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ABSTRACT  

Disease recurrence causes significant mortality in B-progenitor acute lymphoblastic 

leukemia (B-ALL). Genomic analysis of matched diagnosis and relapse samples show 

relapse often arising from minor diagnosis subclones. However, why therapy eradicates 

some subclones while others survive and progress to relapse remains obscure. Elucidation 

of mechanisms underlying these differing fates requires functional analysis of isolated 

subclones. Here, large-scale limiting dilution xenografting of diagnosis and relapse 

samples, combined with targeted sequencing, identified and isolated minor diagnosis 

subclones that initiate evolutionary trajectory toward relapse (termed diagnosis Relapse 

Initiating clones, dRI). Compared to other diagnosis subclones, dRI were drug tolerant 

with distinct engraftment and metabolic properties. Transciptionally, dRI displayed 

enrichment for chromatin remodelling, mitochondrial metabolism, proteostasis programs 

and an increase in stemness pathways. The isolation and characterization of dRI 

subclones reveals new avenues for eradicating dRI cells by targeting their distinct 

metabolic and transcriptional pathways before further evolution renders them fully 

therapy resistant.  

 

STATEMENT OF SIGNIFCIANCE 

Isolation and characterization of subclones from diagnosis samples of B-ALL patients 

who relapsed, showed that relapse-fated subclones had increased drug tolerance and 

distinct metabolic and survival transcriptional programs compared to other diagnosis 

subclones. This study provides strategies to identify and target clinically relevant 

subclones before further evolution towards relapse. 
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INTRODUCTION 

Despite significant advancements in the treatment of acute lymphoblastic 

leukemia (ALL), the disease recurs in 15-20% of pediatric and 40-75% of adult patients, 

with the prognosis for patients who relapse being dismal(1-3). Analysis of paired 

diagnosis and relapse ALL samples with increasingly broader and deeper genomic 

sequencing methods has shown that classical Darwinian branching evolution of 

genomically distinct subclones is a hallmark of disease recurrence(4,5). At both diagnosis 

and relapse, a single neoplasm may contain multiple genetic subclones related to each 

other through complex evolutionary trajectories(4-6). While relapse may evolve from the 

predominant clone at diagnosis, in the majority of patients relapse arises from pre-

existing minor subclones within the diagnosis sample or from a rare ancestral clone(4-6). 

Although the population-level genetic analyses upon which these conclusions are based 

rely on computational inference of their evolutionary relationships from analysis of bulk 

leukemic cells, resolution of leukemic subclones at clonal levels, either through isolation 

of subclones in xenografts or from single cell analysis, have largely substantiated these 

predictions(7,8). Functional studies to explain therapy failure have mainly been 

undertaken by comparing diagnosis cells with those from relapse and identifying drug 

resistance mechanisms present in relapse and absent at diagnosis. However, the 

properties of the relapse sample have been shaped by exposure to chemotherapy causing 

further evolution and mutagenesis. Thus two critical questions remain: what are the 

unique properties and mechanisms that contribute to the relapse-fate of a particular 

diagnosis subclone prior to full evolution to drug resistant relapse disease; and when does 

drug tolerance arise? Drug tolerance may arise stochastically through genetic or 

epigenetic mecahnisms prior to exposure to therapy, and be selected for by both cell 

autonomous and non-cell autonomous processes(9-12). Alternatively, therapy may induce 

genomic aberrations that are then selected for during disease progression, particularly if 

such alterations reduce leukemic cell fitness(13) during disease establishment and prior to 

the administration of therapy(14,15). Without isolation of the subclones that contribute to 

disease progression from diagnosis samples, it is not possible to answer these questions 

and uncover the cellular and molecular properties that explain their differing subclonal 

fates and drug tolerance.  
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Many therapy resistance mechanisms have been implicated in B-ALL including 

acquisition of stemness programs(16), dormancy, the protective role of the niche and the 

acquisition of resistance driver mutations(13,17-20). However, the ability to evade drug 

treatment is only one prerequisite of relapse; surviving cells must also possess significant 

clonal regenerative capacity in order to regrow or reproduce disease. For many human 

cancers, only rare fractions of malignant cells are capable of significant clonal 

propagation as detected by xenograft-based cancer or leukemia-initiating cell (L-IC) 

assays(9). Indeed, methods to propagate primary human leukemia samples were first 

undertaken in B-ALL with patient-derived xenografts (PDXs) recapitulating many 

features of the patient’s disease(21,22). Subsequent studies used a limiting dilution 

approach to generate xenografts, thereby tracking the growth properties and genetic 

identity of single L-ICs(8). Thus, depending on the cell dose transplanted, rare subclones 

with poorer competitive repopulation properties, compared to more aggressive or 

numerous L-IC within the sample, could be identified. By genetic analysis of such 

xenografts, evidence was found for the existence of ancestral and/or minor subclones 

proving that branching evolution and clonal diversity occur at the level of L-IC, however 

these studies did not test for relapse-fated subclones(7,8). Conceptually, L-ICs with the 

capacity for clonal propagation should serve as the units of selection during disease 

progression since only mutations accumulating in clonal propagating cells are relevant 

for further disease evolution. Thus the relationship between disease progression and 

properties of stemness is an active area of investigation(9,23). The pairing of 

xenografting assays with genomic studies provides a unique opportunity to enrich for the  

reservoirs of relapse. However, a direct test of this concept through paired diagnosis and 

relapse xenografting in B-ALL has been limited(22,24,25). Paired studies in AML and T-

