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ABSTRACT
Motivation: Many intracellular signaling processes are mediated
by interactions involving peptide recognition modules such as SH3
domains. These domains bind to small, linear protein sequence motifs
which can be identified using high-throughput experimental screens
such as phage display. Binding motif patterns can then be used
to computationally predict protein interactions mediated by these
domains. While many protein-protein interaction prediction methods
exist, most do not work with peptide recognition module mediated
interactions or do not consider many of the known constraints
governing physiologically relevant interactions between two proteins.
Results: A novel method for predicting physiologically relevant SH3
domain-peptide mediated protein-protein interactions in S. cerevisae
using phage display data is presented. Like some previous similar
methods, this method uses position weight matrix models of protein
linear motif preference for individual SH3 domains to scan the
proteome for potential hits and then filters these hits using a range of
evidence sources related to sequence-based and cellular constraints on
protein interactions. The novelty of this approach is the large number
of evidence sources used and the method of combination of sequence
based and protein pair based evidence sources. By combining different
peptide and protein features using multiple Bayesian models we are
able to predict high confidence interactions with an overall accuracy
of 0.97.
Availability: Domain-Motif Mediated Interaction Prediction (DoMo-
Pred) command line tool and all relevant datasets are available under
GNU LGPL license for download from http://www.baderlab.org/
Software/DoMo-Pred.
Contact: gary.bader@utoronto.ca

1 INTRODUCTION
Protein-protein interactions (PPIs) are physical associations
between protein pairs in a specific biological context. Their
knowledge provide important insights into the functioning
of a cell. Previously, experimental detection of PPIs
was limited to labor intensive techniques such as co-
immunoprecipitation or affinity chromatography (Skrabanek
et al., 2008). Though the detected PPIs are largely
accurate, these techniques are difficult to apply to whole

∗to whom correspondence should be addressed

proteome analysis. This led to the development of various
high-throughput PPI detection protocols such as mass-
spectrometry combined with affinity-purification, yeast two-
hybrid and next-generation sequencing to detect PPIs at
whole genome level (Davy et al., 2001; Ito et al., 2001;
McCraith et al., 2000; Rain et al., 2001; Uetz et al., 2000;
Yu et al., 2011; Braun et al., 2013). However, genome-scale
methods are also highly resource intensive and single projects
and techniques do not cover all known protein interactions.
Further, they only cover interactions in one organism at a
time. Computational approaches designed to predict reliable
and novel PPIs based on experimental interaction data sets
have the advantages that they are inexpensive to apply
to genomes, including those that are infeasible to tackle
experimentally and this motivates their further development
(Skrabanek et al., 2008).

Multiple kinds of protein-protein interactions exist. We
focus on interactions involving peptide recognition modules
(PRMs), in particular Src homology 3 (SH3), which are
important in many cellular signaling processes. These
domains bind to small, linear sequence motifs (peptides)
within proteins (Pawson and Nash, 2003). SH3 domains are
approximately 60 amino acids long with five beta strands
organized into two perpendicular beta sheets interrupted by
a 3-10 helix (Pawson and Gish, 1992). They often bind to
proline-rich regions and multiple classes have been recognized
based on their binding motifs. Class I SH3 domains
bind to [R/K]xxPxxP and class II bind to PxxPx[R/K]
motifs (Mayer, 2001). They can also bind to proline-free
regions containing arginine or lysine (Tong et al., 2002).
SH3 domains are involved in many regulatory or signaling
processes, including endocytosis (Tonikian et al., 2009),
actin cytoskeleton regulation (Pawson and Schlessingert,
1993), and tyrosine kinase pathways (Schlessinger, 1994).
Experimental methods such as phage display (Tonikian
et al., 2008, 2009; Tong et al., 2002) and peptide microarray
(MacBeath and Schreiber, 2000; Hu et al., 2004; Stiffler et al.,
2007) have been used to identify the peptides binding to
PRMs.

