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Analyzing yeast protein–protein interaction data
obtained from different sources

Gary D. Bader and Christopher W.V. Hogue*

High-throughput methods for detecting protein interactions, such as mass spectrometry and yeast two-hybrid
assays, continue to produce vast amounts of data that may be exploited to infer protein function and regula-
tion. As this article went to press, the pool of all published interaction information on Saccharomyces cerevisi-
ae was 15,143 interactions among 4,825 proteins, and power-law scaling supports an estimate of 20,000 spe-
cific protein interactions. To investigate the biases, overlaps, and complementarities among these data, we
have carried out an analysis of two high-throughput mass spectrometry (HMS)–based protein interaction data
sets from budding yeast, comparing them to each other and to other interaction data sets. Our analysis reveals
198 interactions among 222 proteins common to both data sets, many of which reflect large multiprotein com-
plexes. It also indicates that a “spoke” model that directly pairs bait proteins with associated proteins is rough-
ly threefold more accurate than a “matrix” model that connects all proteins. In addition, we identify a large, pre-
viously unsuspected nucleolar complex of 148 proteins, including 39 proteins of unknown function. Our results
indicate that existing large-scale protein interaction data sets are nonsaturating and that integrating many dif-
ferent experimental data sets yields a clearer biological view than any single method alone.

ANALYSIS

Proteomics technologies, such as mass spectrometry (MS) and
yeast two-hybrid assays, are currently providing a wealth of data
on gene function through molecular interactions and post-trans-
lational protein modifications1. Protein–protein interactions
mediate many aspects of cellular behavior2 and are the basis for
assemblies of molecular machines, such as RNA polymerase II.
Estimates of the number of protein interactions range from two to
ten per protein3.

Two recent high-throughput analyses of protein complex com-
position in S. cerevisiae by Gavin et al.4 and Ho et al.5 have generat-
ed an unprecedented amount of protein interaction information.
Both methods use tagged proteins as baits for high-affinity cap-
ture of complexes whose protein components are subsequently
identified using MS6. Ho et al. use overexpressed bait proteins in a
mild, single-step purification protocol based on the FLAG
(DYKDDDDK) epitope tag and ultrasensitive liquid chromatogra-
phy (LC)–tandem MS for protein identification (HMS-PCI; high-
throughput mass-spectrometric protein complex identification).
Gavin et al. use a more stringent two-step purification based on
the tandem-affinity purification (TAP) tag using native bait pro-
tein expression and less precise peptide mass fingerprinting by
matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) MS for identification.

There are clear advantages and disadvantages to each approach,
as noted by a recent study by von Mering et al7. Because each study
detected interactions covering ∼ 25% of the predicted yeast pro-
teome, each represents a partial analysis of protein–protein inter-
action space. Together, the two HMS data sets provide functional
information for 2,283 yeast proteins.

In this article, we first measure the biases and accuracy of these
data sets using the Biomolecular Interaction Network Database
(BIND)8 and its associated bioinformatics infrastructure. BIND

was designed to collect diverse experimental data on molecular
interactions, complexes, and pathways in a machine-readable for-
mat. After comparing the HMS-PCI and TAP data sets to each
other, we then undertake a global analysis of all current electroni-
cally accessible knowledge of experimentally determined yeast
protein interaction data sets, including large-scale two-hybrid
screens9–13. We then apply gene ontology (GO)14–derived annota-
tion for S. cerevisiae proteins to examine functional connections in
the genome-scale experiments and apply a recently described
method based on k-cores11 to find and visualize molecular com-
plexes. (For a detailed explanation of methods and the protein
interaction data sets used in this study, see Supplementary
Experimental Protocol and Supplementary Table 1 online, respec-
tively.)

Comparison of data sets
The overall networks of the two HMS data sets are remarkably dif-
ferent in connectivity, despite being similar in size. The HMS-PCI
data set appears much more interconnected, whereas the TAP data
set comprises more clusters of protein complexes that are sparsely
connected (Fig. 1). An increased number of regulatory network
proteins may create a higher level of connectivity between well-
known protein complexes.

