. Nearest neighbor 
SemiSVR performed better than the naïve PWM transfer method, 
presumably because negative interactions help with prediction. 
However, our multi-domain SemiSVR gave the best performance 
overall (Table 4). Thus, while sequence similarity is an important 
factor and nearest neighbors are important contributors to perform-
ance, our multi-domain SemiSVR uses additional information from 
across the PDZ domain family to improve performance. 

3.4 Validation of the Method Using Blind PDZ Do-
main-peptide Affinity Measurements 

We next tested the SemiSVR model on newly measured PDZ do-
main-peptide interactions that were not used for training. The third 
PDZ domain of the human Scribble protein PDZ was cloned, ex-
pressed and purified and binding affinities to 57 peptides from 
natural human proteins were measured using fluorescence polariza-
tion (see Supplementary Materials, and Table S4). Only the third 
PDZ domain was used because the other three had less than 45% 
sequence identity to the training set. This resulted in 36 binding 
peptides, enough for a confident performance assessment. The 
result shows that our SemiSVR method can accurately predict PDZ 
domain-peptide interactions (Spearman correlation, 0.74, P-value = 
8.85e-7). We found similar results testing our model on interac-
tions involving domains in Fly and Worm data (Table S5). 

3.5 Predicting Effect of Peptide Mutations 
As another test of our SemiSVR method, we predicted the change 
in binding affinity of PDZ domain-peptide interactions resulting 
from amino-acid changes in the peptide. We used a previously 
published data set of PDZ-peptide affinities measured with fluo-
rescence polarization (Chen, et al., 2008) in which five single point 
mutations were introduced into each of three wild type binding 
peptides (from proteins: Kv1.5, Nav1.5 and KIF1B) that bind the 
a1syn PDZ domain. The SemiSVR model successfully predicted 
the relative affinity change (increase or decrease vs. wild-type) for 
all mutants (i.e. 14/14=100%, one mutated KIF1B ligand had no 
measurable binding affinity). The correlations between the pre-
dicted and actual affinities of the mutated peptides for the 
SemiSVR are very high (Spearman, 0.921, p-value < 1e-16 and 
Pearson 0.922, p-value = 1.414e-07) (Fig. 3). Therefore, our 
method can correctly predict the direction and relative magnitude 
of affinity changes in the mutant ligand compared to the wild type. 

3.6 Binary Classification of PDZ Domain-peptide In-
teractions 

Next, we assessed the performance of the multi-domain SemiSVR 
method on the presumably easier binary classification task - to 
predict whether a PDZ domain will bind a peptide or not. We per-
formed leave-one-PDZ-domain-out cross-validation on the 23 PDZ 
domains with sufficient (>10) positive and negative peptides for 
the SemiSVR model and computed the average area under the 
Receiver Operating Characteristic curve (ROC AUC). The 
SemiSVR model was trained as before with all 81 non-test PDZ 
domains. The average ROC AUC score was 0.88 (Fig. S5A).  

To compare this result with that of a previous method for binary 
prediction published in (Chen, et al., 2008), we used their bootstrap 
testing approach. 1) PDZ bootstrap: leave 12% out for testing; 2) 
Peptide bootstrap: leave 8% out for testing; and 3) both PDZ and 
peptide bootstrap. The SemiSVR performed well in this test (AUC 
of 0.862±0.016, 0.853±0.021 and 0.848±0.017, respectively, Fig. 
S5B), which is comparable to the published performance of Chen’s 
model (AUC: 0.91 (0.84~0.96), 0.84 (95% C.I.: 0.76~0.89) and 
0.87 (0.67~0.98), respectively. 

4 DISCUSSION 
Inferring the relative strength of protein-peptide interactions medi-
ated by peptide recognition modules (PRMs) will lead to better 
understanding of cellular processes. Here, we show that it is possi-
ble to predict affinity of PDZ domain-peptide interactions based on 
primary sequence information. We also show that incorporating 
both positive and negative interaction data using a novel SemiSVR 
approach improves prediction. This approach is also successful at 
predicting which PDZ domain-peptide pairs are likely to interact 
(binary prediction). 
    Based on the experimental data, a threshold of 100 uM separates 
quantitative “positive” data from qualitative “negative” data. 