ALL have demonstrated that xenografts can capture distinct subclones present within the 

diagnosis samples of relapsing patients; some genetically more closely related to the 

predominant diagnosis subclone and others to a corresponding relapse sample(26-29). 

These results suggest that the latent relapse-initating subclones possess competitive 

growth advantages when assessed by xenografting, but remain suppressed by the 

predominant clone in the patient making them difficult to study.  
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Here, we undertook a combined functional and genomic analysis of 14 genetically 

distinct paired diagnosis and relapse B-progenitor ALL patient samples to isolate latent 

subclones within the diagnosis sample that initiate relapse. Isolation of subclones enabled 

functional analysis of their growth and drug response properties as well as molecular 

analysis of their transcriptomic profiles. 
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RESULTS 

Isolation of relapse-initiating subclones in B-ALL  

Whole exome sequencing (WES) and single nucleotide polymorphism (SNP) 

microarray analysis of 6 adult and 8 pediatric B-ALL patients of varying genetic subtypes 

were undertaken to identify somatic single nucleotide variants (SNV), insertion-deletion 

mutations (indels) and DNA copy number alterations (CNA). The patients encompassed a 

range of cytogenetic subtypes and varied in the length of their disease remission (range 

5.88 – 94.8 months) (Supplementary Table S1). Diagnosis samples had a median of 24 

somatic SNV/ indels (range 7-100) and 13.5 CNA (range 1-51), whereas relapse samples 

contained a median of 39.5 SNV/indels (range 22-405) and 16.5 CNA (range 2-58) 

(Supplementary Table S1). Leukemic variants were confirmed by targeted sequencing 

using a custom capture array of the variants identified by WES (Fig. 1a). Targeted 

sequencing and WES data were merged resulting in a coverage of ~350x. Computational 

analysis of the variant allele frequencies (VAFs) of leukemic variants comparing 

diagnosis and relapse samples predicted that the origin of relapse arose from a minor 

subclone present at diagnosis in 10 patients (patients 1,3-7,9 and 12-14) (Fig. 1b and 

Supplementary Table S1) and through further evolution of the major diagnostic 

subclone in 4 patients (patients 2,8,10 and 11) (Supplementary Table S1). Broadly, 

these findings of evolutionary origins are representative of the much larger analysis of 92 

paired samples that reports the mutational landscape and patterns of clonal evolution of 

relapsed childhood ALL as described in Waanders et al.(30).  

To gain insight into the genetic diversity at the level of leukemia initiating-cells 

(L-IC) and uncover rare and/or outcompeted clones, purified leukemic blasts from 

primary diagnosis and relapse samples were transplanted intrafemorally in a limiting 

dilution assay into 872 NOD.CB17-PrkdcscidIl2rgtm1Wjl/Szj (NSG) mice to generate 

primary patient derived xenografts (termed PDX). The frequency of L-IC varied widely 

between samples with L-IC ranges corresponding to those previously described(31,32), 

however paired analysis between diagnosis and relapse samples did not show a consistent 

trend in L-IC enrichment at either time point (Supplementary Table S2).This collection 

of PDXs (n=402, average 28 per patient (range 11-58), 13 per sample (range 0-27)) was 

used to further study the clonal landscape present in the patient samples. To determine if 
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PDXs captured the clonal diversity and disease evolution present in the patient samples, 

human cells were isolated from the bone marrow (BM), spleen (SPL) and central nervous 

system (CNS) of engrafted mice and subjected to targeted sequencing using the custom 

capture array designed for the patient samples (Fig. 1a). PDXs with sufficient human 

engraftment for genotyping (>10% human chimerism, 372 PDX total, average 26 PDX 

per patient) were analyzed. Individual PDXs from the same patient sample were often 

found to vary in their clonal composition in terms of the presence and frequency of 

variants suggesting that the L-IC initiating the grafts derived from genetically diverse 

subclones often capturing the totality of the clonal diversity present in the diagnosis 

patient sample (Fig. 1c).  

Leukemic variants were classified on the basis of the VAF of the variants in the 

bulk patient diagnosis and relapse samples from which the PDX were generated: 

preserved variants (VAF > 30% in both diagnosis and relapse samples, or preserved 

between samples); diagnosis-specific variants (present at diagnosis and absent at relapse); 

latent variants (present at diagnosis with VAF < 30% and increasing at relapse); relapse-

specific variants (absent at diagnosis and present at relapse) (Supplementary Table S3). 