To assess whether the HMS-PCI and TAP data sets are different
in this respect, we computed a high-level ratio of regulatory to
housekeeping protein GO annotation. The regulatory category
contains processes that include the words “response” (e.g., stress
response), “control” (e.g., cell shape and cell size control), and
“cycle” (e.g., cell cycle), processes (e.g., mating, budding) that are
not involved in typical housekeeping roles, and any process having
to do mainly with protein level regulation and cell signaling (e.g.,
protein degradation, phosphorylation and dephosphorylation)
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(see Supplementary Table 2 online). For the yeast proteome data
set, this ratio was 0.45, whereas for TAP it was 0.43 and for HMS-
PCI it was 0.77. Thus, there are a greater number of regulatory
proteins in the HMS-PCI data set than in the proteome and TAP
data sets. This may partially explain the higher level of connectivi-
ty in the HMS-PCI data set. However, there are still large fractions
of unknown and unannotated proteins, and we cannot determine
what the true fraction is for any of these data sets.

Common baits
Of ∼ 6,300 proteins ostensibly encoded by the yeast genome, Ho et
al. selected 725 baits and Gavin et al. chose 1,739 baits; of these,
68% (493/725) and 26% (454/1739) yield detectably associated
proteins (see Supplementary Table 3 online). These may be con-

sidered method efficiency ratios and may reflect differences in the
bait expression systems selected. Only 115 baits are common to
both studies, and of these 81 are associated with identifiable pro-
teins in both data sets. Seven common baits do not associate with
any proteins in either experiment, and 27 have partners in one
method but not in the other (see Supplementary Tables 4 and 5
online).

To evaluate the biological relevance of these two methods, we
compare the 115 common purifications from each method to a lit-
erature benchmark consisting of 1,762 proteins with 3,310 pub-
lished interactions (obtained by low-throughput methods), which
are presumed to be real, garnered from the Munich Information
for Protein Sequences (MIPS) Yeast Genome Database15, Yeast
Proteome Database (YPD)16, and PreBIND data set of BIND.

ANALYSIS
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The purification processes used in the FLAG and TAP tag–based
experiments isolate complexes of proteins that are sufficiently self-
assembled around the tagged bait protein to withstand the
purification protocol. Not all proteins in any given complex will
interact directly with the bait protein, because interactions may be
bridged by other molecules in the mixture (e.g., RNA or proteins) or
interact with the bait at the same time (e.g., if the bait protein is
involved in multiple physiologically relevant complexes).
Consequently, in a computational analysis, the bait and associated
proteins must be considered a population of biomolecular
complexes of unknown topology.

While it is relatively straightforward to compare this information
to known complexes in databases, most protein association
information has been recorded as pairwise protein interactions
resulting from experimental methods ranging from yeast two-
hybrid screens to biochemical purification protocols, such as co-
immunoprecipitation. Two models that represent complexes of
unknown topology as collections of hypothetical pairwise
interactions can be used to compare multiprotein complexes to
previously determined protein interaction data sets: the “spoke”
model and the “matrix” model.

The “spoke” model. This model assumes that the protein bait
interacts directly with each one of the proteins in the population of
complexes, like spokes of a wheel, as shown here for a single
purification:

Population of complexes:

C = {b, c, d, e } (b = bait)

Spoke model hypothetical interactions:

iS = {b–c, b–d, b–e }

The spoke model excludes consideration of any homodimer
formation or higher-ordered self-oligomerization of any protein in the
set. It also yields fewer interactions than may actually be present and
may misrepresent indirect interactions. Both Gavin et al.4 and Ho et
al.5 implicitly used the spoke model when determining criteria for
filtering promiscuously binding proteins based on frequency of
occurrence. Spoke model representation is useful to reduce
complexity in data visualization.

The “matrix” model. This approach assumes that any two
proteins within the population of complexes have a pairwise
interaction, as shown below:

Population of complexes;

C = {b, c, d, e }

Matrix model hypothetical interactions;

i M = {b–b, b–c, b–d, b–e, c–c, c–d, c–e, d–d, d–e, e–e }

The matrix model contains all possible true interactions within the
experimental data, but necessarily has a large number of false
interactions as well, a problem that grows quadratically with the
number of subunits in the complex. Furthermore, matrix topologies
are physically implausible for larger multiple-subunit complexes
because of probable steric clash. Both Gavin et al.4 and Ho et al.5

used a matrix model to determine their maximum data set overlap
with previous large-scale yeast two-hybrid data sets.

