
Coordinate MicroRNA-Mediated Regulation of Protein
Complexes in Prostate Cancer
Mohammed Alshalalfa1,4*, Gary D. Bader2, Tarek A. Bismar3, Reda Alhajj1

1 Department of Computer Science, University of Calgary, Calgary, Alberta, Canada, 2 The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada and the

Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, 3 Departments of Pathology, Oncology and Molecular Biology and Biochemistry,

Faculty of Medicine, University of Calgary, Alberta, Canada, 4 Biotechnology Research Centre, Palestine Polytechnic University, Hebron, Palestine

Abstract

MicroRNAs are a class of small non-coding regulatory RNA molecules that regulate mRNAs post-transcriptionally. Recent
evidence has shown that miRNAs target entire functionally related proteins such as protein complexes and biological
pathways. However, characterizing the influence of miRNAs on genes whose encoded proteins are part of protein
complexes has not been studied in the context of disease. We propose an entropy-based framework to identify miRNA-
mediated dysregulation of functionally related proteins during prostate cancer progression. The proposed framework uses
experimentally verified miRNA-target interactions, functionally related proteins and expression data to identify miRNA-
influenced protein complexes in prostate cancer, and identify genes that are dysregulated as a result. The framework
constructs correlation matrixes between functionally related proteins and miRNAs that have targets in the complex, and
assesses the changes in the Shannon entropy of the modules across different stages of prostate cancer. Results reveal that
SMAD4 and HDAC containing protein complexes are highly affected and disrupted by miRNAs, particularly miRNA-1 and
miRNA-16. Using biological pathways to define functionally related proteins reveals that NF-kB-, RAS-, and Syndecan-
mediated pathways are dysregulated due to miRNA-1- and miRNA-16-mediated regulation. These results suggest that
miRNA-1 and miRNA-16 are important master regulators of miRNA-mediated regulation in prostate cancer. Moreover,
results reveal that miRNAs with high-influence on the disrupted protein complexes are diagnostic and prognostic biomarker
candidates for prostate cancer progression. The observation of miRNA-mediated protein complex regulation and miRNA-
mediated pathway regulation, with partial experimental verification from previous studies, demonstrates that our
framework is a promising approach for the identification of novel miRNAs and protein complexes related to disease
progression.
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Introduction

Prostate cancer (PCa) is the most frequent male malignancy and

the second cancer-related cause of death in Western countries [1].

Recently, considerable evidence has shown that non-coding RNAs

in general [1] specifically miRNAs are implicated in PCa and are

associated with its progression [2–6]. In particular, circulating

miRNAs are promising biomarkers of PCa progression [7,8].

Though there are only around 1000 miRNAs [9] in human, each

only 18–22 bp in length, more than one hundred of them play a

role in cancer [10], and they act as both oncogenes and tumor

suppressors [11]. Thus, characterizing the role of miRNAs in PCa

is crucial to understanding their function and possible utility for

therapeutic purposes.

Recently, the cross-talk between miRNA-target networks and

protein networks has been analyzed in several aspects [12–15]. For

example, direct miRNA targets and their partners in protein-

protein interactions (PPI) networks show significant modularity

[14]. miRNAs have specific effects on the formation of protein

complexes by selecting specific components of the complex [12],

and some protein complexes are enriched with targets of specific

miRNAs [13]. A positive correlation between protein connectivity

and number of different targeting miRNAs was observed [15]

indicating that hub proteins require more miRNA-mediated

regulation. In addition, miRNAs can simultaneously regulate

several proteins in the same functional module such as biological

pathways. Furthermore, PPI network topological features are

useful in filtering out false positive miRNA targets [16], and in

prioritizing miRNAs implicated in prostate cancer [17]. This

process is important to rank the significant miRNAs with a

potential role in prostate cancer. Taken together, there is clear

evidence of coordinated post-transcriptional regulation of protein

complexes and pathways by miRNAs. However, the regulatory

influence of miRNAs on genes whose encoded proteins are part of

protein complexes or protein pathways that are implicated in

cancer has not been thoroughly investigated.

To date, a number of mathematical models have been

developed to infer miRNA-mRNA modules or modular networks

using gene expression and miRNA-gene networks [18,19]. For

instance, SVD is a useful mathematical framework that has been

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e84261



applied in identifying implicated miRNA-mRNA modules in

prostate cancer [20], in addition to several areas of computational

biology [21–23]. SVD is helpful for biologists to analyze and

model genome-wide expression data, and reduce data dimension-

ality [22]. Given an M|N matrix X , the singular value

decomposition (SVD) of X is its representation as X~U S VT ,

where U is an orthogonal M|M matrix, V is an orthogonal

N|N matrix, and for the diagonal matrix S, elements are non-

negative numbers in descending order. The power of SVD resides

in the three matrixes generated as a result of the decomposition.

The squares of the singular values represent the relative

importance of the entropy in X matrix. Utilizing this fact, SVD

is used to rank genes based on the entropy they contribute to the

gene expression data [23].

In the post-genomics era, a crucial task in molecular biology is

to understand gene regulation in the context of biological

networks. Since miRNA target proteins, among others, that are

part of protein complexes and signaling pathways, it is important

to study the miRNA-mediated regulation of protein complexes in

disease progression. Using the protein network context of the

miRNA targets adds another layer of information to consider for

miRNA function characterization as miRNA influence on targets

propagates through the protein network to affect multiple

components of the pathway. Several studies reported regulation

of functionally related proteins by miRNAs [12–15], but little is

known about how miRNAs coordinately regulate protein com-

plexes and pathways in cancer.

In this study we propose SVD-based computational framework

to identify miRNA-protein complex modules that are dysregulated

in cancer. miRNA-protein complex and miRNA-pathway mod-

ules refer to the proteins in the protein complex or pathway and

the miRNAs targeting the genes encode them. Every module is

represented as a matrix where rows are protein members and

columns are targeting miRNAs. Every cell in the matrix represents

the correlation between the expression profile of the miRNA and

the expression profile of the protein. We anticipate that modules

that have significant entropy change in their singular values

between normal and cancer samples are functionally dysregulated.

