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ABSTRACT Single-cell genomics has recently emerged as a powerful tool for observing multicellular systems at a much
higher level of resolution and depth than previously possible. High-throughput single-cell RNA sequencing techniques are
able to simultaneously quantify expression levels of several thousands of genes within individual cells for tens of thousands
of cells within a complex tissue. This has led to development of novel computational methods to analyze this high-dimensional
data, investigating longstanding and fundamental questions regarding the granularity of cell types, the definition of cell states,
and transitions from one cell type to another along developmental trajectories. In this perspective, we outline this emerging field
starting from the ‘‘input data’’ (e.g., quantifying transcription levels in single cells), which are analyzed to define ‘‘identities’’ (e.g.,
cell types, states, and key genes) and to build ‘‘interactions’’ using models that can infer relations and transitions between cells.
Single-cell-level experiments aim to characterize the rich
heterogeneity in cell populations within complex tissues.
The cell-level information observed in such studies provides
valuable insights into the dynamics of important biological
processes, such as cellular differentiation during develop-
ment or tissue regeneration. Ideally, a wide range of
molecules could be measured with high sensitivity and
coverage at high cellular resolution, but this has not been
possible. Recently, single-cell genomics technologies have
been developed that represent a major advance toward this
ideal (1). How will these new technologies change the field
of biophysics?

Traditionally, fluorescence-imaging methods provided
static snapshots of the complexity of cells at the molecular
scale, which, when coupled with fast super-resolution imag-
ing techniques and live imaging in the past decade, exposed
the rich dynamics at play within cells. Light-based or mass-
cytometry methods are increasingly used to simultaneously
quantify expression levels for multiple proteins within many
cells. However, these methods typically remain limited to a
maximum of a few dozen distinct molecules being studied
simultaneously (2). On the other end of the spectrum, tradi-
tional transcriptomics technologies, such as RNA-seq, pro-
vide quantitative measures of expression for thousands of
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genes, thereby providing a rich characterization of complex
phenotypes. Although these transcriptome technologies pro-
vide a ‘‘high-dimensional’’ characterization, they measure
gene expression that is averaged over a large population
of cells and hence do not provide direct information about
individual cells or subpopulations that are present in a com-
plex tissue. New single-cell genomic methods combine the
best of both of these worlds and enable simultaneous study
of thousands of cells and expression levels (mRNA counts)
of thousands of genes or tens to hundreds of proteins, as well
as chromatin state and genome sequence, within each cell
(3–6). These single-cell genomic technologies challenge
us to understand how gene expression in the high-dimen-
sional space of thousands of genes maps distinct cell ‘‘iden-
tities’’ (cell types or states) and, more generally, phenotypes.
Ideally, we can use single-cell genomics information to
identify all cell types and states in a tissue and their genomic
properties and infer cell lineages, cell-cell communication
networks, and spatial tissue maps. This exciting technology
advance has already led to major international scientific ef-
forts, such as the Human Cell Atlas, which seeks to map all
cell types in the human body at unprecedented resolution
(https://www.humancellatlas.org/).

This perspective helps navigate readers from a range of
biophysical fields embarking on the relatively new and
promising field of single cell genomics, analytics, and
modeling. We organize experimental and analysis methods
into three major categories: input, identity, and interactions.
Gene expression counts measured by the experiments are
the ‘‘input’’ followed by statistical analysis to define
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‘‘identities,’’ such as distinct cell types or states defined by
their characteristic gene expression patterns. Finally, ‘‘inter-
actions’’ among genes and cells, such as cell state transi-
tions, can be computationally modeled to predict system
dynamics over time.
Input

The technological race to measure the transcriptome (the
set of all expressed transcripts) of a large number of cells
in a single experiment has led to both in-house laboratory
scale platforms (7) (e.g., drop-seq (3)) and commercially
available platforms (e.g., chromium from 10� Geno-
mics, Pleasanton, CA; InDrop from 1CellBio, Cambridge,
MA; and mEncapsulator from Dolomite Bio, Royston,
UK/Blacktrace Holdings, Royston, UK). Before using these
technologies, single cells must be experimentally extracted
from a sample, such as a tissue. Once the dissected tissue
is obtained, single cells are isolated using mechanical or
other solution-suspension methods and may also be subject
to sorting, e.g., based on fluorescence-activated cell sorting.
Cell extraction methods must be designed for each tissue
type and ideally must limit the number of experimental steps
to reduce the chance of damaging cells. Some cells are more
sensitive to dissociation conditions than others, and cells
can be transcriptionally affected by extraction conditions,
including temperature, time exposed to reagents, and stress
FIGURE 1 Overview of single-cell-genomic data generation and evaluation, s