A recent analysis of large-scale protein interaction data sets7 used
the matrix model to represent and compare HMS-PCI and TAP data and
to derive measures of accuracy.The matrix model amplifies the effect of
nonspecific interacting proteins by connecting them to all other
associated proteins in the complex. The functional distribution of
interactions for the spoke-modeled HMS-PCI and TAP data sets more
closely resembles that for literature and large-scale yeast two-hybrid
interactions than matrix-modeled data do (Fig. 3). The spoke-modeled
HMS-PCI and TAP data sets have similar interaction density patterns
along the diagonal of the function interaction matrix; however, TAP has
less interfunctional group interaction density (below the diagonal),
possibly signifying less nonspecific interactions between proteins in this
set. While information is discarded in the spoke model, this may be an
appropriate trade-off because spoke data are roughly threefold more
accurate to our literature benchmark than matrix representation (see
Table 2; accuracy here equals size of literature benchmark overlap/size
of data set). If a matrix representation is used, it may be useful to weight
the direct bait protein to associated protein (spoke) interactions with a
higher significance score than other matrix interactions.

We urge caution when interpreting these diagrams as assessments
of interaction data set reliability, as many modular proteins have
multiple annotations. A set of functional annotation terms can be
chosen to maximize or minimize interaction density along the diagonal
of the functional matrix graphs. Thus, while interesting, these graphs
cannot provide a complete view of most large-scale data sets, and
conclusions drawn from methodological comparisons will be
questionable until the Saccharomyces cerevisiae proteome is fully
mapped and annotated using multiple methods.

Modeling biochemical complexes as binary interactions
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ANALYSIS

The PreBIND set encompasses the known PubMed literature
concerning all HMS-PCI baits, thus it can be considered compre-
hensive for the limited common bait subset. The TAP (628 interac-
tions, 522 proteins) and HMS-PCI (875 interactions, 651 pro-
teins) spoke model data sets from common baits contained 87 and

66 benchmark interactions involving 116 and 94 proteins, respec-
tively. In contrast, the TAP (4,916 interactions, 522 proteins) and
HMS-PCI (7,618 interactions, 651 proteins) matrix model sets
from common baits had 264 and 193 benchmark interactions,
involving 216 and 118 proteins, respectively. Thus, the TAP
method is ∼ 30% better at finding previously published interac-
tions, at least for the limited intersection set. Interestingly, the
HMS-PCI method finds 32% more unknown or unannotated pro-
teins than TAP for the set of proteins associated with common
baits (see Supplementary Table 6 online).

Comparing common hits
Given that each data set encompasses 25% of the yeast proteome,
the two data sets show little overall overlap, despite ∼ 70% internal
reproducibility within each data set4,5. In part, this minimal over-
lap reflects bait selection by different functional criteria and dif-
fering expression systems effects. The intersection of the two data
sets using the spoke data representation model contains only 198
associations among 222 proteins (Fig. 2). This subset is probably
the most reliable data in the two experimental sets, as it was inde-
pendently found by both methods.
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Table 1. Properties of large yeast interaction data sets

Data set Proteins Interactions Homodimers

Ho “spoke” 1,578 3,618 0
Ho “matrix” 1,578 28,252 1,578
Gavin “spoke” 1,363 3,225 0
Gavin “matrix” 1,363 18,677 1,363
Uetz 1,001 946 43
Ito “full” 3,274 4,468 82
Ito “core” 796 805 52
PreBIND 859 1,196 0
MIPS 964 1,353 51
YPD 1,538 2,205 283
MIPS + PB + YPD 1,762 3,310 303

Ho, ref. 5; Gavin, ref. 4; Uetz, ref. 10; Ito, ref. 9.