The computational problem under focus in this work is
to use the SH3 domain binding peptides identified from
phage display experiments to predict SH3 domain mediated
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PPIs in S. cerevisiae. A straightforward approach is to
construct position weight matrices (PWMs) from phage
peptides and scan the whole proteome for potential binding
sites in target proteins using some threshold score (Obenauer
et al., 2003). The problem with this simple approach is the
lack of contextual information, for example, the predicted
binding site might not be accessible or it might lie within
a structured part of protein (e.g. domain). Tonikian et al.
(2009) addressed this problem by combining in vitro (phage
display, peptide array screening) and in vivo (yeast two-
hybrid) data to predict SH3 domain mediated PPIs in
yeast. Verifying interactions using multiple experimental
techniques improves the PPI confidence but it is both time
and resource consuming. Lam et al. (Lam et al., 2010)
combined comparative and structural genomic features with
PWMs to reduce the number of false binding sites. But they
did not consider that PPIs are influenced by many cellular
constraints including that interacting proteins must be in
close proximity and should be part of same process. Peptide-
only features are not sufficient for predicting high confidence
physiologically relevant PRM mediated PPIs with binding
site resolution. Jansen et al. (2003), Rhodes et al. (2005),
Li et al. (2008), Zhang et al. (2012), and others considered
multiple types of cellular constraints and combined different
evidence sources for PPI prediction, but their approaches
are designed for full length proteins and cannot be used
to predict PRM mediated PPIs, including identification of
binding sites. More recently, Chen et al. (2015) combined
limited number of peptide and protein features for predicting
PRM mediated PPIs in humans. Their protein features are
based on one of the earlier the works in the field ensemble
PPI prediction (Jansen et al., 2003). Since then many
advances have been made in improving the performance of
individual features in PPI prediction (Reimand et al., 2012).
Also, their method is not compatible with high-throughput
binding peptide data, such as from phage display. Here,
we make use of a larger set of evidence sources to predict
SH3-mediated PPIs and their binding sites than has been
collected previously and combine peptide level and protein
level features in a single predictor.

2 APPROACH
PRM mediated PPIs do not occur in isolation in the cell.
They are influenced by different sequence-based and cellular
constraints. For example, SH3 domains can only bind surface
accessible regions, interacting proteins must be present
in same cellular compartment, and proteins in the same
biological process with correlated gene expression profiles are
more likely to interact compared to randomly selected protein
pairs. Thus, diverse types of information can be used to
help predict physiologically relevant protein interactions. In
our method, PWMs constructed using peptides from phage
display experiments are used to scan the yeast proteome
for potential targets. Peptide features: disorder, surface
accessibility, peptide conservation, and structural contact
are combined using näıve Bayesian integration to score the
PWM targets. Another näıve Bayesian model is used to

combine protein features: cellular location, biological process,
molecular function, gene expression, and sequence signature
to score the same targets. Scores from both peptide and
protein classifiers are then combined using Bayes theorem to
predict physiologically relevant SH3 domain mediated PPIs
in yeast. Figure 1 shows the work flow of our PRM mediated
PPI prediction pipeline.

3 METHODS

3.1 Position weight matrix and proteome scanning
Position weight matrices (PWMs) are statistical models for
representing sequence motifs. They are real valued m×n matrices,
where m are the amino acids and n is the motif length. They are
constructed using peptides from phage display experiments and
then used to scan a protein sequences to find motif matches above a
certain p-value threshold (Pizzi et al., 2011; Wu et al., 2000). Also,
significant positions within the PWMs are identified and used in
scoring peptide features: disordered region, surface accessibility,
and peptide conservation (see supplementary material for details).

3.2 Peptide features
3.2.1 Disordered region PRMs bind to small peptide
stretches containing a specific motif. Specifically interactions
between proteins having SH3 domains and their targets are often
mediated by proline rich peptide sequences containing PXXP,
[R/K]xxPxxP, PxxPx[R/K] motifs. Proline disrupts the secondary
structure of a protein by inhibiting the formation of helices and
sheets (Morgan and Rubenstein, 2013). Also, small linear motifs
tend to accumulate in disordered regions of protein (Linding et al.,
2003; Beltrao and Serrano, 2005; Davey et al., 2010). Beltrao
and Serrano showed that the binding sites of SH3 domains in
S. cerevisiae often lie within the disordered regions of a protein
(Beltrao and Serrano, 2005). DISOPRED, a neural network based
tool, is used to estimate the probability of the protein region being
disordered.