We applied the proposed computational framework to character-

ize experimentally verified protein complexes from the CORUM

database [24], as well as from curated biological pathways from

Molecular Signatures Database (MSigDB), and miRNA-target

Figure 1. Overview of the proposed framework to construct miRNA-protein complex modules and calculate module entropy
between cancer and normal states. Protein complexes and miRNAs are integrated to construct modules (X) from gene and miRNA expression
data. The modules represent the mutual information between the expression of miRNAs and protein in the module. SVD is applied to decompose
modules’ matrix and Shannon entropy is calculated for each module in normal and cancer. The last step is to find modules with significant difference
between normal and cancer entropy.
doi:10.1371/journal.pone.0084261.g001
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interactions to identify miRNA-mediated protein complexes and

pathways dyregulation.

Materials and Methods

miRNA-targets interactions and protein complexes
Experimentally verified miRNA-target interactions were re-

trieved from two sources: MiRecords [25] and miRtarbase [26].

For protein complexes, we retrieved 2822 complexes from

CORUM(last accessed May,2012), which provides a resource of

manually annotated protein complexes from mammalian organ-

isms [24]. Complexes of size less than 2 or complexes not targeted

by any miRNA were removed as they do not form miRNA-protein

complex modules. 1106 complexes remained in the study when

using the miRNA-target interaction set. For biological pathways,

we used curated pathways from Molecular Signatures Database

(MSigDB) gene sets [27] that contain 1452 canonical pathway

gene sets(last accessed August,2012).

miRNA and target expression profiles in prostate cancer
mRNA and miRNA expression data was retrieved from the

MSKCC Prostate Oncogenome Project, available at the Gene

Expression Omnibus (GEO accession number: GSE21032). This

data contains mRNA and miRNA expression levels of 139
matched samples. This data that we will refer to as the Taylor data

is used to build the miRNA-protein complex modules. We also

used localized prostate cancer miRNA expression data from two

independent experiments (GSE23022 [28], NCI-60 [29]) to

validate the diagnostic significance of the miRNAs found to

influence protein complexes. The first dataset contains 20 normal

and 20 tumor samples, and the latter contains 6 normal and 6

tumor samples. Three independent prostate mRNA expression

datasets from Arul et al. [30], Yu et al. [31] and the Swedish

prostate cohort [32] are used. The Arul et al. data contains 6

normal, 7 primary, and 6 metastasis samples; the Yu et al. prostate

data contains 17 normal, 63 primary, and 24 metastasis; and the

Swedish prostate data contains 281 prostate cancer samples with

116 lethal and 165 indolent samples. The Swedish cohort data was

used to validate the prognostic value of affected protein complexes.

The Yu et al. and the Arul et al. data sets are used to validate the

diagnostic significance of the influenced protein complexes. Non-

prostate cancer miRNA expression data from NCI-60 [29] and

breast cancer mRNA expression data from Swedish breast cohort

[33], containing 159 tumor samples with clinical data, were also

used to assess if the influenced miRNA-protein modules are

prostate specific or they are dysregulated in other cancers as well.

Defining miRNA-protein complex modules’ entropy
For each miRNA-protein complex module, we construct a

matrix X where rows (i) represent proteins in the complex or the

pathway and columns (j) represent miRNAs that target at least one

member of the complex. Xij is defined as the mutual information

[34] between the expression profile of protein i and the expression

profile of miRNA j and is calculated as:

Xij~
X

d[i

X

r[j

p(d,r)log
p(d,r)

p(d)p(r)
ð1Þ

p(d,r) is the joint probability density function (pdf) of i and j, and

p(d) and p(r) are the marginal pdfs of i and j respectively. The

probability distribution functions were estimated using kernel

density estimates [35] as it showed to be superior to the histogram

in terms of a better mean square error rate of convergence of the

estimate.

X is the mutual information matrix between all miRNAs and all

genes in the complex module. Since we believe that when a

miRNA target a gene in the complex (based on miRNA-target

interaction), it may have indirect effect on the other members of

the complex. Thus the matrix X does not distinguish between a

miRNA that target a gene in the complex or not. The matrix X is

based on the notion that if a miRNA target a gene in the complex,

it has influence on the whole complex. The influence of miRNAs

on each protein complex or pathway is calculated by decomposing

XM|N using Singular Value Decomposition (SVD) [23] into

matrices USVT and compute the entropy of the matrix by

summing the squares of the singular values in the S matrix. M is

the number of proteins in the protein complex, and N is the

number of targeting miRNAs. The normalized relative signifi-

cance of pk of the k{th singular value in S is calculated as

pk~
s2

kPL
c~1 s2

c

ð2Þ

and the Shannon entropy of the data, represented by XM|N , is

calculated as:

E(XM|N )~{
1

log(L)

XL

k~1

pklog(pk): ð3Þ

Where sk is the kth singular value, L is min(M,N). Here we

anticipate that miRNA-protein complex modules that have

significance difference in the entropy of the singular values of X
between normal and cancer samples are functionally dysregulated.

The entropy of the singular values represents the dysregulation of

the miRNA-protein complex modules. Figure 1 provides a brief

description of the proposed framework. The first step is to

construct the miRNA- protein modules by calculating the MI

between all the expression of the proteins in the complex and the

expression of the miRNA targeting them. For each stage of cancer

(normal vs primary prostate cancer) we define the miRNA-protein

modules. Second, we find the singular values of each matrix and

calculate the entropy as the normalized sum of the squares of the

singular values. Finally, we find the modules with significant

difference between the modules representing the normal stage and

the cancer stage.

Identifying miRNA-coordinated protein complexes and
pathways in prostate cancer progression

Using gene expression data for normal and cancer samples, we

found E(Xnormal) and E(Xcancer) respectively for each module. We

used the difference between the two values,

DE~DE(Xnormal){E(Xcancer)D, to assess module’s influence by

miRNAs. To assess the significance of the influence value, we

randomly permuted protein complexes and pathways with the same

size as the complex of interest 1000 times, and found E for both

normal and cancer samples. DE was calculated for the random

permutations, and a p-value was computed for each complex and

pathways with the observed DE against the distribution of the DE
values generated from the random permutations. The DE value

represents the miRNAs’ influence on protein complexes or pathways

in prostate cancer progression; the higher the DE, the more

influenced the protein complex is. P-values were corrected using

Bonferroni correction. Modules that are significantly dysregulated
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by miRNAs in prostate cancer progression were further character-

ized both functionally and clinically.