cific methods along with citations. Sample generation uses a specific tissue to ob

of transcript counts per gene per cell. This matrix is analyzed to identify relevant

identities. These models can be used, for instance, to select genes to alter and c
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of a sorting technique (8). Single cells are then prepared for
genomics measurements. Current popular methods for sin-
gle-cell RNA-seq (scRNA-seq) use microfluidic technology
to encapsulate cells within droplets or microwells (9) along
with DNA-barcoded beads displaying library primers. Once
encapsulated with a cell-specific barcoded sequencing li-
brary, cells are lysed, and transcripts hybridize to the bead
and are amplified and sequenced. Each transcript is also
barcoded using a unique molecular identifier to normalize
amplification artifacts. Single-cell genomic technology
development is progressing extremely rapidly, and new
experimental methods are published regularly. In the final
step, a digital expression matrix (transcript counts by cell)
is obtained by using bioinformatics approaches to align
the unique-molecular-identifier-associated sequences to
known genes and to count the transcripts (Fig. 1, inset).
Standard computational workflows are provided by com-
mercial vendors to complete this step, and standard analysis
workflows are available for data normalization (10) and
analysis (11). Databases of single-cell sequencing matrices
are available online with data sets ranging from a few
hundred to over 1 million cells (e.g., https://portals.
broadinstitute.org/single_cell).

The gene-by-cell expression count matrix can be used to
answer a variety of questions, including clustering to identify
cell types and states. Although valuable information is often
identified, multiple technical challenges are still open, and
howing examples of experimental and computational analysis steps and spe-

tain single cells for analysis and ultimately a digital gene-expression matrix

genes and cell types and to describe the complex relationships between these

ontrol cellular transitions. To see this figure in color, go online.
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analysis methods are actively being developed to improve
performance and extract more knowledge from current data
sets. Current single-cell transcriptomics methods cannot
identify all transcripts within each cell due to biological or
technical factors, and the resulting expression matrix is typi-
cally sparse, containingmostly zeros, reducing sensitivity for
cell type and state identification. Biological factors include
temporal effects, e.g., cell cycle progression, spatiotemporal
differences in developing tissues, or stochastic transcription
fluctuations such that the expression is below the sensitivity
of the experimental approach. Technical factors include
shallow sequencing of the sample and sequencing errors
(called dropouts) arising from the tagging effects, allelic
dropout due to low amplification by polymerase chain reac-
tion, experimental design (e.g., doublet contamination), in-
strument errors, and errors in genome alignment. Statistical
methods to model these processes and improve the signal-
to-noise ratio are being developed (12,13). Transcript counts
per gene and library size (the total number of reads per cell)
vary from one cell to another, causing challenges for normal-
ization methods. Popular normalization tools exist (10), but
there is no consensus of approach because of the large vari-
ability in reads obtained across different cells in typical
experiments. Ideally, wewould know the expected transcrip-
tional profile of each cell type under each state and, as a result
of different sample preparation conditions, enable appro-
priate correction of confounding factors. However, correla-
tion studies between data or cell types collected under
different conditions and from different labs remain few,
though this is likely to change in the next few years. Thus,
another important challenge is to compare different single-
cell sequencing data sets or combine them in an unbiased
way postnormalization. Data originating from similar cells
and tissues can vary because of experimental conditions
such as administration of external drugs or growth factors,
morphogens present within a developing tissue, and natural
progression toward disease and aging. We may address this
variability by integrating our knowledge of how cells prog-
ress along a differentiation axis or transition to different
identities as a response to perturbations in gene-expression
patterns at the input level or postidentification of genes and
cell types (identities) from each data set or during the final
stage of inference and model building (14).