The limit of detection of our combined sequencing was a VAF of 1%.  This analysis 

revealed three patterns of engraftment in PDX derived from diagnosis samples (termed 

dPDXs). In 10 of 13 engrafting diagnosis samples (76.9%, patients 1-7,9,12 and 14), 

latent variants were enriched in dPDXs (>10% increase in VAF in dPDX) as compared to 

the diagnosis patient sample demonstrating the regenerative potential of clones marked 

by these variants (Fig. 2a and Supplementary Fig. S1a-b). In 4 of 13 patients (patients 

5,6,11 and 13), dPDXs were generated where leukemia cells bore relapse-specific 

variants establishing their existence within the diagnosis sample, despite being at levels 

below the detectable limit of the sequencing (Fig. 2b). Lastly, in one patient (patient 8), 

whose relapse was predicted to evolve from the major diagnosis clone based on analysis 

of the bulk patient samples, only diagnosis clones engrafted in dPDXs (Supplementary 

Fig. S1c). This patient carried an ETV6-RUNX1 translocation and had the longest 

remission, relapsing eight years after the initial ALL diagnosis. Our approach of 

generating PDXs with differing cell doses was instrumental in showing the existence of 

subclones at diagnosis that bear latent (patient 2) or relapse specific variants indicative of 
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ancestral clones (patient 11) in two patients in which genetic analysis of bulk diagnosis 

and relapse samples had predicted evolution from the major diagnosis clone (Fig. 2b and 

Supplementary Table S3). Only one diagnosis patient sample (patient 10), a sample 

predicted to arise from evolution of the major diagnostic clone, did not engraft at the 

highest transplanted cell dose (250,000 cells).  Therefore, xenografting added 

considerable new insight into the subclonal repertoire of L-ICs in these patients, and their 

evolutionary fates and patterns. 

  

Genetic analysis of xenografts provides insight into the dynamics of subclone 

evolution  

To gain insight into the evolutionary relationships and processes underlying the 

divergence of subclones, we undertook two approaches: population phylogenetic analysis 

to examine the genetic similarity between xenografts and patient samples; and generation 

of mutational trees to reconstruct the clonal hierarchies. We began by using a population 

genetics approach where phylogenetic analysis was performed for the patient samples 

and the clones isolated from their PDXs to depict the evolutionary relationships between 

xenografts and the patient samples (Fig. 3a-b and Supplementary Fig. S1d-g). These 

analyses demonstrate the ability of PDXs to capture diagnosis subclones more closely 

related to the diagnosis patient sample, as well as subclones present in the diagnosis 

patient sample that are on the trajectory to relapse. We term these partially evolved 

subclones that go on to cause relapse – diagnosis relapse-initiating (dRI) clones. dRI were 

identified in all engrafting diagnosis patient samples except for the patient with the 

longest time of remission (patient 8). Thus, our xenografting approach enabled the 

capture and isolation of subclones, including those on the evolutionary trajectory of 

relapse, for further functional analysis and to aid in the determination of mutational 

acquisition. 

For our second approach, we used the extensive mutational information garnered 

from the 372 PDXs to supplement the patient analysis. For each patient, computational 

analysis using PairTree (Wintersinger et al. in preparation) was undertaken to group 

leukemic variants with similar VAFs across numerous PDX and bulk samples to define 

genetically unique mutational populations. We then constructed mutational trees to 
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describe the evolutionary history of each leukemia and the order of mutational acquisition 

(Fig. 4; Supplementary Fig. S2a-c; Supplementary Fig. S3a-c; Supplementary Fig. 

S4a-e; Supplementary Fig. 5a-c; Supplementary Table S3). In 7 of 14 patients, the 

PDXs helped seperate the mutational aquistion into multiple distinct populations that 

could not be resolved using the sequencing data of the primary patient samples alone. For 

instance, in patient 1, analysis of the xenografts revealed the existence of four distinct 

subclonal populations (populations 10,12,14 and 15) at relapse that, when only the patient 

samples were considered, had been predicted to be only a single subclone (population G) 

(Fig. 4a-d). This analysis further enabled comparisons of the state of the evolutionary 

trajectory of the subclones captured within each individual PDXs (denoted by a 

numbered PDX referring to a specific mouse) to the patient samples from which they 

were derived; such as dPDX7 in patient 1 whose clonal composition is more closely 

related to the relapse than the diagnosis sample (Fig. 4c-d). Additionally, the PDXs aided 

in subdividing single mutational populations into more than a single linearly related 

population or branch in 11 of 14 patients. For example, population G in patient 9 was 

expanded into two separate populations (populations 8 and 9) when PDXs were included 

(Fig. 4e-f; Supplementary Fig. S2a-c; Supplementary Fig. S3a-c; Supplementary 

Fig. S4a-e; Supplementary Fig. S5a-c).  