Identifying downstream miRNA-mRNA interactions
influences by dysregulated protein complexes

We next asked if there are downstream miRNA-target interac-

tions influenced by the affected protein complexes. We defined

downstream genes as those that are dependent (correlation

conditional on protein complex dysregulation). To identify such

conditional interactions, we used conditional mutual information

between miRNAs and their experimentally validated targets from

EX given the expression of the influenced protein components of the

complex.

Given protein complex G and its components, g[G. We

calculated the conditional mutual information between each

miRNA (mi) and target (t) pair given the expression of protein

g, MImi,t=G , as described in [36]:

DMImi,t=g~DMI(mi,t){MI(mi,t=g)D ð4Þ

DMImi,t=G~
X

g[G

DMImi,t=g ð5Þ

We then found p-value(mi,t=g) for each interaction (mi,t) given

a protein g by permutating the expression profile of protein g 1000
times. To find the p-value for each complex, p-value(mi,t=G), we

converted the individual p-values(mi,t=g), g[G, to X 2 test

statistics using Fishers method X 2~{2
X

g[G
p{value(mi,t=g).

Results

Protein complexes and biological pathways that are influenced

in prostate cancer as a result of coordinate miRNA regulation are

identified and further functionally characterized.

miRNA-influenced protein complexes modules
We first analyzed the influence of miRNAs on protein

complexes in prostate cancer progression. We constructed miRNA

protein modules by integrating expression data, miRNA-target

interactions, and protein complexes (CORUM) as described in the

methods section, and then identified the entropy change of each

module in different prostate status(normal vs. cancer). Table 1

shows the full list of the most significant protein complexes

influenced by miRNA regulation in prostate cancer (pvE{10)

using the experimentally determined (EX ) miRNA-target interac-

tions. Bonferroni correction is used for multiple-testing correction.

In total, 42 complexes are predicted to be influenced by miRNAs.

Results reveal that complexes containing SMAD4 are significantly

affected in prostate cancer progression, and that the SMAD6-

HOXC8 complex is the most significantly influenced complex.

This complex plays a role in transcriptional repression by

inhibiting interactions between SMAD1 and HOXC8. The next

two important complexes contain SMAD4, SKI, and SMAD3.

Another set of miRNA-influenced complexes contain SIN3A,

HDAC, and ARID4B; these complexes act as transcriptional

repressors on MYC responsive genes and antagonize MYC

oncogenic activity, and they play a role in histone deacytelation,

which is important in gene expression control. Several other

complexes containing RBL1 and ARID4B, which has a sequence

similar to RBL1, are significantly affected. Most of the complexes

predicted to be influenced by miRNAs are of size less than 5. Two

complexes; namely, LINC complex (Corum ID: 5589) and SAP

complex (Corum ID: 591) are predicted to be influenced by

miRNAs. Interestingly, only RBL1 gene in LINC complex and

ARID4B in SAP complex are directly targeted by miRNAs,

suggesting that disruption of one protein by multiple miRNAs

could lead to disruption of the protein complex. SAP complex is

composed of histone binding and histone deacetylation proteins

suggesting a key role of epigenetic changes in prostate progression.

A list of the most significant protein complexes and their targeting

miRNAs is shown in Table S1. Visualizing the heatmap of the

complex modules (protein and miRNAs) reveal that they can

together define expression pattern for Primary cancer and

metastatic cancer (Figure S1 and S2 in File S1).

Functional analysis of miRNA-influenced protein
complexes

We performed functional analysis on the miRNA-influenced

proteins complexes by analyzing the biological processes they are

involved in. We performed functional analysis on the components

of the 42 complexes in Table 1 using the DAVID online tool [37]

available at (http://david.abcc.ncifcrf.gov/) ( 84 proteins were

functionally characterized). Benjamini multiple-testing correction

was applied for significant enrichment analysis. Functional analysis

demonstrated that the components of the complexes are enriched

with three major biological terms, phosphorylation (p = 1:1E{20),

transcriptional regulation (p = 7:8E{15) and acetylation

(p = 8:3E{10). Proteins in the complexes are enriched in Dwarfin

(p = 1:3E{3), MAD homolog (p = 1:3E{3), SMAD (p = 1:3E{3)

and tyrosine protein kinase (p = 4:3E{3) domains. The proteins

are enriched in the TGF-B signaling pathway (p = 9E{5),

pathways in cancer (p = 1:3E{10), prostate cancer (p = 9:5E{5),

and other specific cancers (Figure 2). Analyzing the molecular

function of the proteins supported that the influenced com-

plexes’ components are involved in transcription regulation

( p = 1:2E{17), SMAD binding (p = 4:4E{6), protein kinase

activity (p = 6:4E{5) and DNA binding (p = 3:7E{4). We then

analyzed the pathways of the miRNA targets in the complexes in

the background of all the miRNA validated targets. We used

DAVID to find the enriched terms in the miRNA targets in the 82

protein in the background of the miRNA validated targets. We

found the complexes enriched in pathways in cancer

(p = 1:3E{10), prostate cancer (p = 9:5E{5) and bladder cancer

(p = 2:2E{4).

Characterizing the relationship between the complex
size and the complex entropy

The entropy p.values of the protein complexes varied between

0.8 to 1:1E{200. One of the questions we asked is whether the

entropy values are driven by the complex size. We found that

complexes of size 2, 3 and 7 have the most significant pvalue, and

complexes of size greater than 10 are not very significant (Figure 3).

There are different biological interpretations for this observation.