Even in homogenous populations and in a priori iden-
tical experimental conditions, cell-to-cell variability in
scRNA-seq count measurements is widespread. Fortunately,
scRNA-seq provides fast and accurate measurements over a
large sample of cells, thereby providing an ensemble of mea-
surements ideally over the same candidate cell type. This pro-
vides a reasonable number of independent measurements to
measure statistical quantities, such as mean or variance of
transcription levels across different cells. This also addresses
the sparsity problem, as combining sparse, stochastic mea-
surements over many cells results in a rich set of measure-
ments for a cluster of similar cells. Thus, on the one hand,
technology is evolving toward better statistics, but on the
other hand, experimental data have ‘‘inherent biological
noise’’ that may be assigned to hidden confounding variables
that may also vary from cell to cell. A direct statistical
approach used traditionally to address such noise is to
compare technical replicates, which is so far challenging
for scRNA-seq, as the experiments are costly and destroy
the cells upon measurement. In principle, scRNA-seq pro-
videsmany samples of an individual cell type, and these could
be considered replicates but in the traditional sense are bio-
logical replicates. Considering approaches from biophysics,
such noisemay have physical signatures that can be identified
as systematic errors or may simply emerge from randomness
among biological samples collected at different times. Statis-
tical methods can be used to remove systematic noise, such as
batch effects, and this is an open area of investigation (15–19).
Biophysical phenomena, such as cell cycle variability or sto-
chastic gene expression, may also lead to variable expression
across cells.Quantifyingfluctuations or noise in experimental
data has previously proven useful in biophysics (20,21). One
may, however, treat this as an ‘‘uncertainty ofmeasurements’’
and generate a model-dependent estimate for a number of ex-
pected ‘‘zeroes’’ compared with actual experimental data sets
(22). An example of this approach was recently used to esti-
mate the total number of contributing blood stem cells from
an undersampled data set (23). Such approaches may shed
light on how much undersampling affects our current knowl-
edge of expression matrices.

Once technical noise can be averaged or removed, fluctu-
ating variables and quantifying the level of fluctuations may
lead to insights about the dynamics of gene expression.
Several recent attempts have been made using nonequi-
librium physics to quantify the fluctuations of stochastic
variables. Thus, ‘‘stochastic thermodynamics,’’ which is a
relatively new field in physics, may become useful to quan-
tifying stochastic expression patterns in genes (24).
Identity

The typical scRNA-seq workflow applies a clustering algo-
rithm to the transcript count matrix to identify stable cell
clusters (groups of similar cells) and then visualizes the
data with the aid of exploratory linear or nonlinear dimen-
sionality reduction tools, such as t-distributed stochastic
neighbor embedding (25), phage annotation toolkit and
evaluation (26), principal component analysis, and diffusion
maps (27) (Fig. 2). Stable cell clusters represent cell types
and are interpreted using known cell-type-specific gene
expression markers to catalog the cell types identified in
the experiment. Clusters of cells that do not match known
markers are candidates for new cell types.

Cell clusters may have different phenotypes, which
involve different subcellular actors (genes) for controlling
their identity (marker genes) and transitions (transition
genes). Genes that are ‘‘highly variable’’ across different
Biophysical Journal 115, 1–7, August 7, 2018 3
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cells or clusters may be important for both cell identity and
transitions between cell identities, and their identification is
a key challenge. Ideally, comparing gene expression pat-
terns across the clusters enables one to infer a set of transi-
tion and marker genes (28). Similarly, protein interaction
and pathway data can be used to identify functions active
in each cell or gene group and aid cluster interpretation,
for example, whether two nearby clusters are functionally
different because they express different genes and pathways.
This approach is useful but suffers from the assumption that
genes that do not express differentially and that are consti-
tutively expressed (often referred to as housekeeping genes)
are not crucial for describing cell types. Differential gene
expression may also be attributed to cyclical expression pat-
terns arising because of gene oscillations (e.g., over the cell
cycle), which create bi- or multimodal populations for an
assumed distinct cell type (29,30). Thus, multiple subclus-
ters that manifest under different time-varying develop-
mental fields (e.g., induced by morphogen gradients) may
be present in a single cell cluster that is thought to be ho-
mogenous. Furthermore, cell-to-cell variability within a
cluster may be an indicator of an early signal of other differ-
entiated types in a Waddington-like landscape or suggest a
heterogeneous biological context for cells of the same type.