 

Genetically diverse subclones have differing xenograft repopulation kinetics  

The mutational analysis of the xenografts performed using PairTree helped 

illuminate the competitive differences in xenograft repopulation kinetics of specific 

subclones. We compared the predominant diagnosis mutational populations in the patient 

sample to the mutational populations that engrafted in the xenografts. In all but four 

patient samples the dPDX captured the diversity of clones present in the diagnosis 

samples (Fig. 4; Supplementary Fig. S2a-c; Supplementary Fig. S3a-c; 

Supplementary Fig. S4a-e; Supplementary Fig. S5a-c). In two of these four patients 

(patients 7 and 11)  minor diagnosis-specific mutational populations including a 

population harbouring missense NRAS mutations in patient 7 did not engraft in the 

dPDX mice (Supplementary Fig. S4a; Supplementary Table S3). In the other two 

patients (patients 9 and 12) all the dPDX were initiated from a minor population in the 
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diagnosis sample ancestral to the relapse (Fig. 4; Supplementary Fig. S4c; 

Supplementary Fig. S5a). These data show the enhanced competitive repopulation 

properties of these dRI clones. In patient 9, all dPDX were initiated from mutational 

population 5 that corresponded to only 22% of the diagnosis leukemic cells (initially 

described as population E in the patient sample alone mutational tree) in comparison to 

the mutational population 2 lineage that represented 71% of the diagnosis leukemic cells 

(initially described in population B) (Fig. 4e-f). In the dPDX, population 5 displayed a 

strong selective advantage representing at least 93% of the leukemic cells, outcompeting 

the population 2 lineage (encompassing populations 2-4) and recapitulating the 

evolutionary dynamics of the patient relapse, where 98% of the leukemic cells came from 

the population 5 lineage (Fig. 4f). In contrast, in 5 patients (patients 1,4,6,7 and 11) the 

relapse-fated mutational population represented only a small percentage of the engrafting 

cells in most dPDX and only rose to predominance in rare mice. For example, in patient 

11, relapse-fated mutational population 3, initially described in population C, only 

corresponded to 1% of leukemic cells at diagnosis and remained at similarly low levels in 

most dPDX. However, in two dPDX transplanted with a low, near limiting cell dose 

(10,000 cells), population 3 rose to 92% and 74% of leukemic cells distinguishing it from 

population 4 and highlighting the importance of the limiting dilution approach to capture 

rare subclones by isolating them away from other subclones with higher competitive 

capacity (Fig. 4g-h; Supplementary Fig. S4e).  Population 3 was defined by a single 

variant in the 3’UTR of AHNAK, a gene whose expression has previously been 

implicated in disease relapse in T-ALL(33). Thus, the xenografting strategy permitted 

integration of functional and genomic information providing insight into the distinct 

competitive growth properties of functionally defined L-IC subclones. Taken together, 

the phylogenetic analysis and mutational evolutionary trees provide strong evidence that 

relapse-fated subclones were already present in the diagnosis sample confirming prior 

studies of several human acute leukemic diseases and in silico predictions(4,5,27,28).  

  

Genetically diverse subclones have differing immunophenotypic and migratory 

properties  

 To further examine whether genetically distinct subclones also possessed 
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variation in their immunophenotype or functional properties that might explain why some 

are fated to contribute to relapse and others are not, we examined their differentiation, 

growth, and migration properties. We first interrogated the differential properties of the 

diagnosis clones isolated from patient 9 in which the presence of latent variants including 

the known relapse driver CREBBP(20), was segregated between clones. Differences in 

immunophenotype were observed for dRI-PDX enriched for these latent variants which 

were present at low VAFs in the diagnosis patient sample (1-11%) (Fig. 5a-b). The dRI-

PDX exhibited a CD45negCD34+ immunophenotype reflective of the relapse sample 

whereas others contained both a CD45negCD34+ and a CD45dim CD34+ population as 

observed in the diagnosis patient sample (Fig. 5a). Relapse PDX (termed rPDX), like the 

relapse sample itself were CD45neg (Fig. 5a). dPDX that were engrafted primarily with 

CD45dim or both immunophenotypic populations had a genotype that was more closely 

related to the diagnosis sample (Fig. 5b). The differences noted in immunophenotype 

appeared to reflect the rise of the relapse fated clone and aided in identifying different 

subclones present within a single xenograft. To validate that the difference in 

immunophenotype segregated the predominant diagnosis clone from the minor subclone 

that seeded the relapse, we isolated the two immunophenotypic poplulations by flow 

sorting cells from 6 dPDX and subjected the populations to targeted sequencing using the 

custom capture array designed for the patient samples. This analysis confirmed the 

enrichment of the dRI clone in the CD45neg population, whereas latent variants were 

absent or very rare (<6%) in the CD45dimCD34+ population (Fig. 5b). Of note, change in 

CD45 expression between diagnosis and relapse timepoints were identified in 5 of our 

patient samples. PDX from patient 9 showed markedly reduced leukemic dissemination 

from the injected femur to other hematopoietic sites (Supplementary Fig. S6a).  