Table 4. Performance of Our SemiSVR Versus Local Information-
based Models Using Different PDZ Domain Similarity Definitions. 

Performance Measurement Spearman Pearson 
SemiSVR 118AA 0.605 0.653 

Nearest Neighbor 
SemiSVR 118AA 0.471 0.487 

118AA 0.303 0.323 
16BSs 0.305 0.319 

Naïve PWM transfer 
(Identity) 

10BS 0.326 0.303 
118AA 0.305 0.311 
16BSs 0.296 0.274 

Naïve PWM transfer 
(Blosum62) 

10BS 0.354 0.286 

Fig. 2. Sequence Similarity of a Test PDZ Domain to a Training 
Domain is an Important Performance Determinant.  PDZ domain 
similarity is defined by percent sequence identity and is calculated 
between each test PDZ domain to its nearest neighbor in the training set 
composed of 81 other PDZ domains. The prediction performance of the 
corresponding SemiSVR model is shown as Spearman. 
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Changing this threshold to more stringent values (i.e. 20uM and 
10uM) did not change our results (Table S6). 
    Although our method is mainly based on sequence similarity, it 
is interesting to analyze how much physicochemical factors con-
tribute to our prediction performance. To investigate this, we as-
sessed how well each of 11 properties from the “11-factor” encod-
ing (Liu, et al., 2006) can be used individually for quantitative 
prediction of PDZ-peptide interactions using SemiSVR. We found 
that isoelectric point, hydrophilicity scale, polarity, average acces-
sible surface area, van der Waals parameter epsilon and steric pa-
rameter are most important for performance, in decreasing order, 
suggesting they are the physicochemical factors that mostly modu-
late the binding strength of PDZ-peptide interactions (Fig. S6). 
    Given that physical forces between the domain and the peptide 
3D structures determine affinity, and our observation that 
SemiSVR performance correlates with sequence similarity be-
tween PDZ domains in testing and training sets, we postulate that 
natural PDZ domains with similar sequences have similar 3D 
structures which determine affinity in similar ways.  This is sup-
ported by the observation that PDZ specificities are found con-
served from worm to human (Tonikian, et al., 2008). It has been 
shown that it is easy to mutate PDZ domains to bind non-natural 
ligands, however, we only see a limited set of PDZ domain speci-
ficities in nature (Ernst, et al., 2009; Tonikian, et al., 2008). These 
observations are consistent with a constrained model of PDZ speci-
ficity evolution where a set of initial PDZ domain specificities 
evolved, and that these were then expanded to form a finite number 
of sub-families, each functionally similar down to the level of af-
finity determination. This model predicts that each sub-family has 
a characteristic structure and mode of determining binding affinity 
with a ligand. Regardless, we find that information useful for pre-
diction is taken from the entire PDZ domain family and this im-
proves prediction performance compared to using a naïve nearest 
neighbor-based predictor. As our method is trained on interaction 
data of natural PDZ domains, it may not do well at quantitative 
interaction prediction involving synthetic PDZ domains that have 

multiple mutations not found in our training data. We have noticed, 
in other work, that synthetic mutations may cause large changes in 
specificity, and presumably affinity (Ernst, et al., 2009; Tonikian, 
et al., 2008). This may occur by drastically changing the binding 
mode, for instance by causing the peptide to rotate. We do not 
notice these types of large specificity changes arising from small 
sequence differences in natural PDZ domains, possibly because 
they disrupt normal PDZ function. The reduced predictive ability 
on synthetic PDZ domains, at least for specificity, has also been 
recently noticed (Smith and Kortemme, 2010 ). However, we were 
not able to test this due to lack of sufficient affinity data on syn-
thetic PDZ domains. 