Many cells from a typical scRNA-seq experiment do not
easily fit into tight clusters. Single-cell RNA-seq measures
the transcriptional state of each cell at a single time point
from the very large theoretical space of possible states
that could exist. An important debate to consider while
analyzing single-cell genomics data is whether cells are
best represented as stable, distinct types or as a fluid and dy-
namic space of states. We view this either as a continuum for
dynamic (e.g., blood, gut) and developing tissues or as being
more discrete for very stable postmitotic systems (e.g., neu-
rons and rod photoreceptors). Both views are useful, and
4 Biophysical Journal 115, 1–7, August 7, 2018
models must consider both to be generally applicable to nat-
ural systems.
Interactions

Developing predictive mathematical and mechanistic
models of dynamic biological processes is a major driver
of new discoveries in biology and medicine. A key goal of
this research is to predict cellular perturbations that can con-
trol the cell to perform engineered tasks, such as differenti-
ating into useful cells for regenerative therapy, and to
identify sensitive points in a cell that can be used to kill
cancer cells using drugs. Although many successful exam-
ples of such work exist, major challenges include the
following: 1) model construction requires substantial exper-
imental effort; 2) most parameters are not available because
they are difficult to measure; 3) and scaling up to whole cell
models is difficult. The availability of large amounts of data
is now known to enable the inference of scalable, predictive
models, such as deep learning, that can overcome these
challenges (31), though often without providing mechanistic
insight. It would be useful to be able to accurately infer
mechanistic and predictive models from large data,
achieving the best of both approaches. Single-cell genomics
technologies, such as scRNA-seq, may provide enough in-
formation about cellular processes to make this possible.

Mathematical models incorporating gene expression
measurements have, until now, focused on small gene-regu-
latory networks and their effect on a restricted selection of
cell identities based on empirical biological data by using
ODE (ordinary differential equation) formalisms to capture
the on/off and oscillating nature of transcription levels of a
few candidate transcription factors (32–34). These methods
inform how genetic circuits implement function via local bi-
furcations or oscillations between a few stable cell fates.
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This has led to insights about modules of a few genes that
control cellular behavior and to the recent revolution in syn-
thetic biology that aims to design cells for particular func-
tions (35,36). Although such models may be useful in the
context of single-cell data, they do not realistically tackle
the complexity and scale of the typical high-dimensional
data that single-cell studies provide. Typically, such ODE-
based techniques quickly become intractable for large
dimensional data in which 103 genes are sequenced within
each cell for 103–104 cells. Statistical tools can be used to
simplify the problem. For example, key ‘‘identities’’ like
cell types and gene sets (typically markers, transition genes,
and pathways) found using the clustering and dimension-
ality reduction techniques discussed above can be used to
build mathematical models similar to what has been done
in past with ODE-based formulations.

Transitions between cell identities are important and can
be used for modeling. Inferring cell type transitions from
static single-cell expression data is now possible. Initial at-
tempts inferred a cell lineage based on a minimal spanning
tree across an undirected graph with weights defined by
Euclidian distance in gene expression space (37). For
single-cell-level data, the first attempt to describe a tempo-
ral ordering of expression pattern from a heterogeneous
mixture of cells using mass-cytometry data was presented
using the Spanning Tree Progression of Density-Normalized
Events (38) and Wanderlust (39) methods. Wishbone (40),
as an updated version of Wanderlust, produces develop-
mental trajectories and identifies bifurcation patterns
from cytometry data. Monocle (41) and Census, or Monocle
2.0 (42), use a method based on a nearest-neighbor graph
to obtain lineage relationships between cells. Assuming
a random-walk-like approach, one can obtain diffusion
maps to embed the heterogeneous single-cell population in
a connected landscape with temporal ordering in pseudo-
time (27). Although these methods rely on using the metric
between clustered data (or cells) and then embedding in a
graph, other distance measures based on ideas from physics
and information theory, such as calculating single-cell en-
tropy and then inferring an ordering using a Waddington-
like landscape, were applied in single-cell lineage inference
using cell expression similarity and entropy (43). Using
tools of nonlinear dynamics, singe-cell clustering using
bifurcation analysis (44) tries to obtain lineage trees by
bifurcation analysis of the expression patterns (applicable
to temporal data in which bifurcation points are defined
by splitting one cluster into two). Several other tree-based
algorithms have also been recently proposed (45–48).
Linear combination of a few principal component analysis
or diffusion components may help to distinguish cell sub-
populations within these systems (49,50). Bayesian ap-
proaches or probabilistic methods (27,51–53) have an
advantage over tree-based methods, as they can assign an
uncertainty measure to the connectivity link between two
distinct cell clusters. The minima or maxima expression
pattern observed for genes within a triad of cell types is
one such example that has been used to infer lineages
(28). Recently, a novel developmental trajectory reconstruc-
tion algorithm was proposed called RNA Velocity (54),
which uses the ratio of spliced and unspliced reads of
each transcript within a cell to extrapolate the expression
profile in the near future (up to a few hours), thereby quan-
tifying cell identity dynamics within a single cell.