One is that smaller complexes are more easily targeted by

miRNAs; however, when one protein of a larger complex, the

complex may still be functional but with less efficiency. Another

interesting observation is that there is no correlation between the

size of the protein complex and the number of miRNAs targeting

the protein in the complex (Table 1).

miRNA Regulation of Protein Complexes
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miRNA-influenced canonical pathway modules
To find the influence of miRNAs on pathways, we demonstrat-

ed the applicability of the framework on curated protein pathways

from the MSigDB gene set database. We asked how the the size of

the protein modules may affect the entropy value of the miRNA

influence. We used miRNA-target interactions to find the miRNA

influence on pathways. Table 2 shows the pathways from MSigDB

that are significantly influenced by miRNAs in PCa; results reveal

that Syndecan-mediated and RAS signaling pathways are highly

influenced by miRNAs. The NF-kB mediated pathway involving

adaptor proteins MYD88 and TRAF6, that are involved in the

Toll-like receptor and IL-1 receptor signaling pathways, is also

influenced by miRNAs. Chromatin maintenance and RNA-

polymerase mediated transcription are also influenced by miRNAs

in prostate cancer. From the miRNA-target interactions, we found

54 miRNAs that target the significant pathways; 24 of them target

Table 1. Significant miRNA-coordinated protein complexes using experimentally validated miRNA-target interactions set EX .

CORUM ID CORUM Complex Name p value Complex size # miRNAs Biological Process

4089 SMAD6-HOXC8 complex 1.01E-199 2 4 DNA binding

3959 SMAD3-SMAD4-cSKI 3.94E-104 3 9 TGF-beta-receptor signalling pathway

3740 SKI-SMAD3-SMAD4 pentameric complex 6.19E-92 3 9 TGF-beta-receptor signalling pathway

2447 ITGA9-ITGB1-ADAM12 complex 6.55E-88 3 4 Cell-cell adhesion

3200 SMAD4-SKI complex 2.40E-75 2 9 TGF-beta-receptor signalling pathway

5589 LINC complex 3.74E-67 7 3 G2/M transition of mitotic cell cycle

531 XPA-ERCC1-ERCC4 complex 3.29E-66 2 3 DNA repair

2590 FOXO1-FHL2-SIRT1 complex 2.15E-59 3 11 modification by acetylation, deacetylation

2763 MBD1-Suv39h1-HP1 complex 1.61E-47 3 2 posttranslational modification of amino acids

3206 SMAD4-SKI-NCOR complex 7.15E-44 3 9 TGF-beta-receptor signalling pathway

5382 ARNT-HIF1A complex 3.53E-38 3 5 Transcription activation

5409 TIAM1-GRIN1 complex 2.28E-36 2 2 Cell growth

5158 SMARCA2/BRM-BAF57-MECP2 complex 2.03E-35 3 5 Transcription repression

5281 Cell-cell junction complex (CDH1-CTNNB1) 6.93E-35 2 2 cadherin mediated signalling pathway

3739 SKI-SMAD2-SMAD4 pentameric complex 1.13E-29 3 10 TGF-beta-receptor signalling pathway

5190 TIAM1-EFNB1-EPHA2 complex 1.19E-27 3 4 Neurogenesis

591 SAP complex (Sin3-associated protein complex) 1.74E-26 8 4 Modification by acetylation, deacetylation

3197 SMAD4-SNO-SKI complex 3.57E-26 3 9 TGF-beta-receptor signalling pathway

2761 SMAD3-SMAD4-FOXO1 complex 1.82E-24 3 13 TGF-beta-receptor signalling pathway

903 RET-Rai complex 1.53E-22 5 2 Transmembrane signal transduction

1096 SNX complex 1.75E-22 4 2 Receptor enzyme mediated signalling

695 SIN3-HDAC-SAP30-ARID4 complex 1.80E-22 4 80 Modification by acetylation, deacetylation

592 SAP complex (Sin3-associated protein complex) 2.78E-19 9 4 Modification by acetylation, deacetylation

738 SIN3-ING1b complex I 4.30E-19 9 4 Modification by acetylation, deacetylation

2880 SCF subcomplex 4.44E-19 3 7 Modification by phosphorylation,ubiquitination

862 DNMT1-G9a complex 4.29E-18 3 6 DNA methylation and posttranslational
modification of amino acids

5920 KSR1-RAF1-MEK complex 5.63E-18 4 4 MAPKKK cascade

691 SIN3-SAP25 complex 2.28E-17 11 9 Modification by acetylation

1539 G protein complex 1.99E-15 3 2 G-protein coupled receptor signalling pathway

3046 hs4 enhancer complex (slow migrating complex) 2.43E-15 2 2 NIK-I-kappaB/NF-kappaB cascade

1490 DAXX-DNMT1-DMAP1 complex 4.98E-15 3 6 Transcription repression

521 Polycystin-1-E-cadherin-beta-catenin complex 1.45E-14 3 2 Intercellular junction

2593 FOXO3-SIRT1 complex 1.04E-12 2 8 Anti-apoptosis

5184 SWI/SNF chromatin-remodeling complex 1.20E-12 5 5 Transcription repression

836 20S methyltransferase core complex 1.68E-12 2 5 Posttranslational modification of amino acids

3086 CCND3-CDK4 complex 2.51E-12 2 8 Modification by phosphorylation

1473 E2F5-RB2-DP1 complex 1.47E-11 3 7 Transription

5171 SH3KBP1-CBLB-EGFR complex 5.13E-11 3 6 Transmembrane receptor protein tyrosine kinase
signalling pathways

2944 Notch1-p56lck-PI3K complex 6.67E-11 3 13 Notch-receptor signalling pathway

The table showed the corrected p-value, the size of the complex and the number of miRNAs targeting the complex.
doi:10.1371/journal.pone.0084261.t001
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more than one member of the pathway. miRNA-1, miRNA-7b,

and miRNA-16 were found to target more than 5 different

members of the same pathway, suggesting that these three

miRNAs are key regulators of prostate cancer.

miRNAs influencing protein complexes have a role in
prostate cancer progression

We then investigated the functional role of 85 miRNAs that target

the 42 protein complexes. Only 66 miRNAs were present in the

Taylor gene expression data. We generated a list of 65 miRNAs from

a thorough literature search for miRNAs involved in prostate

cancer. 45% of the 66 miRNAs are in common with the 65 miRNA

(p = v1E{5) that have an experimentally validated functional role

in prostate cancer progression, such as miR-1, miR-106b, miR-221,

miR-222, miR-96, and miR-182. (see Table S2).