Figure 1. Visual representation of molecular complexes in protein interaction networks found using the k-core method. Although there are higher k-cores
in these sets, a k-core level was chosen that represents as many nucleolar annotated proteins as possible without becoming too large. (A) Six-core of the
integrated yeast protein interaction network before addition of HMS data. (B) Six-core of the HMS-PCI data set. (C) Six-core of the TAP data set. (D) Nine-
core of the integrated yeast data set after addition of HMS data. The complex connectivity surrounding the nucleolus is clearer and more complete in the
fully integrated data set (D), indicating that data integration is necessary for better understanding of a biological system. APC, Anaphase-promoting
complex; SAGA, Spt-Ada-Gcn5-acetyltransferase transcriptional activator–histone acetyltransferase complex; DDR, DNA damage response; TRAPP,
transport protein particle complex; 19S regulatory subunit of the proteasome labeled “proteasome”. Proteins are colored according to GO cellular
component, although nucleolar-localized annotation was supplemented with yeast orthologs of human proteins recently found to be in the human
nucleolus17. In 1,000 randomly permuted networks from (A), (B), (C), and (D), the mean highest k-core was 5 (s.d. = 0), 5.85 (s.d. = 0.36), 5 (s.d. = 0), and
7 (s.d. = 0), respectively. Thus, the high k-core numbers in (A), (C), and (D) are highly unlikely to occur by chance.
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The two largest common networks in the intersection comprise
nucleolar proteins, including yeast orthologs of novel proteins
recently detected in purified human nucleolar preparations17,18.
One nucleolar network in the intersection set contains six essential
proteins of unknown function: Ydr449c, Yjl069c, Yjl109c,
Ygr090w, Ylr222c, and Ylr409c (Fig. 2). Several other smaller com-
plexes are observed, many with known function. These include
components of the proteasome regulatory particle, polyadenyl-

ation and elongation factors, chromosomal segregation, mitotic
exit complexes and proteins involved in mRNA splicing, vesicle
trafficking, glucose repression, and cytoskeleton rearrangement
(see Fig. 2).

Functional bias
We examined various subsets of the experimental results to see if
they were enriched in proteins of specific biological function

ANALYSIS
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Figure 2. Overlap of the spoke models of TAP and HMS-PCI. There are 222 proteins and 310 arrows representing 198 protein associations. Arrows
represent spoke interactions and point from bait to associated protein. Arrows are colored according to which study found the interaction: red, HMS-
PCI; blue, TAP; cyan, both HMS-PCI and TAP. Proteins are represented as nodes, labeled with the common S. cerevisiae gene name and are
colored by GO-derived cellular localization annotation: yellow, nucleolus; red, bud; orange, nucleus; green, membrane; purple, intracellular; black,
unknown or unannotated.
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Fpr1
Fap1

Gcd1

Gcd11

Gcd2

Gcd7

Gcn3

Sui2
Gcd6

Gdi1
Ypt1

Ypt31

Ypt52

Hap2

Hap5

Hat1

Hat2

Hhf1

Yol054w

Kap104
Hrp1

Nab2

Kre31

Kre33

Nan1

Ygr090w Yjl109c

Lsm1 Lsm2

Pat1
Lsm7

Mcd1
Smc1

Smc3

Msh2

Cmd1

Myo4
She3

Apg2 Nip7
Nop1

Rrp1

Nup60Srp1

Pfk1

Pph3

Ybl046w

Ynl201c

Ycr079w
Prp31

Prp4

Asc1

Ino4 Ptc3
Ydr071c

Ptc4

Pub1
Sgn1

Pwp2

Ydr449c

Yjl069c

Ylr222c

Rad3

Met18

Rpt3
Tfp1

Sec27Rfc2Rfc3
Rfc4

Rfc5

Nap1

Rpa190

Rpa135

Rpa43
Rpb5

Rpc40

Rpc25

Rpc34

Ret1Rpa49

Rpc82

Rpo31

Rpd3Ume1

Rpg1

Tif34

Rpn10

Rpn11Rpn12

Rpn5
Rpn8

Rpn9

Rpt2

Rpn6

Rpt1

Rts1

Sds22

Sec13
Sec31

Seh1

Tif4631

Tif4632

Ygr250c

Mlc1

Sif2
Snt1

Yil112w

Sin3
Sir2

Sir4

Sap155

Sap185

Sap190

Sla1
Las17

Snf1
Gal83

Sip2

Snf4

Sip1

Spt16

Spt7
Gcn5

Sto1

Taf60

Tif2

Tpk2 Bcy1

Tpk3

Vrp1

Yal027w
Rad1

Dip2

Ylr409c

Yju2

Rpf2

Hrr25

Tsr1

Nucleolus
Bud
Nucleus
Plasma/nuclear membrane
General Intracellular
Unknown/Unannotated
HMS-PCI
TAP
Both HMS-PCI and TAP