 The ability to use differences in immunophenotype to segregate clones enabled us 

to select evolutionarily related dRI subclones for RNA-sequencing (RNA-seq) 

analysis from patient 9. We compared the expression profiles of two dRI clones, an 

ancestral and a daughter clone (clones 1 and 2 respectively), to a representative relapse 

clone (clone 3). The dRI clone most genetically similar to the relapse, bearing latent 

leukemic variants including 3 variants in CREBBP (2 missense and 1 silent) as well as 

variants in TCS2, NRAP, PLXNA4 and PRINS (dRI-PDX clone 2) had an expression 
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profile very closely related to representative relapse clones with only 24 differentially 

expressed genes (Fig. 5c-d; Supplementary Table S4). In comparison, the ancestral 

clone not harbouring CREBBP (dRI-PDX clone 1CREBBP_WT) showed 479 differentially 

expressed  genes compared to relapse clones suggesting that the majority of 

transcriptional changes that are seen at relapse had already occured in dRI-PDX clone 2 

at diagnosis prior to exposure to chemotherapy (Supplementary Table S4). Broadly, the 

changes in gene expression of dRI-PDX clone 2 in relation to dRI-PDX clone 1CREBBP_WT 

centered on dysregulation of histone variants and inflammation-related genes as well as 

downregulation of genes involved in morphogenesis (TGF signaling, GATA3), the TCR 

and BCR pathways (CD19, CD79A, CD4, etc) and antigen processing and presentation 

pathway, while heat-shock response (HSR) and unfolded protein respone (UPR) 

pathways were enriched (Supplemental Table S4). Thus the early acquisition of 

additional leukemic variants in this relapse-fated subclone, including the CREBBP 

mutations, caused significant changes in gene expression. Interestingly, tyrosine kinases 

such as EPHB2, LTK and ERBB2 were upregulated after acquistion of CREBBP variants 

in both dRI-PDX clone 2 and the relapse clone suggesting possible vulnerabilities to 

tyrosine kinase inhibitors. Despite this striking change, the dRI subclone remained 

dormant within the patient for many years as this patient displayed a long remission (4 

years).  

 PDX from the majority of samples showed extensive migration of leukemic cells 

to other hematopoietic sites and other tissues including the SPL, CNS and peripheral 

blood (Supplementary Fig. S6b-c). Since patients with B-ALL may present with 

leukemic dissemination to the CNS and testes where they can provide a sanctuary for 

relapse, we investigated whether there were differences in the dissemination of subclonal 

populations to each site. Targeted sequencing analysis showed that there was genetic 

discordance between CNS and bone marrow in 40% (44 of 111) of xenografts and 

between SPL and BM in 17.8 % (28 of 157) of xenografts (Supplementary Table S5).  

In one patient (patient 7), our analysis of the genetic discordance revaled the presence of 

a dRI clone engrafting in the CNS (VAFs > 39%) of a a xenograft transplanted with a 

high cell dose (250,000 cells), in which the clone was a minor clone barely detectable in 

the BM (VAFs of < 3%) and outcompeted by a more predominate diagnosis clone. 
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(Supplementary Fig. S6b). The identification of the dRI subclone in the CNS of dPDX 

is consistent with the ability of relapse-fated cells to disseminate and cause disease 

recurrence in the CNS of B-ALL patients. We also noted the occurrence of a difference in 

peripheral blood dissemination of dRI in an additional patient (patient 4), with delayed 

mobilization of the dRI-PDX subclone as compared to the representative diagnosis clone 

(Fig. 5e). Collectively, the combined functional and genotyping studies show that 

individual subclones possess distinct immunophenotypic, competitive repopulation, 

proliferative, and migration properties and that dRI subclones can already possess distinct 

biological properties at diagnosis, before exposure to chemotherapeutic agents. 

 

dRI subclones display differential response to chemotherapeutic agents  

 To directly test the functional properties of dRI subclones with their ability to 

survive and contribute to relapse, we compared the drug sensitivities of individual 

subclones for 5 of the genetically distinct patients. Multiple secondary PDX were 

generated from dPDX with known dRI clones (dRI-PDX), predominant diagnosis clones 

(dPDX), or representative relapse clones (rPDX). Treatment of B-ALL patients includes 

combination chemotherapy with supportive care, however, it is not possible to replicate 

human therapy precisely in xenografts. Our interest was to determine if there was any 

variation in the responsiveness of different subclones to individual drugs used in these 

chemotherapeutic protocols. Following engraftment, PDX received single agent 

treatments of dexamethasone, vincristine, L-asparaginase or saline for 4 weeks (Fig. 6a-b 

and Supplementary Fig. S7a-f). Differences in therapeutic responses to one or more 

drugs between dRI and representative diagnosis clones were observed for four patient 

samples. In three patient samples, (patient 1, 6, 7), dPDX harbouring a dRI clone (dRI-