Prognostic value of miRNA-protein complexes modules
In this section we characterize the prognostic value (cancer

recurrence and time to death) of the miRNA-protein complex

modules. We first retrieved the expression of the 84 proteins, that

are part of the 42 complexes in Table 1, from both the Taylor and

the Swedish prostate data. We also extracted the miRNA

expression of the 85 miRNAs that target the 84 proteins from

the Taylor prostate data. Initially we clustered the protein and

Figure 2. Pathway Enrichment Map of dyregulated protein complexes. Pathway Enrichment Map of dyregulated protein complexes. We
extracted the protein members of the dysregulated protein complexes and found enriched pathways using DAVID online tool.To visualize
enrichment map of pathways, we used Enrichment Map Cytoscape plugin [47] to visualize enriched pathways. Nodes in this figure represents
enriched pathways, links between nodes represent the fraction of overlap between them. The darker the node the more enriched the pathway is, and
the thicker the link, the more significant the overlap is.
doi:10.1371/journal.pone.0084261.g002

Figure 3. Correlation between protein complex size and the significance of the SVD based entropy. Using the experimental miRNA-
target interaction to assess the significance of miRNA-mediated dysregulation of protein complexes, we analyzed the relationship between the
complex size and the p.value generated by our framework.We found that complexes f size 2, 3 and 7 have the most significant pvalue, and complexes
of size less than 10 are not very significant.
doi:10.1371/journal.pone.0084261.g003

miRNA Regulation of Protein Complexes

PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e84261



Table 2. Canonical pathways influenced by miRNAs in prostate cancer.

Canonical pathway Corrected p-value

REACTOME-ABCA-TRANSPORTERS-IN-LIPID-HOMEOSTASIS 9:26E{29

REACTOME-MYD88-MAL-CASCADE-INITIATED-ON-PLASMA-MEMBRANE 9:18E{27

REACTOME-ACETYLCHOLINE-NEUROTRANSMITTER-RELEASE-CYCLE 7:56E{21

PID-RAS-PATHWAY 1:13E{16

PID-SYNDECAN-2-PATHWAY 5:01E{16

PID-LYMPHANGIOGENESIS-PATHWAY 1:41E{12

REACTOME-TRAF6-MEDIATED-INDUCTION-OF-NFKB-AND-MAP-KINASES-UPON-TLR7-8-OR-9-ACTIVATION 8:01E{11

REACTOME-ACTIVATED-AMPK-STIMULATES-FATTY-ACID-OXIDATION-IN-MUSCLE 1:75E{09

MIPS-CRSP-MEDIATOR-2-COMPLEX 2:04E{08

BIOCARTA-EDG1-PATHWAY 1:44E{07

PID-SYNDECAN-1-PATHWAY 1:05E{05

KEGG-GLUTATHIONE-METABOLISM 1:93E{05

REACTOME-CHONDROITIN-SULFATE-DERMATAN-SULFATE-METABOLISM

4:10E{04

REACTOME-CYCLIN-E-ASSOCIATED-EVENTS-DURING-G1-S-TRANSITION

7:96E{04

REACTOME-SEMA3A-PLEXIN-REPULSION-SIGNALING-BY-INHIBITING-INTEGRIN-ADHESION

1:38E{03

BIOCARTA-BARR-MAPK-PATHWAY

2:47E{03

REACTOME-CHROMOSOME-MAINTENANCE

2:64E{03

REACTOME-RNA-POL-I-TRANSCRIPTION-INITIATION

3:11E{03

PID-VEGFR1-2-PATHWAY

3:32E{03

PID-PI3KPLCTRKPATHWAY

1:74E{02

doi:10.1371/journal.pone.0084261.t002
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miRNA samples into two groups using k-means clustering, and

then use logrank and COX-hazard regression test to assess the

clinical significance of the separation. The objective here is to

show that the protein complex members can stratify patients into

clinically distinct groups. Unfortunately, results were not signifi-

cant; clustering the patients based on the 85 miRNAs into two sets

gave p~0:23 from the Taylor miRNA data. On the other hand,

clustering the 84 proteins into two groups based on the Taylor

mRNA data gave p~0:15, and p~0:54 based on the Swedish

data. To extract more accurate prognostic biomarkers from these

lists, we performed univariate COX-hazard regression analysis

and then selected proteins with significant p-valuev0:001. The set

of 84 proteins was reduced to 23 proteins and miRNA set was

reduced to 21 miRNAs (Table 3). We then performed clustering

based on the expression of proteins and miRNAs in the reduced

set and characterized their clinical significance. For the 23

proteins, the clustered set of patients in the Taylor data are

significantly separated (p = 0.005) (Figure 4A). As a negative

control, we randomly selected 23 proteins 1000 times and

repeated the clustering and logrank test, achieving an average of

p = 0.26. Further grouping the samples into three sets demon-

strated more significant separation between high-risk and low-risk

patients (p = 0.00088) (Figure S3 in File S1). To further test the

prognostic value of the 23 genes on the Swedish dataset

(independent data that was not used to identify miRNA-influenced

protein complexes), we used their expression values from the

Swedish data, and grouped samples into two groups that were not

significantly separated (p = 0.5). However, when we clustered

samples in the Swedish across the 23 proteins into three groups, we

found significant separation into low-risk, intermediate risk and

high risk patients (Figure 4B). High-risk patients are significantly

separated from low-risk patients (p = 0.008) compared to the

average of 1000 random permutations of the samples (p = 0.63).

When we functionally analyzed the enriched terms in the 23

proteins, we found that they are enriched in several cancer

pathways such as Cell cycle (p = 1:9E{4), TGF-beta pathway

(p = 4:5E{3), Chronic myeloid Leukemia (p = 3:7E{4),and Notch

signaling (p = 1:2E{2). In addition, the genes were enriched in

transcription regulation biological process (p = 6:4E{7).

To test the prognostic value of the 23 proteins for other cancer

types, we used breast data from the Swedish breast cohort.

Grouping the samples into two sets using the 23 proteins reveals

significant association with cancer-specific death and cancer

recurrence (Figures 4C-D). We also used GOBO online tool

[38] (http://co.bmc.lu.se/gobo) to associate the expression of the

proteins with distant metastasis free survival across more than

1200 samples with different genotypes. The 23 proteins are found

to be associated with breast cancer metastasis across all samples

(p = 0.0076)(Figure S4A in File S1). Results also reveal that the 23

proteins are more closely associated with metastasis in the ER-

positive (p = 0.00057)(Figure S4B in File S1) and the LN-negative

breast cancer (p = 0.004)(Figure S4C in File S1) subtypes.