Table 2. Large yeast interaction data set cross-comparison

Proteins\interactions\homodimers shared by datasets

Data set MIPS+PB+YPD YPD MIPS PreBIND Ito core Ito full Uetz Gavin matrix Gavin spoke Ho matrix

Ho “spoke” 265\210\0 230\168\0 161\119\0 169\113\0 71\41\0 109\64\0 88\55\0 333\366\0 222\198\0 1578\3618\0
Ho “matrix” 448\480\135 385\357\126 226\202\21 246\192\0 101\69\13 162\117\22 120\86\12 658\2230\658 362\549\0
Gavin “spoke” 361\333\0 276\198\0 249\230\0 163\117\0 71\40\0 97\55\0 78\47\0 1363\3225\0
Gavin “matrix” 537\691\121 452\418\111 319\412\23 227\188\0 118\73\5 182\122\15 134\91\9
Uetz 168\106\3 142\86\3 117\70\1 77\47\0 201\133\10 276\187\15
Ito “full” 205\135\10 175\112\10 114\69\1 94\54\0 796\804\52
Ito “core” 127\82\7 109\68\7 76\46\1 61\35\0
PreBIND 859\1196\0 579\554\0 442\402\0
MIPS 964\1353\51 803\834\31
YPD 1538\2205\283

Ho, ref. 5; Gavin, ref. 4; Uetz, ref. 10; Ito, ref. 9.
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ANALYSIS

(functional bias), according to
yeast functional annotation
terms derived from the GO14. A
full GO annotation of the TAP
data set that corresponds to the
published GO annotations of Ho
et al. is provided in Supplemen-
tary Table 7 online. In general,
Ho et al. focus on regulatory
pathways in cell cycle control,
DNA damage response and
repair, signal transduction, and
protein phosphorylation/dephos-
phorylation. In contrast, the
baits and associated proteins
expressed by Gavin et al. are
enriched in general metabolism,
nucleolar and ribosome biogene-
sis, protein metabolism, and
transcription. The HMS-PCI
data set also has more mem-
brane-localized proteins, but
otherwise subcellular compart-
ments are evenly represented in
both bait selection sets (see
Supplementary Table 8 online).

No significant functional bias
is found in baits that yield associ-
ated proteins versus those that
do not (see Supplementary
Tables 9 and 10 online). How-
ever, examination of the set of all
identified proteins (1,579 from
HMS-PCI and 1,363 from TAP;
see Supplementary Table 11
online) as well as the set of only
associated proteins (1,317 from
HMS-PCI and 1,179 from TAP;
see Supplementary Table 12
online) reveals that the function-
al bias mirrors the choice of
baits, as might be expected from previous results showing that
proteins of like function in yeast associate19. The only exception to
this correlation is that metabolic proteins are overrepresented in
the HMS-PCI interaction set compared with the bait set (see
Supplementary Tables 6 and 8 online). This may reflect the
propensity of the more sensitive LC–tandem MS method to detect
low levels of nonspecifically associated background proteins. It
may be that contaminant frequency filter cutoffs need be adjusted
after examining the comparison of these two data sets (see
Supplementary Table 3 online). Interestingly, proteins of
unknown and/or unannotated GO biological process make up
41% and 35% of HMS-PCI and TAP data sets, respectively. Thus,
HMS methods may help to provide functional connections for the
large unannotated portion of the yeast proteome (see
Supplementary Table 9 online).

Assuming that baits should generally pull down proteins of like
function, it is expected that the distribution of function in the set
of proteins associated with the 115 common baits will be similar in
each experiment. Cell cycle and unknown proteins are heavily rep-
resented in the set of 115 common baits. In the set of proteins
interacting with the common baits, the HMS-PCI data set contains
more proteins involved in general metabolism, transport, signal
transduction, and of unknown function, whereas the TAP data set

contains more proteins involved in DNA damage response and
repair, nucleolar and ribosome biogenesis, transcription, RNA
localization and processing, or that are localized in the
nucleus/nucleolus (see Supplementary Tables 6 and 13 online).
Functional bias of the protein exclusion list does not explain this
bias (see Supplementary Table 14 online), thus it most likely relates
to biological sample handling, such as cell disruption techniques.