We observed that some PDZ domains share identical subse-
quences in the 10 and 16 binding positions but bind the same pep-
tides with different affinity. For example, both Dvl1 (1/1) and Dvl3  
(1/1) share identical subsequences in their 16 binding positions yet 
bind to peptide Caspr4 with 79.298μM and 30.756 μM KD respec-
tively. Assuming the affinities are measured accurately, this sug-
gests additional sequence positions are modulating the binding 
strength of PDZ-peptide interactions. This is supported by previous 
work showing that sets of non-binding positions coupled with a 
binding site contribute to the binding energy (Lockless and Ranga-
nathan, 1999). It has also been found that mutations in these sites 
may affect the structure of the binding site and thus alter binding 
affinity (Lockless and Ranganathan, 1999). Although our best 
predictor was obtained using the full PDZ sequence, the perform-
ance was only somewhat improved on average compared to using 
either 10 or 16 binding positions. This may be due to the limitation 
of our sequence-based approach that fails to capture structural 
features of PDZ domains and their ligands that are important for 
binding. Additional experimental data about how structural varia-
tion in the binding site combined with affinity data would be useful 
in the future to further address the importance of non-binding site 
positions on affinity. 
    The binding strength of domain-peptide interactions may also be 
affected by the presence of other partners bound. It will be interest-
ing to examine the potential competition of PDZ binding sites 
bound by multiple PDZ domains expressed at different concentra-
tions using our method. It will also be important to extend our 
method in the future to consider cooperativity (Gibson, 2009). 

The performance of the SemiSVR depends on sequence similar-
ity of test PDZ domains to those in the training set with sufficient 
binding peptides. The human Scribble PDZ domain we tested with 
is fairly close to domains in the training set (94% similar), thus is a 
good test of our approach. Because of this, we expect our method 
is immediately applicable to PDZ domains in multiple species that 
are close to the domains in our training set. We thus used our 
method to predict relative affinities for a set of reasonably close 
mouse and human PDZ domains (>60% domain sequence identity) 
to putative mouse and human PDZ ligands and included it as a 
convenient starting set (see Table S7, S8), which is useful for pri-
oritizing future experiments. 

Our results highlight the need to collect experimental domain-
peptide binding data covering PDZ sequence space to improve 
prediction methods. This means measuring affinities for domains 
that are less sequence related to those with known peptide affini-
ties. We also need more affinity data from other species to make a 
more general conclusion about cross-species generality. Our future 
work will include incorporating more quantitative and qualitative 

Fig. 3. SemiSVR Can Predict Changes in Affinity Resulting from Point 
Mutations Introduced into Known Binding Peptides of the a1syn PDZ 
Domain. The three wild-type peptides are denoted by asterisks (*). 
Each mutant within a set is labeled by a different shape. Residue muta-
tions are highlighted in red. One KIF1B mutant had no measurable 
binding, so it was excluded from our analysis. Performance of the 
SemiSVR on peptide mutation of a1synPDZ is very high (Spearman, 
0.921, p-value <1e-16 and Pearson, 0.922, p-value = 1.414e-07). All 
affinities are scaled to the range [-1,1] after taking log10. 
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interaction data from multiple sources into a prediction model to 
improve performance. For example, it might be possible to use 
phage display data to improve coverage and performance, which 
only includes qualitative positive PDZ domain-peptide pairs 
(Tonikian, et al., 2008). Furthermore, quantitative prediction can 
potentially be improved by considering additional information 
about the domain and peptide, such as the 3D structure features of 
PDZ domains (Hue, et al.; Stein and Aloy, 2010; Thijs, et al., 
2009) and co-evolving residues (Halabi, et al., 2009) in PDZ do-
main-peptide pairs. We plan to further develop our method along 
these lines and hope to increase its utility and accuracy in predict-
ing quantitative interactions involving PDZ domains and apply it 
to other peptide recognition modules. 
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