To characterize the prognostic value of the 21 influencing

miRNAs, we extracted their expression data from the Taylor

miRNA data and clustered the samples into two groups. The 21

miRNAs harbour significant prognostic value as they lead to

significant separation between the two resulted patient sets

(p = 0.00004, 1000 random sets gave p = 0.11)(Figure S5 in

File S1). When samples were grouped into three groups across

the 21 miRNAs, very significant separation between the low-risk

and high-risk samples (p = 0.00021, 1000 random sets gave

p = 0.28 ) (Figure S6 in File S1) is found. The prognostic power

of the 21 miRNAs was compared to 94 miRAs differentially

expressed between tumor and normal in the Taylor data, and 50

miRNAs differentially expressed between aggressive prostate

cancer and non-aggressive cancer. The 94 miRNAs have a

logrank p = 0.019 and the 50 miRNAs have logrank p = 0.00046.

This result suggests that miRNAs that influence protein complexes

are significant prognostic biomarkers.

In summary, results reveal that miRNAs that coordinately

regulate protein complexes are valuable prognostic biomarkers. In

addition, protein complexes dysregulated by miRNAs are prog-

nostic biomarkers that are candidates as therapeutic targets for

prostate cancer treatment.

Validating the diagnostic power of the influenced
protein complexes and miRNAs on independent
expression data

To characterize the diagnostic role of the miRNA-influenced

protein complexes and targeting miRNAs, we validated their

ability to distinguish tumor samples from non-tumor samples using

independent mRNA and miRNA expression data sets. A linear

support vector machine with 10-fold cross validation was used to

accurately predict the class label of patients (Normal, Primary or

Metastasis). The SVM classifier takes expression data of patients

across the miRNA-influenced proteins and aims to predict the

class of the patients using the expression data. Here cross-

validation is used to assess the performance of the model due to the

lack of additional independent samples. Results (Table 4) reveal

that the SVM, using the expression level of the proteins in the

miRNA-influenced protein complexes, successfully separated

primary from normal samples (85%) and metastasis from primary

samples (100%) in the Arul et al. data. The proteins also classified

primary and normal samples (80%) and metastasis vs. primary

cancer (83%) in the Yu et al. data. Using the hierarchical clustering

forthe Taylor data (Figure S7 in File S1), results show that mets

samples are clearly separated from primary and normal samples.

To characterize the influential miRNAs and their role in

prostate cancer progression, we validated the diagnostic power of

the miRNAs on two independent prostate miRNA expression data

sets (GSE23022, NCI-60). Classification results reveal that the

influential miRNAs are robust diagnostic biomarkers as they are

able to separate tumor from normal samples in GSE23022

(77.5%, random sets of miRNAs gave 54%) and NCI-60 data sets

(91%, 63% using random sets)(Figure S8 in File S1). Additionally,

the diagnostic power of the miRNAs was validated in non-prostate

cancer (Colon(100%, 85% using random sets), Kidney(100%, 88%

using random sets), Lung(100%, 86% using random set) and

breast(100%, 90% using random set)). Interestingly, SVM, using

the expression level of the miRNA set, was able to successfully

separate tumor vs. normal samples across all the various cancer

types (Table 4), indicating that these miRNAs might play a global

role in regulating protein complexes in cancer.

We even got better classification for the Taylor data when we

combined the 23 proteins and the 21 miRNAs. Figure 5 shows the

heatmap of the combined proteins and miRNAs. The heatmap

shows that the Mets samples are well segregated from the rest of

the samples, and the normal samples are well clustered together.

This result indicates that the modules are related to prostate

cancer progression.

Characterizing the downstream effect of dysregulated
protein complexes

We next asked if there are miRNA-target interactions that are

affected by the dysregulated protein complexes. We selected the

protein complexes that are highly dysregulated based on the results

miRNA Regulation of Protein Complexes
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from Table 1: G-protein complex, SKI-SMAD3-SMAD4,

ITGA9-ITGB1-ADAM12, SMAD6-HOXC8, SIN3-ING1b, and

SIN3-HDAC-SAP30-ARID4 complexes. To characterize the

downstream effect of the dysregulated protein complexes on

miRNA-target interactions, we used conditional mutual informa-

tion to assess the significance of the conditional dependence of the

expression profiles of the miRNA-target interactions on the

expression profiles of the complex protein members as described

in Equation 4. Table S3 shows the miRNA-target interactions

dependent on the protein complexes we are interested in. We

found that miRNA-1 and miRNA-16 interactions are significantly

dependent on the protein RAF, which is part of the G-protein

complex. MEIS2-miRNA-204, FOS-miRNA221/222 and

miRNA-1 are dependent on SMAD3 that is part of SKI-

SMAD3-SMAD4 complex. Furthermore, MEIS1-miRNA-204,

MEIS2-miRNA-204, ZEB1-miRNA-200c, and TPM1-miRNA-1

are dependent on ITGA9 and ITGB1. Lastly, we found that

miRNA-200b/a are dependent on HDAC1 and miRNA-16 is

dependent on RBBP4 that is member of SIN3-HDAC-SAP30-

ARID4 complexes, suggesting that these miRNAs are key players

of miRNA-mediated regulation in prostate cancer. Using these

dependencies, we built a protein-protein network representing

miRNA-coordinated regulation. Two proteins are connected if the

interaction between one of them and a miRNA is conditionally

dependent on the other protein (Figure 6). For a full list of

interactions dependent on dysregulated protein complexes see

Table S3.