Integration and analysis
To assess the proteome coverage provided by all HMS and yeast
two-hybrid studies to date, the spoke and matrix models of the
HMS-PCI and TAP data sets (see “Modeling biochemical com-
plexes as binary interactions”) were combined and compared with
a compiled data set of interactions from multiple large-scale yeast
two-hybrid experiments9–13. We find 173 interactions between 265
proteins common to yeast two-hybrid assays (5,614 interactions,
3,652 proteins) and spoke MS (6,645 interactions, 2,283 proteins),
and 304 interactions between 388 proteins common to the yeast
two-hybrid assays and matrix HMS (44,680 interactions, 2,283
proteins). We collected and integrated all machine-readable data
from various data sets4,5,9–13,15,16 to form a nonredundant set of
15,143 experimentally determined yeast protein interactions
encompassing 4,825 proteins, or ∼ 76% of the proteome.

www.nature.com/naturebiotechnology •       OCTOBER 2002       •        VOLUME 20       •       nature biotechnology 995

Figure 3. Functional annotation matrices26 showing the distribution of interactions of six data sets. Annotation is
as in von Mering et al.7 to aid comparison. The HMS-PCI matrix interaction set is corrected compared to the von
Mering version, as it was derived from original immunoprecipitation (IP) data (see Supplementary Table 1 online),
whereas the published HMS-PCI data collapsed multiple IPs into one protein set.
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The largest component of this integrated network contains
15,059 interactions among 4689 proteins, leaving only 136 pro-
teins not part of the main group. A full N × N comparison among
selected large-scale individual data sets is shown in Table 1. The
combined HMS matrix data set overlaps with only 33% of interac-
tions in the the MIPS + PreBIND + YPD literature benchmark,
leaving 67% of previously found protein interactions involving
proteins in the combined HMS data set undetected. We conclude
from this analysis that even with the advent of recent HMS studies,
the detectable protein interaction space in the yeast system is far
from saturated.

As described earlier by Barabasi et al.20,21, the integrated network
follows a power-law node connectivity distribution. Within this
distribution, essential proteins show a higher level of connectivity
(10.7 average connections) than nonessential proteins (5.0 average
connections). Furthermore, by scaling the power-law connectivity
distribution of the integrated data set (4,825 proteins), defined
above, to the yeast proteome (6,334 proteins22,23), we estimate on
the order of 20,000 protein interactions in yeast, a lower estimate
than that provided by von Mering et al.7

The large integrated data set contains a higher percentage of
proteins of unknown function and localization than the proteome
(compare Supplementary Tables 11 and 15 online). Of the ∼ 1,500
predicted open reading frames (ORFs) not identified by any pro-
tein interaction method, 75% are of unknown biological process
and 80% have no localization GO annotation (see Supplementary

Table 16 online). These ORFs may be present in extremely low
abundance in the cell or may only be expressed during specific
developmental stages (e.g., spore formation).

Conclusions
Large-scale experiments have the potential to discover previously
unknown functional connections among components of the cell
(see “A novel nucleolar network”), and thus promise to expand
rapidly our knowledge of biology. However, data quality is of
paramount importance in this knowledge expansion. Thus far,
large-scale techniques do not show enough internal consistency to
warrant complete acceptance of the resulting data. This indicates
that each screen will have to be carried out multiple times before
achieving a high enough data quality for a particular method.
While it is relatively straightforward to accomplish systematic
identification of stable multiprotein complexes, or “cellular
machines”, detecting transient regulatory interactions, often
involved in signaling pathways, metabolons, and hyperstruc-
tures24, is still difficult. Considering these constraints, it is impor-
tant concurrently to develop computational systems, such as
BIND8,25, that can integrate, visualize, and mine available molecu-
lar interaction data sets to speed the emergence of a clear view of
protein complexes and associated regulatory interactions.