Both gene regulatory network models based on prior
knowledge and inferred network models based on Bayesian
methods usually rely on the assumption that high-dimen-
sional data can be effectively projected to a low-dimensional
space captured by a few genes or pathways. Although this
might be a valid assumption given experimental evidence
that only a handful of transcription factors can control impor-
tant transitions between cell states (35), it may not always
apply. And if indeed the cell cluster cannot be explained in
a low-dimensional space and instead remains embedded in
a moderate- to high-dimensional space (102–103 genes),
then one needs frameworks that can support predictions
about cellular transitions and temporal dynamics of cell clus-
ters. Such frameworksmay invoke ideas fromdynamical sys-
tems in high-dimensional space, in which cell clusters are
dynamic but can be defined locally in time. This approach
has been successfully implemented on sequencing data sets
using machine learning to build an algorithm that can learn
and classify (55,56) and to describe states of memory in the
context of neuroscience (57).

Using an analogy from thermodynamics, transitions
across states occur because of barrier energy crossing, in
which the ‘‘height of the barrier’’ modulates the probability
of escape. In a ‘‘genetic landscape,’’ the presence of inducing
time-varying fields likemorphogen gradients, which push to-
ward a particular developmental fate, makes these barriers
disappear, and possible transitions become facilitated under
specific directed field vectors along certain landscape direc-
tions (58,59). The transition of one cell type to another may
occur by use of existing basins or minimas, which appear as
stable states accessed by tilting the landscape (Fig. 2 a) or by
the splitting of available basins in additional subpopulations
of cell states (Fig. 2 b). The notion of stable states and tran-
sitions among them conjures a Waddington-like picture of
cell identities appearing as basins or valleys of a complex sur-
face topography (60). For example, in tissue development,
the position of an individual cell along this landscape may
indicate its differentiation state (Fig. 2). The knowledge of
the ‘‘barrier heights’’ and the relevant directions of change
helps us to engineer cell fates (61). Certain machine-learning
approaches have been used to make similar predictions by
comparing a known target (e.g., endogenous cell transcrip-
tome) and new data to quantify the closeness of the cell iden-
tity found in experiments with the desired engineering target
(62,63). Such approachesmay predict possible control points
in time, such as time-varying fields (e.g. growth factors), that
help fulfill the engineering goals of regenerative medicine to
Biophysical Journal 115, 1–7, August 7, 2018 5
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grow a specific cell population. Landscape models con-
structed based on sequencing data from a single develop-
mental time point already readily model multiple cell states
and predict specific predictions for accessing individual
states under certain conditions; however, it is far from
obvious whether developmental dynamics over longer times
can be accurately captured or if we need models in which
additional temporal data can be incorporated.
Outlook

Single-cell genomics is a powerful technique to measure
cellular dynamics and gene expression variation across thou-
sands to millions of cells. This technology represents a new
kind of microscope, as it opens a new window into cellular
complexity and can even be used in situ to map cell diversity
across an entire tissue (64). Ideally, this enables us to find a
simpler meaning in this complexity by looking for key genes,
such as transcription or growth factors, that are responsible
for cellular heterogeneity and to decode the time-resolved
dynamics of cellular processes, such as differentiation or
development (65). Another relevant dimension to consider
is the spatial localization of cells in the context of a tissue
or organ. With our current knowledge of the gene expression
differences across cell types and temporal data providing
time-ordered maps of these cells as they develop and func-
tion, it will be instrumental to build three-dimensional atlases
in which individual cell types can be visualized in situ
(64,66). This will help us to investigate how gene expression
patterns manifest spatially in an organism and how local co-
ordinates and geometry interplay with these patterns.

Important questions remain to be addressed, including the
definition of cell types and cell states as well as how cells
change among these configurations and the relevant time-
scales for such processes. The explosion of single-cell mea-
surements at multiple omic levels coupled with novel
technological advancements such as single-nuclei RNA
sequencing from complex tissue (scNuc-seq) (67) and
multimodal measurements (5,68–70) to elucidate the geno-
type-phenotype interplay in the context of cell function
provides a major opportunity to answer these important bio-
logical questions. Answering these questions will require an
interdisciplinary approach, including biophysics, computer
science, biology, engineering, and other fields.
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50. Scialdone, A., Y. Tanaka,., B. Göttgens. 2016. Resolving early meso-
derm diversification through single-cell expression profiling. Nature.
535:289–293.
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