PDX) were compared to dPDX repopulated with the major diagnosis clone and 

demonstrated reduced sensitivity to 2 or 3 of the 3 chemotherapy agents tested (Fig. 6a-b 

and Supplementary Fig. S7a-d). Reduced sensitivity to a single chemotherapeutic agent 

was also observed in one additional patient (patient 4; dexamethasone, significant in 

injected femur and trend in BM and SPL) (Supplementary Fig. S7e). By contrast, there 

was no difference in the therapeutic sensitivity of two dRI-PDX from patient 11 defined 

by the presence of the AHNAK 3’UTR varaint. This patient has a strong driver KMT2A 
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(MLL) translocation and the presence of the single relapse specific variant does not 

appear to confer sufficient evolution of the leukemia to alter the therapeutic sensitivity in 

this context (Supplementary Fig. S7f). Purification of human cells from the secondary 

PDXs post therapy and targeted sequencing confirmed their genotype and did not reveal 

the selection of any further relapse-specific variants (Supplementary Fig. S8a-c).  The 

observed differences in drug response could not be accounted for by any consistent 

changes in L-IC frequency (Supplementary Table S6).  

 Unexpectedly in two of five patient samples used for drug testing, we found that 

the dRI subclones exhibited immunophenotypic plasticity as compared to the 

predominant diagnosis clone when exposed to drugs. In the secondary recipients of dRI-

PDX of patient 1 and dRI-PDX of patient 7, both patients harbouring DUX4 

translocations at diagnosis, there was the emergence of a distinct CD33+CD19dim/neg 

population upon dexamethasone treatment but not in saline controls or upon treatment 

with the other two drugs (Fig. 6c) (Supplementary Fig. S9a-b). This population was 

very rare or not observed in the primary recipients. The CD33+CD19dim/neg cells 

resembled myeloid cells with respect to their cell surface marker expression, size and 

granularity (Supplementary Fig. S9c). An immunophenotypic shift towards the myeloid 

lineage especially with steroid challenge has previously been reported in ERG/DUX4 

patients but our finding of a subclone specific switch is of interest(34). The emergence of 

CD33+CD19dim/neg cells was not due to the outgrowth of a different subclone as these cells 

were genetically identical to their CD19+ counterpart (Supplementary Fig. S9d-e). We 

speculate that this propensity for immunophenotypic plasticity might be linked to 

chromatin remodelling and the ability to evade therapy as other studies have shown(35-

38). Overall, our data provide strong evidence that prior to exposure to chemotherapy, 

dRI subclones already possess distinct pre-existing functional properties including 

differential sensitivity to standard chemotherapy agents.  

 

Transcriptional analysis of dRIs reveal metabolic rewiring and enrichment of a 

stem cell state in progression to relapse 

To gain mechanistic insight into the molecular pathways present in dRIs, RNA-

seq analysis was performed on cells from dRI-PDX, dPDX, or rPDX of four patients 
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(Patients 1,4,6,7; n=14 dPDX, 15 dRI-PDX and 13 rPDX) (Supplementary Table S7). 

This analysis confirmed the placement of dRIs as intermediates between diagnosis and 

relapse, sharing transcriptional programs with both timepoints (Supplementary Fig. 

S10a). Given the distinct B-ALL subtypes/cytogenetics of the patient samples analyzed, 

as expected only few (n= 23) differentially expressed genes reached significance when 

comparing dPDX vs dRI-PDX across all samples (Supplementary Table S7). 

Suprisingly, one of the genes upregulated in the dRI-PDX is asparaginase (ASPG), a 

catalytic enzyme that hydrolyzes asparagine to aspartic acid, albeit non-robustly in 

human cells. The human ASPG protein can display cytotoxic activity in human leukemic 

cell lines(39) suggesting that the dRI-PDX cells may have altered their response to 

cytotoxic stress or metabolic requirements thereby explaining why some of the dRI 

clones are less sensitive to L-asparaginase treatment than dPDX clones. 

As pathway enrichment analysis is more sensitive than differential gene 

expression for finding differences between populations we undertook this approach to 

uncover significantly differentially enriched pathways that were shared amongst all 

patients. Gene set enrichment analysis (GSEA) comparing the pathways present in dRI-

PDX vs dPDX revealed that most pathways significantly enriched in dRI-PDX (FDR q-

value  0.05) were also present or further enriched in the comparision of rPDX to dPDX; 

these are termed dRI-PDX/rPDX common pathways (Fig. 7a-b; Supplementary Fig. 