Discussion

MicroRNA-mediated regulation is a crucial layer of gene

regulation that has influence on diverse biological processes. Using

protein network context to characterize the mode of action of

miRNAs is a new area of research in functional genomics that

requires further investigation, to better understand miRNAs’

influence on the target’s protein context. Studying the miRNA-

protein complex modules to characterize the diagnostic and

prognostic role of miRNAs and protein interactions provide

potential biomarkers and therapeutic targets relevant for prostate

cancer diagnosis. A wide range of miRNAs and biological

pathways are significantly altered in prostate cancer [39], but

the influence of these miRNAs and their mode of action is not yet

clear. In this work, we developed a computational framework that

integrates expression data, miRNA-target network, and protein

Figure 4. Kaplan-Meier plots for the 23 proteins from the Taylor and Swedish data. A. Samples were grouped into two groups based on
the expression of the 23 proteins from the Taylor mRNA data and then logrank test was applied to assess separation significance (p = 0.005). B.
Samples from the Swedish prostate cohort were grouped into three groups using the expression of the 23 proteins. The resulted three groups are
significantly separated which shows the prognostic power of the 23 proteins (low risk vs. high risk (p = 0.008), low risk vs. intermediate risk (p = 0.16),
high risk vs. intermediate risk ( p = 0.02)). C. Samples from the Swedish breast cohort were grouped into two groups based on the expression of the
23 proteins. The two groups have distinct death specific association (p = 0.004). D.Samples from the Swedish breast cohort were grouped into two
groups based on the expression of the 23 proteins. The two groups have distinct cancer recurrence profile (p = 0.008).
doi:10.1371/journal.pone.0084261.g004
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networks to identify miRNAs that coordinately regulate protein

complexes in prostate cancer development, and characterize their

role functionally and clinically. The developed framework explores

the regulation of miRNAs and protein complexes or pathways.

The framework also identifies miRNAs and proteins that are

influenced by the dysregulated protein complexes. This framework

can be easily applied in TF-mediated pathway dysregulation.

One of the factors that may affect identifying miRNA-protein

interaction modules is the protein-interaction and miRNA-target

data. Since both data are noisy and may lead to false discoveries,

we used protein complexes data from CORUM database that are

experimentally verified complexes. The second factor is the

miRNA-target interaction data. Most of the computationally

predicted interactions are noisy, thus we used experimentally

validated miRNA-target interactions from miRecord and miR-

Tarbase databases. Using experimentally validated interactions

between proteins and miRNAs greatly helps to avoid noise in

computational predictions.

Based on experimentally validated interactions, we identified 42

protein complexes that are dysregulated in prostate cancer

progression as a result of a functional miRNA that targets at least

one member of the protein complex. A mutual information

measure was used to assess if correlation between the miRNA and

its targets’s expression profiles changes during cancer progression.

Singular Value Decomposition has been widely applied to cluster

gene expression data and assess the entropy gained in each module

during cancer progression. Here, the entropy in the singular values

of the modules represent the coordinated regulation of miRNAs

on protein complexes. We found 42 complexes dysregulated in

prostate cancer progression. The 42 complexes are composed of

84 unique genes that are not all prognostic. Using cox-regression

the 84 set was reduced to 23 genes that are significantly prognostic

to predict cancer recurrence. The 23 genes are distributed across

most of the 42 complexes. We noticed some genes in the 23 set

(like SMAD4, SIN3A, and others) are common among multiple

complexes and thus this could explain why the number of reduced

genes (23) is less than the number of complexes (42). We found two

major types of complexes that are affected by miRNAs during

cancer progression; the first contains SMAD3, SMAD2, SMAD4,

SMAD6, FOXO1, HOXC8, and SKIL, which are connected to

AKT1, which is in turn a key modulator of TGF-B signaling

pathway [40]. Dysregulation of this pathway causes key changes in

cell proliferation and growth. The second significant set of

complexes contains SIN3A, RBBP7, HDAC1, HDAC2, SAP30,

and SAP25 that participate in two important pathways. SIN3A is

linked to MAX and MXD1, which are key regulators of MYC,

acting as transcriptional repressors by interacting with MXI1 and

then tethering SIN3A to DNA to repress transcription. The

second important pathway is histone acytelation and deacetylation

are highly dysregulated as many proteins RBBP7, RBBP4,

HDAC1, HDAC9, HDAC2, SAP30, SAP25, and NCOR1 in

these processes contribute to promote histone deacetylation and

consequently transcriptional repression and nucleosome remodel-

ing. Another set of proteins that play a key role in chromatin

remodling is DMAP1 and DNMT1, which interact with HDAC2

to promote histone modification and transcriptional repression by

methylating DNA and histones during cell replication. DNMT1

and HDAC1 levels are upregulated in prostate cancer, suggesting

that they play roles in the inactivation of various critical genes via

DNA methylation-induced chromatin remodeling [41]. Inhibitors

of HDACs have emerged as potent anti-cancer agents; more than

100 clinical trials are ongoing with HDAC inhibitors as

monotherapy or in various combination therapies [42]. This

reveals that miRNA influence on epigenetic gene regulation is a

key layer in gene expression control in prostate cancer.

We next asked if the identified dysregulated protein complexes

are data specific, and extracted their expression from two

independent data sets (Arul et al. and Yu et al.) and found that

SVM correctly classify most of the samples using the expression of

these proteins. This indicates that these proteins are dysregulated

Table 3. Prognostic proteins and prognostic miRNAs that
were extracted from the 84 and 85 protein and miRNA lists
respectively based on univariate regression analysis.

Prognostic proteins Prognostic miRNAs

ADAM12 hsa-miR-1

ARID4B hsa-miR-106b

E2F5 hsa-miR-125b

EGFR hsa-miR-145

FHL2 hsa-miR-155

HOXC8 hsa-miR-16

MYBL2 hsa-miR-182

PIK3R1 hsa-miR-18a

RBBP7 hsa-miR-194

SAP18 hsa-miR-195

SIN3A hsa-miR-199b-3p

SIRT1 hsa-miR-204

SNX1 hsa-miR-20b

SMAD3 hsa-miR-210

SMAD4 hsa-miR-221

DNMT1 hsa-miR-23b

HDAC1 hsa-miR-26b

HDAC2 hsa-miR-27b

ITGB1 hsa-miR-29b

MYBL2 hsa-miR-31

RBBP4 hsa-miR-92a

SMAD6

TFDP1

doi:10.1371/journal.pone.0084261.t003

Table 4. SVM classification with 10-fold cross validation to
classify samples into normal, primary or metastasis using
protein or miRNA expression profiles.