DR =

∑
i

pi =
{

1 if amino acid i is disordered
0 otherwise

N
(1)

where pi is the disorder score of the ith significant amino acid
(either 1 for disordered or 0 for ordered) and N is the number of
significant amino acids in the binding site.

3.2.2 Surface accessibility Sequences present on a protein’s
surface are more accessible to binding by SH3 domains than
those that are buried inside a protein structure. The degree
of solvent-accessible surface area of amino acid residues in a
sequence indicates its level of exposure and is measured in terms of
relative solvent accessibility (RSA) (Lam et al., 2010; Adamczak
et al., 2004). We use SABLE (Adamczak et al., 2004) to predict
RSA values for target sequences. It uses a neural network based
nonlinear regression model for continuous approximation of RSA
values. Amino acid residues with RSA value ≥ 25% are considered
to be exposed and available for binding (Adamczak et al., 2004).

SA =

∑
i

pi =
{

1 if RSA >= 25%
0 otherwise

N
(2)

where pi is the surface accessibility score of ith significant amino
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Fig. 1: Work flow of PRM mediated PPI prediction pipeline. (A) Proteome is scanned using a PWM built using experimentally
derived binding peptides (e.g. from phage display) of a given SH3 domain for potential interactors. (B) Separate Bayesian
classifiers for peptide and protein features. (C) Integration of classifiers for predicting interacting and non-interacting protein
pairs.

acid and N is the number of significant amino acids in the binding
site.

3.2.3 Peptide conservation Biologically relevant peptides
binding to yeast SH3 domains are more likely to be conserved in
other yeast species (Beltrao and Serrano, 2005; Davey et al., 2010).
For measuring the conservation, orthologs of S. cerevisiae protein
sequences in C. glabrata, D. hansenii, K. lactis, Y. lipolytica, C.
albicans, N. crassa, and S. pombe (an optimal set as selected by
(Beltrao and Serrano, 2005)) are identified using INPARANOID
(Remm et al., 2001). The orthologous sequences are then aligned
with MAFFT (Katoh et al., 2002) and the unweighted sum-of-
pairs method from AL2CO (Pei and Grishin, 2001) is used to
estimate the conservation score of each position in the multiple
sequence alignment (Lam et al., 2010).

P C =

∑
i

pi

N
(3)

where pi is the conservation score of the ith significant amino acid
and N is the number of significant amino acids in the binding site.

3.2.4 Structural contact Known 3-D structures of SH3
domains complexed with peptides can be used to assess the binding
potential of a query SH3 domain and peptide by reducing residue-
residue contacts in 3-D structures to a binary 2-D contact matrix
(Chen et al., 2008; Hui and Bader, 2010). Six yeast SH3-peptide
co-complex PDB structures (1N5Z, 1SSH, 1ZUK, 2KYM, 2RQW,
2VKN) are used as base models. The Contact Map Analysis
(CMA) tool from the SPACE software suite (Sobolev et al., 2005)
is used to reduce the 3-D structures to 2-D contact maps with
residue level contact area for all base models. Query domain
and peptide sequences are aligned with all base models using
the Needleman-Wunsch algorithm and BLOSUM 62 substitution
matrix to calculate the contact distance between aligned residues.
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SC = max
j

∑
i

cij

N
(4)

where cij is the normalized contact area of the ith aligned domain
and peptide residues of the jth base model. Alignment gaps in
contact residues will negatively impact the average contact area as
only the aligned residues are used for scoring (a gap at a position
associated with a large residue contact area will reduce the SC
score more than a gap associated with a smaller residue contact
area). N is the number of aligned contact residues.

3.3 Protein features
3.3.1 Cellular location, biological process, molecular
function Physical PPIs require proteins to be in close proximity
to each other i.e. they should co-localize in the same cellular
compartment. Also, interacting proteins are more likely to be part
of same biological process or have the same function. The Gene
Ontology (GO) contains a hierarchy of controlled terms describing
cellular location, biological process, and molecular function of
proteins (The Gene Ontology Consortium, 2000). The functional
relationship between two proteins can be quantified using GO.
Semantic similarity can be used to quantify relationships between
different GO terms in an ontology. The higher the semantic
similarity score between GO terms annotated to two proteins,
more likely that they will interact with each other (Jain and Bader,
2010). Topological Clustering Semantic Similarity (TCSS) (Jain
and Bader, 2010) is an accurate semantic similarity measure for
PPI prediction. It normalizes the GO hierarchy before computing
semantic similarity, according to cutoffs defined in the original
TCSS paper.