S10b-d; Supplementary Table S7). Network analysis revealed that these pathways were 

centered on a metabolic signature composed of genes involved in cellular and 

mitochondral metabolism including amino acid metabolism, TCA cycle, oxidative 

phosphorylation, mitochondrial translation and transport, and lipid metabolism (Fig. 7a-

b; Supplementary Fig. S10b-d). In concordance with a previous study on ALL 

relapse(25), the central regulator of growth and metabolism, mTOR, was enriched in dRI 

and relapse clones (Supplementary Fig. S10b; Supplementary Table S7). Pathways 

identified as uniquely enriched in rPDX vs dPDX (rPDX-unique), included a large 

network of highly interconnected nodes involved in cell cycle regulation such as cell 

cycle checkpoints, DNA replication, DNA repair and microtubule organization (Fig. 7a; 

Supplementary Table S7).  
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To validate the metabolic signature observed in dRIs, that was often further 

enhanced at relapse, we performed flow cytometry and immunostaining analysis in the 

PDX from five patient samples (Fig. 7c-d; Supplementary Fig. S10e-f). This analysis 

confirmed the convergence of similarities in metabolic rewiring of dRI-PDX/rPDX in 

comparison to dPDX in all 5 B-ALL patients. This functional validation showed that 

there was an increase in total mitochondrial mass, with individual mitochondria having 

similar mitochondria membrane potential in most of the patients analyzed. However, 

despite this increase in absolute mitochondria abundance, the levels of reactive oxygen 

species (ROS) were unexpectedly found to be lower in dRI-PDX and rPDX cells as 

compared to dPDX cells. The reduced ROS levels is suggestive of the presence of 

increased antioxidant defense upon progression toward relapse. This interpretation was 

concordant with our gene expression data that showed an enrichment of ROS-defense and 

peroxisomal activity genes (ie. catalase), which degrade toxic hydrogen peroxide and 

metabolize drugs, in the dRI-PDX and rPDX samples (Fig. 7a,c; Supplementary Fig. 

S10b,d-f; Supplementary Table S7). Significant enrichment for chromatin remodelling 

and cell stress response (such as the unfolded protein response (UPR)) were also 

identified as dRI-PDX/rPDX common pathways (Fig. 7a; Supplementary Fig. S10b-d). 

The chromatin remodelling pathways including expression of histone variants and 

isoforms were likely instrumental in the plasticity observed in the progression to relapse 

including the immunophenotypic plasticity we observed in dRI-PDX of patient 1,7 and 9 

(Fig. 4a, Fig 5c), while the expression of the cell stress response pathways identified 

could contribute to enhanced survival of dRI subclones. To independently validate the 

results obtained from the PDX identified pathways, we directly evaluated bulk diagnosis 

and relapse patient samples. We found enrichment (FDR q-value  0.05) of pathways 

involved in metabolism, mitochondria regulation and cell cycle at relapse (Fig. 7e; 

Supplementary Fig.S10g; Supplementary Table S7). Furthermore, we found 

significant enrichment of a signature present at minimal residual disease (MRD)(17) in 

dRI-PDX and rPDX compared to dPDX lending further support for the relevance of the 

dRI-PDX/rPDX pathways for understanding the mechanisms of relapse disease initiation 

and their presence prior to chemotherapeutic challenge (Supplementary Fig. S10h). 

Collectively, our transcriptional analysis has for the first time uncovered the utilization of 
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chromatin remodeling, stress responses and metabolic pathways in dRI subclones whose 

activity could serve to protect them during chemotherapy treatment and contribute to 

their ability to further progress to relapse disease. As such these newly identified 

pathways represent rich areas to investigate for new therapeutic strategies to target dRI 

specifically.   

To investigate whether the broader cellular state of the dRIs contributes to their 

functional differences, we performed gene set variation analysis (GSVA) comparing the 

transcriptomic profile of representative clones to normal hematopoietic cell populations 

isolated from human umbilical cord blood using 2 independent datasets, one from our 

own newly generated data and the other previously published(40)(Supplementary Fig. 

S11a; Supplementary Table S7). dRI-PDX and rPDX exhibited a transcriptome profile 

significantly enriched for hematopoietic stem cell (HSC) genes and a slight reduction in 

B cell genes as compared to dPDX (Fig. 7f; Supplementary Fig. S11b-c). Depletion of 

B cell genes and enrichment of HSC genes at relapse were also observed in the bulk 

patient samples from our cohort (Fig. 7f). Furthermore, the leading-edge genes of 

common pathways enriched in both dRI-PDX and rPDX are upregulated in HSCs as 

compared to lymphoid cells (Supplementary Fig. S11d). The  enrichment of 

mitochondrial metabolism and stemness at relapse were also validated in the larger 

Waanders et al. cohort of paired diagnosis-relapse patient B-ALL samples(30) 

encompassing several genetic subtypes (Supplementary Fig. S11e,f). These findings are 

in line with previous studies in the normal and leukemia stem cell fields(24,41,42) where 

several metabolic and stress response pathways such as those identified here 

(mitochondria metabolism, UPR, antioxidant defense) have been described to be crucial 

to the maintenance of stem cell homeostasis and function. Additionally, enrichment of 

stemness signatures are also a hallmark of high-risk B-ALL(43). Thus, our findings 

report a link for the acquisition of HSC stemness properties in combination with 

metabolic rewiring in dRI as part of progression to relapse in lymphoid B-ALL leukemia 

(Fig. 7g).  