Note: Supplementary information is available on the Nature Biotechnology
website.
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A novel nucleolar network

Using a method of complex detection in interaction networks based
on finding k-cores, as earlier described11, we have determined that
both high-throughput mass spectrometry data sets contain a dense,
previously unsuspected nucleolar network. A k-core of a network, or
graph, is a subgraph in which all proteins are connected to at least k
other proteins in the subgraph, where k is 0, 1, 2, 3 ... The k-core
method was applied to the integrated yeast interaction network
without HMS data (Fig. 1A), to the HMS-PCI (Fig. 1B) and TAP (Fig.
1C) HMS data sets alone, and to the fully integrated network
including all HMS data (Fig. 1D).

The nucleolar network emerges as the data set size is increased.
Notably, only a few nucleolar proteins are present in the highly
connected regions of the network before HMS data inclusion (Fig.
1A). In contrast, both the individual HMS-PCI and TAP data sets
contain highly connected networks involving nucleolar proteins. Many
of the proteins in the nucleolar network are orthologs of human
proteins recently found in highly purified human nucleoli17,18.

Interestingly, three of the subcomplexes that are visually apparent
in Figure 1D correspond to the known substructure of the nucleolus
as determined by electron microscopy27.The fibrillar component (FC)
involved in pre-rRNA transcription corresponds to a subcomplex of
proteins with likely transcriptional functions, labeled “SAGA” (Fig.
1D). All 14 known components of the SAGA complex are visible in
Figure 1D, although two other proteins are also highly connected to
SAGA: Taf145 and Spt15. Taf145 and Spt15 are known to participate
in the RNA polymerase II general transcription factor complex with
other SAGA components.

The dense fibrillar component (DFC) is the site of rRNA
processing and corresponds to the complex of proteins labeled
“rRNA modification”. Known nucleolar links with snRNA-associated
proteins are visible in the many links between the nucleolar complex
and RNA modification complexes (e.g., U4/U6 snRNP, U4/U6.U5 tri-

snRNP complex, U2 snRNP, and U1 snRNP complexes). All nine
known components of polyadenylation factor I (PFI) are clustered in
Figure 1D along with Rna14 and Ref2, known to be associated with
PFI, and Pti1, a protein of unknown function that seems to be a
previously unknown component of PFI. The granular component
(GC) involved in assembling preribosomal proteins, corresponds to
the protein cluster labeled “nucleolus”. Consistent with recent
findings of nucleolar functional links to cell cycle control28, the
anaphase-promoting complex (APC) is seen connecting to the
nucleolus, SAGA, and the proteasome (Cdc23 interacts with Spt2,
Ada2, and Rpt1; Cdc16 interacts with Mus81 and Rpt1). All 11 known
components of APC are visible in Figure 1D. Of the 18 known 19S
proteasome regulatory particle (PRP) components, the nine-core in
Figure 1D misses Rpn1, Rpn2, Rpn4, and Rpn7. These are
connected to the 19S PRP in the underlying data set, but not by nine
interactions, and so do not appear in the nine-core. Interestingly,
Ecm29, Hsm3, Rad23, Ubp6, and Ygl004c appear highly connected
with the 19S PRP. Ubp6 and Rad23 are known to be associated with
elements of the proteasome, but Ecm29, Hsm3, and Ygl004c, a
WD40 repeat–containing protein, are not, although their high
connectivity suggests that they may be components of PRP. While
Jsn1 is not known to be part of any complex, it has been shown to
interact with >160 proteins almost exclusively in high-throughput
yeast two-hybrid screens. Jsn1 has been shown to bind to SAGA,
APC, protein components of the proteasome, nucleolus, and the
region on Figure 1D labeled “rRNA modification,” although these
interactions may be mediated by at least one RNA-bridging molecule,
because Jsn1 has been predicted to bind RNA.Thus, as illustrated by
identification of a large nucleolar complex, sufficient nondirected
coverage of protein interactions can reveal large-scale functional
domains, without a priori knowledge of the functional annotation in
the integrated data set.