CC = T CSS(a, b, ontology = C, cutoff = 2.4) (5)

BP = T CSS(a, b, ontology = P, cutoff = 3.5) (6)

MF = T CSS(a, b, ontology = F, cutoff = 3.3) (7)

where a and b are the query proteins and C, P, F are the cellular
component, biological process, and molecular function ontologies.

3.3.2 Gene expression Gene expression as a measure for
assessing the confidence and biological relevance of high-
throughput PPIs is based on the notion that the cell is optimized
to co-express genes if they function together and if they function
together, they are more likely to physically interact than by
chance (Bhardwaj and Lu, 2005; Grigoriev, 2001; Ge et al., 2001;
Jansen et al., 2002). Most PPI prediction methods that make
use of gene expression profile (GEP) correlation with PPIs to
predict novel interactions (Li et al., 2008; Rhodes et al., 2005)
rely on observations from a single expression dataset which can
lead to many false positives and true negatives, as not all genes
are expressed under a particular set of experimental conditions.
Using multiple GEPs clearly improves the performance of a
predictor as shown in Figure S1. Correlation coefficients from 86
gene expression profiles from GeneMANIA (Warde-Farley et al.,
2010) for a given pair of genes are combined using Fisher’s z
transformation (Faller, 1981; Jain and Bader, 2010)

EX = 1 −
e2z̄ + 1
e2z̄ − 1

(8)

z̄ = N−1
N∑

i=1

1
2

ln
(1 + ri

1 − ri

)
(9)

where N is the number of profiles and ri is the Pearson correlation
of the ith profile.

3.3.3 Sequence signature Sequence signature based PPI
prediction methods are based on the notion that protein domains
are correlated with specific functions. For instance, it has been
shown that functionally related proteins have similar domain
composition or they belong to the same ”domain club” (Jin
et al., 2009). Information content of co-occurring InterPro
(Apweiler et al., 2001) signatures extracted from sequences of an
experimentally verified set of 22,707 PPIs from DIP (Salwinski
et al., 2004) is used to score novel interactions, as described by
Sprinzak and Margalit (Sprinzak and Margalit, 2001).

SS =
∑

ij

−log2

(
pij

pipj

)
(10)

where pij is the probability of seeing motif i on one protein and
motif j on other protein in the experimentally verified PPI set,
pi is the probability of seeing motif i and pj is the probability of
seeing motif j in the same set.

3.4 Bayesian integration
The objective of a Bayesian PPI prediction model is to estimate
the probability that a given protein pair interacts, conditioned
on the biological evidence in support of that interaction. A näıve
Bayesian model simplifies this problem by assuming independence
between different types of biological evidence. While modeling
the PRM mediated PPI prediction problem a set of observations
are made on domain-peptides while others are made on full-
length proteins. Assuming that peptide and protein features are
independent of each other, two separate näıve Bayes models
Mpep for peptide features and Mpro for protein features are built
to independently assess the class probability Y . The posterior
probabilities P (Y |Mpep) and P (Y |Mpro) are combined using
Bayes’ theorem (Mitchell, 1997) (see supplementary material for
further details).

4 RESULTS
4.1 Model training
The goal is to construct a generalized model which can
predict high confidence, in vivo yeast SH3 domain - peptide
physical interactions. To achieve this, both peptide and
protein classifiers are trained on their respective positive and
negative datasets. The peptide classifier is trained on a high
confidence set of 628 SH3 domain-peptide interactions in
yeast from the MINT database (P1) and an equal number
of random selected negative interactions (N1). The protein
classifier is trained on a high confidence set of 5,215 pairwise
yeast PPIs from the iRefIndex database (P2) and an equal
number of randomly selected negative interactions (N2) (see
supplementary material for details).
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Fig. 2: Prediction efficacy of individual (a) peptide features: disordered region (DR), surface accessibility (SA), peptide
conservation (PC), structural contact (SC); and (b) protein features: cellular component (CC), biological process (BP),
molecular function (MF), gene expression (EX), sequence signature (SS).