Protein complexes miRNA

Arul data GSE23022

Primary vs. Normal: 85% Primary vs. Normal:77.5%

Primary vs. Metastasis: 100%

Normal vs. Metastasis: 100%

NCI60 (Normal vs. Primary tumor)

Yu data Prostate: 91%

Primary vs. Normal: 80% Colon:100%

Primary vs. Metastasis: 83% Kidney: 100%

Normal vs. Metastasis: 76% Lung: 100%

Breast 100%

doi:10.1371/journal.pone.0084261.t004
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in prostate cancer. We further characterized their clinical

significance and found that they are associated with cancer-

specific death as they could separate high-risk from low-risk

patients. We further tested the dysregulated protein on non-

prostate data (Swedish breast cohort) and found that proteins are

associated with cancer-specific death, tumor recurrence, and

metastasis, indicating that these miRNA-influenced protein

complexes could be dysregulated in multiple cancer types.

We further tested the diagnostic and prognostic ability of the

regulating miRNAs and found that they are also and significantly

accurate diagnostic biomarkers associated with prostate cancer

recurrence. We used miRNA expression of other types of cancer

(Lung, Kidney, Breast, Colon) and showed accurate diagnostic

performance, concluding that miRNA-protein complex modules

are diagnostic and prognostic biomarkers that could be used for

therapeutic purposes.

We next sought to assess if the dysregulated protein complexes

have a consequence effect on the expression of the downstream

genes. Our results reveal that miRNA-1, miRNA-204, miRNA-16,

and miRNA-200b are dysregulated due to the dysregulation of

protein complexes identified. Finally we generated a network

between dtsregulated protein complex members and proteins

targeted by miRNAs based on conditional dependency. This helps

to identify new proteins that are downstream of the miRNA-

influenced protein complexes and are regulated through a miRNA

but may not be part of known protein complexes, such as MEIS1,

MEIS2, ZEB1, TPM1, DICER2, TPM2.

Another significant factor that should be considered is the size of

the protein complexes used in this study. The protein complexes

we used from CORUM are generally small (3-10 proteins) and

may have an effect on the miRNA-mediated influence. Thus,

considering larger functionally related proteins like signaling

pathways proteins may support that our method is effective to

find miRNA-influenced protein complexes. To investigate the

influence of miRNAs on protein pathways, we constructed

miRNA-protein pathways modules and found the most signifi-

cantly miRNA-influenced pathways. The results show that RAS-

mediated, NF-kB pathways and Syndecan-mediated pathways are

highly influenced by miRNAs. Syndecan-1 is downregulated in

prostate carcinoma, and transfection expression inhibits cancer

growth [43]. Interestingly, there is no overlap between the

pathways governing the dysregulated protein complexes and the

dysregulated pathways identified. This may depend on several

factors like number of miRNAs targeting each complex and the

size of the complex itself. We found 54 miRNAs that target the

pathways, three of which, miRNA-1, miRNA-7b, and miRNA-16

target more than 5 members of the same pathway. They were also

found to target the physical protein complexes, suggesting a vital

role of miRNA-1 and miRNA-16 in prostate cancer progression.

Finally, we investigated if there are biological experiments that

validated our identification of the importance of the dysregulated

protein complexes and miRNA modules in prostate cancer

progression. Hudson et al [5] demonstrated that miRNA-1,

involved in histone deacetylation, has a tumor suppression role

and acts as a prognostic and diagnostic biomarker. miRNA-204 is

another key regulator in prostate cancer progression as it regulates

several genes, like MEIS1 and MEIS2, as a result of protein

complex dysregulation [5]. Deregulation of Hox protein cofactors

MEIS2, MEIS1 and Pbx1 are associated with cancer oncogenesis

and tumor progression [44]. The role of MEIS2 and MEIS1 in

low-grade prostate tumors suggests that they play a critical

function in the formation of poor prognosis. Another key regulator

that was investigated in prostate cancer is SMAD4, which is a

putative suppressor of prostate tumor progression [45]. SMAD4 is

Figure 5. Heatmap of the 23 protein and 21 miRNA from Taylor data. We extracted the expression of 21 miRNAs and 23 proteins from Taylor
data and then used hierarchical clustering to cluster samples. Results show that Mets samples are fully segregated from the normal and PCa samples.
Normal samples tend to be grouped together and have a distinct expression profile.
doi:10.1371/journal.pone.0084261.g005
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downregulated in metastatic prostate cancer and is downregulated

in PTEN{={. PTEN{={SMAD4{={ samples drive progression

of PTEN-deficient prostate tumor to highly aggressive prostate

cancer metastatic to lymphnode [45]. Another important pathway

that is involved in prostate cancer progression is NF-kB mediated

signaling. NF-kB inhibitors decrease AR expression levels,

prostate-specific antigen secretion, and proliferation of prostate

cancer cells in vitro [46]. Our results suggest that NF-kB pathway

dysregulation is mediated by miRNAs.

Conclusions
Investigating the functional role of miRNAs using a systems

biology perspective helps us to understand the propagated

influence of miRNAs on protein complexes in a particular

biological context. Integrating the context (i.e. from gene

expression data) of the protein targets of miRNAs is a promising

step to identify miRNAs of high influence on gene expression of

the target in the cell. This study provides a novel computational

framework to identify dysregulated protein modules (complexes,

pathways) influenced by miRNAs and find miRNA-target

interactions consequently influenced by the dysregulated protein

modules. The proposed framework reveals novel modules for

further experimental design and investigations. Our proposed

framework in this study identifies that protein complexes

containing SMAD and HDAC proteins are the most influenced

complexes by miRNAs. As a result of the dysregulation, other

proteins like MEIS1, MEIS2, TPM1, and ZEB1, which are

putative tumor suppressors, are affected. Finally, our developed

framework can be generalized to find the influence of miRNAs on

other curated gene sets data; TF-gene data for instance. The

results of our framework reveal a previously unidentified layer of

regulation that explains the dysregulation in biological pathways.

Our results suggest that several cancer pathways (RAS, NF-kB) are

under the control of miRNA-mediated regulation, and miRNA-1

and miRNA-16 are master regulators of miRNA-mediated

regulation in prostate cancer.
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their targeting miRNAs. A list of the most significant protein

Figure 6. Network of dysregulated complexes and influenced proteins. Dysregulated protein complexes have a downstream effect on other
proteins that affect their associations with miRNAs. We identified miRNA-target interactions influenced by the dysregulated protein complexes and
then built a network between dysregulated complexes and proteins. Green diamonds represent the components of the dysregulated complexes.
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