©
20

02
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
b

io
te

ch
n

o
lo

g
y



ANALYSIS

Acknowledgments
We thank Mike Tyers, Charlie Boone, and Tony Pawson for helpful discussions.
This work was supported in part from grants from the Canadian Institutes of
Health Research (CIHR), the Ontario Research and Development Challenge

Fund and MDS-Sciex to C.H. G.D.B. is supported by an Ontario Graduate
Scholarship (OGS).

Received 20 February 2002; accepted 18 August 2002

www.nature.com/naturebiotechnology •       OCTOBER 2002       •        VOLUME 20       •       nature biotechnology 997

1. Fields, S. Proteomics. Proteomics in genomeland. Science 291, 1221–1224
(2001).

2. Pawson, T., Gish, G.D. & Nash, P. SH2 domains, interaction modules and cellular
wiring. Trends Cell Biol. 11, 504–511 (2001).

3. Marcotte, E.M. et al. Detecting protein function and protein–protein interactions
from genome sequences. Science 285, 751–753 (1999).

4. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic
analysis of protein complexes. Nature 415, 141–147 (2002).

5. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces
cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

6. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405,
837–846 (2000).

7. von Mering, C. et al. Comparative assessment of large-scale data sets of protein-
protein interactions. Nature 417, 399–403 (2002).

8. Bader, G.D. et al. BIND—The biomolecular interaction network database. Nucleic
Acids Res. 29, 242–245 (2001).

9. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein inter-
actome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

10. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in
Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

11. Tong, A.H. et al. A combined experimental and computational strategy to define
protein interaction networks for peptide recognition modules. Science 295,
321–324 (2002).

12. Drees, B.L. et al. A protein interaction map for cell polarity development. J. Cell
Biol. 154, 549–571 (2001).

13. Fromont-Racine, M. et al. Genome-wide protein interaction screens reveal func-
tional networks involving Sm-like proteins. Yeast 17, 95–110 (2000).

14. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

15. Mewes, H.W. et al. MIPS: a database for genomes and protein sequences.

Nucleic Acids Res. 28, 37–40 (2000).
16. Costanzo, M.C. et al. YPD, PombePD and WormPD: model organism volumes of

the BioKnowledge library, an integrated resource for protein information. Nucleic
Acids Res. 29, 75–79 (2001).

17. Andersen, J.S. et al. Directed proteomic analysis of the human nucleolus. Curr.
Biol. 12, 1–11 (2002).

18. Harnpicharnchai, P. et al. Composition and functional characterization of yeast
66S ribosome assembly intermediates. Mol. Cell 8, 505–515 (2001).

19. Schwikowski, B., Uetz, P. & Fields, S. A network of protein–protein interactions in
yeast. Nat.Biotechnol. 18, 1257–1261 (2000).

20. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. & Barabasi, A.L. The large-scale
organization of metabolic networks. Nature 407, 651–654 (2000).

21. Jeong, H., Mason, S.P., Barabasi, A.L. & Oltvai, Z.N. Lethality and centrality in pro-
tein networks. Nature 411, 41–42 (2001).

22. Pruitt, K.D. & Maglott, D.R. RefSeq and LocusLink: NCBI gene-centered
resources. Nucleic Acids Res. 29, 137–140 (2001).

23. Chervitz, S.A. et al. Using the Saccharomyces Genome Database (SGD) for
analysis of protein similarities and structure. Nucleic Acids Res. 27, 74–78 (1999).

24. Norris, V. et al. Hypothesis: hyperstructures regulate bacterial structure and the
cell cycle. Biochimie 81, 915–920 (1999).

25. Xenarios, I. et al. DIP, the Database of Interacting Proteins: a research tool for
studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305
(2002).

26. Ge, H., Liu, Z., Church, G.M. & Vidal, M. Correlation between transcriptome and
interactome mapping data from Saccharomyces cerevisiae. Nat. Genet. 29,
482–486 (2001).

27. Olson, M.O., Dundr, M. & Szebeni, A.The nucleolus: an old factory with unexpect-
ed capabilities. Trends Cell Biol. 10, 189–196 (2000).

28. Visintin, R. & Amon, A. The nucleolus: the magician’s hat for cell cycle tricks. Curr.
Opin. Cell. Biol. 12, 752 (2000).

©
20

02
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
b

io
te

ch
n

o
lo

g
y