4.2 Feature selection
Figure 2 shows the discriminatory power of individual
features for peptide and protein classifiers. Disordered region
(DR) and surface accessibility (SA) perform much better in
separating positives from negatives as compared to structural
contact (SC) and peptide conservation (PC). Prediction
efficacy of PC is least among the peptide features. This
is due to the difficulty distinguishing positive and negative
interactions because both of these sets have high conservation
scores caused by the high similarity of protein sequences
(and peptides they contain) in general across different
yeast species (Figure S2). Biological process (BP), cellular
component (CC), and sequence signature (SS) outperform
molecular function (MF) and gene expression (EX) in the
protein feature set. Proteins could have the same molecular
function but still belong to different processes and this could
be one of the reasons behind molecular function feature’s
weak performance. Gene expression data alone is not as
powerful as others in discriminating positives from negatives
(Kim et al., 2014), which may be due to its moderate
correlation with protein expression (i.e. gene expression may
not imply that a functioning protein will be available for
interaction) (Vogel and Marcotte, 2012).

Highly correlated features can negatively effect the
performance of a näıve Bayesian classifier. Maximal
information coefficient (MIC) is used to quantify the
correlation between different features. DR and SA in the
peptide feature set and CC and BP in the protein feature
set are correlated with MICs of 0.72 and 0.5 respectively.
The effect of correlation on classifier performance is
measured by comparing different models without one of
the correlated features. Further, to identify the feature

subset which maximizes the performance of both classifiers,
all possible combinations of features are compared using
different statistical measures, such as area under ROC curve
(AUROC), area under precision-recall curve (AUPRC), Brier
score (BRIER), F1-score, Matthews correlation coefficient
(MCC) and accuracy (ACC). Peptide and protein classifiers
with all features outperformed other models on at least one of
statistical measure (see supplementary material for details).

4.3 Model evaluation
Blind validation protocols is used to assess the predictive
power of peptide Mpep and protein Mpro näıve Bayesian
classifiers. The majority of interactions in the P1 dataset
are from two peptide array experiments (Tonikian et al.,
2009; Landgraf et al., 2004). This could lead to an
experimental bias therefore, for blind testing, the peptide
classifier is trained using interactions only from peptide
array experiments and tested using interactions from all
other experiments (no overlap between training and test
data sets). Similarly, to make an unbiased assessment, the
protein classifier was trained using P2 dataset but tested
using the 2,304 interactions (with no missing information)
from the core subset of Database of Interacting Proteins
(DIP) that do not overlap the P2 training set and are
based on different filtering criteria compared to the MINT-
inspired score used to select the iRefIndex P2 training set
Salwinski et al. (2004). The DIP core database includes PPIs
derived from both small-scale and large-scale experiments
that have been scored by quality of experimental methods,
occurrence of interaction between paralogs (PVM), probable
domain-domain interactions between protein pairs (DPV),
and comparison with expression profiles (EPR) (Salwinski
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Test Classifier MCC ACC F1-score AUROC

Filtered Peptide 0.74 0.87 0.87 0.92
Protein 0.68 0.83 0.83 0.94

Unfiltered Peptide 0.72 0.86 0.86 0.92
Protein 0.63 0.80 0.80 0.92

Table 1. The filtered set has no missing values for any of the
features, whereas unfiltered includes all feature data (as would be
the case in a real world prediction scenario). Matthews correlation
coefficient (MCC) threshold score ≥ 0.9, accuracy (ACC), F1-
score and area under ROC curve (AUROC) of protein and peptide
classifiers for blind and 10-fold cross-validation tests are shown.
MCC, ACC, and F1-score are reported at threshold score ≥ 0.9.

et al., 2004). In a real world prediction scenario, both
classifiers are expected to encounter cases with missing
information. Therefore, the performance of both classifiers
is also tested using an unfiltered blind set. The results are
summarized in Table 1. The AUROC for peptide clasifier is
0.92 and ACC lies within the range [0.86, 0.87]. The protein
classifier has an AUROC within the range [0.92, 0.94] and
ACC is between [0.80, 0.83].

The efficacy of the combined peptide and protein model
was tested on the manually curated SH3 domain mediated
PPI set from Tonikian et al. (2009). Tonikian and co-workers
curated interactions supported by multiple experiments
through an exhaustive literature search. Not all interactions
(especially those identified using two hybrid and overlay
assays) in this set are mapped to the peptide sequence within
the interacting partner (Tonikian et al., 2009). Therefore,
these sequences are scanned using the three P1 training set
PWMs to identify binding sites and significant amino acid
positions within those sites. Peptide and protein classifiers
are trained on P1 & N1 (no overlap with curated set) and
P2 & N2 datasets, respectively. A randomized negative
test set is created in the same way as N1. Results from
different statistical measures are summarized in Figure 3.
The combined classifier outperforms both the peptide and
protein classifiers on the curated set.

4.4 SH3 domain mediated PPI predictions
30 PWMs representing multiple binding specificities of 25
SH3 domains in yeast are constructed using phage display
data from Tonikian et al. (2009) as described in section 3.1
(Table S1 & S2). These PWMs are then used to predict SH3
domain-peptide interactions using the combined classifier.
534 unique PPIs (1, 481 binding sites) are predicted as
positives for the stringent p-value PWM threshold of 1e − 05
with no missing features (Table S3). Approximately 55%
(295 PPIs, 1, 139 binding sites) of these interactions are
known at the PPI level (iRefIndex & MINT) and at least
172 (464 binding sites) out of 295 PPIs are known SH3
domain mediated interactions at the peptide level (with
≥ 60% overlapping binding site). For example, the FUS1p
SH3 domain is known to bind the STE5p protein (verified by
two-hybrid assay and phage display) via an R(S/T)(S/T)SL
motif, supported by two separate studies (Nelson et al.,

MCC ACC F1  score AUROC

Performance measures
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Fig. 3: Performance of peptide, protein, and combined
classifiers on the curated SH3 domain mediated PPI set.

2004; Kim et al., 2008). This interaction is part of the
predicted set. 143 (203 binding sites) out of 239 (342
binding sites) novel interactions are of high confidence with
the combined classifier scores ≥ 0.9. Biological pathway
enrichment (KEGG (Kanehisa, 2002) and Reactome (Croft
et al., 2014)) of the interactors reveal that a number of
over-represented processes or pathways are associated with
known SH3 domain biology such as endocytosis (Tonikian
et al., 2009; Xin et al., 2013), MAPK signaling (Lyons et al.,
1996), and Rho GTPase signaling (Bishop and Hall, 2000)
(Table S4). For example, some interacting partners of the
MYO3 SH3 domain are found to be enriched in PI3K/AKT
signaling. AKT is known to regulate actin organization
and cell motility during endocytosis (Koral et al., 2014;
Enomoto et al., 2005). MYO3 is also implicated in actin
organization for the internalization step in endocytosis (Toret
and Drubin, 2006) (Table S5). These examples support
our results and suggest that our predicted interactions are
biologically relevant.

5 CONCLUSION
We developed a novel method for predicting physiologically
relevant PPIs in yeast. This method combines diverse binding
site (peptide) features, including presence in a disordered
region of the protein, surface accessibility, conservation
across different yeast species, and structural contact with
the SH3 domain, as well as protein features such as cellular
proximity, shared biological process, similar molecular
function, correlated gene expression and sequence signature.
Two separate Bayesian models are used to combine peptide
and protein features. Their respective posterior probabilities
are further combined using Bayes rule for predicting high
confidence interactions. The combination of peptide and
protein models achieved a higher accuracy of 0.97 compared
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to individual models on a curated benchmark dataset
from Tonikian et al. (2009). Disordered region and surface
accessibility data from the peptide feature set and biological
process, cellular location and sequence signature information
from the protein feature set are able to separate positive
from negative interactions significantly better than other
features. The method presented is generic and modular
in nature. Given binding peptide and feature data, we
expect it can be used to predict other PRM mediated
PPIs in yeast and other organisms. Additional features such
as network topology, protein expression, and text mining
derived protein relationships can be added to our framework.
Future development includes testing this method on other
PRMs in different organisms, especially human.

IMPLEMENTATION
The DoMo-Pred command line tool is implemented using
Python 2.7 and C++. It is available for download under
the GNU LGPL license from http://www.baderlab.org/
Software/DoMo-Pred
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