 

DISCUSSION 
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Our study provides new insight into the leukemogenic process of human B-ALL through 

a deep analysis of the functional and molecular properties of genetically diverse diagnosis 

subclones isolated through xenografting from pediatric and adult B-ALL patients. By 

combining xenografting with sequencing, broad clonal structures were unambiguously 

demonstrated and additional subclones are uncovered. We identify relapse-fated dRI 

subclones, prior to chemotherapeutic exposure, with the capacity for clonal propagation 

and leukemia initiation in B-ALL that are both genetically and transcriptionally related to 

the relapse. Our data extends prior B-ALL studies that relied on genetic analysis and 

computational methods of bulk leukemia samples without functional studies, and that 

could only infer the presence and survival of minor subclones that were ancestral to the 

relapse driving clone and could not speak to the functional properties of these cells at 

diagnosis(4,5). As shown in Waanders et al.(30), while our xenografting approach 

substantiates the predicted lineage relationships of the traditional genetic analysis of bulk 

tissues it also extends our understanding of leukemia evolution by revealing a richer 

diversity of branching evolution and additional subclones. Our functional studies of 

subclones analysed either alone or in the context of competitive repopulation demonstrate 

that dRI subclones can be found to display increased clonal repopulation kinetics, 

immunophenotypic plasticity and differences in leukemic dissemination such as 

dissemination to the CNS, a known disease sanctuary site in patients. Importantly, dRI 

showed an intrinsic difference in tolerance to standard induction chemotherapeutic 

agents. Moreover, dRI subclones were typically very minor latent subclones in the 

diagnostic sample suggesting that they are restrained within the patient in comparison to 

the predominant subclone perhaps due to dormancy, timing, subclonal cross-talk or slow 

cycling, although this was not directly measured in our studies. Our study resolved the 

theoretical question as to whether functional properties of relapse clones are present prior 

to chemotherapeutic challenge or are induced by chemotherapy. While some mutations 

not present at diagnosis are recurrently acquired after chemotherapy (e.g. USH2A, 

NT5C2), our study documents the pre-existence of dRI subclones with intrinsic tolerance 

to clinical drugs. This data provides direct evidence that the Luria-Delbrück principle 

occurs in human leukemia(44). We speculate that the dRI subclones arise stochastically 

and these partially evolved subclones then become selected for by chemotherapy. Gene 
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expression and pathway analysis showed that even at this early stage where relapse fate 

arises, there was considerable metabolic rewiring within dRI subclones that was often 

further enhanced in relapse clones. Recurrent pathways were identified across a spectrum 

of different B-ALL patients with distinct genetic drivers suggestive of convergent 

evolution.  Broadly, we found that adult and pediatric dRI had similar properties in terms 

of their functional xenografting properties, therapy response, transcriptional pathways 

and metabolic rewiring also supporting the concept of convergent evolution. Pathways 

regulating mitochondrial dynamics and proteostasis are particularly relevant since they 

are linked to survival under stress, processes that may underpin the ability of dRI cells to 

adapt and survive chemotherapy. Futher evolution and mutagenesis of such subclones 

during the treatment and/or remission phases ultimately results in disease recurrence. 

Expression of the dRI-PDX/rPDX common pathways converged on a HSC signature, 

shared by both dRI and relapse cells, analogous to recent studies we have undertaken 

from purified acute myeloid leukemia (AML) leukemia stem cell populations(23,45). The 

finding of stemness signatures already present in dRI subclones, together with the 

identified metabolic changes provides the molecular basis to explain why dRI subclones 

may both survive therapy and posses the regenerative capacity to intiate relapse disease 

after a period of dormancy. Future studies that explore the transcriptome of dRI 

subclones from across an even wider spectrum of B-ALL patient samples would give 

insight into how the timing of acquisition of these molecular pathways leads to relapse. 

 The ability to isolate and characterize dRI subclones provides an important first 

step in understanding the basis for therapy resistance and clonal propagation. Such 

subclones isolated in this way are not simply an in silico depiction, rather they can be 

viably preserved cells or serially propagated xenografts for future studies.  Whole 

genome sequence, methylation and chromatin accessibility studies could be undertaken to 

build upon our transcriptomic analysis; thereby exploring more deeply the mechanisms 

that drive their functional properties. The signatures developed from isolated dRI clones 

could yield biomarkers to improve the classification of patients who are at increased risk 

of relapse and to better monitor residual disease. The immunophenotypic plasticity we 

linked to different genetic subclones points to the need to understand the breadth of cell 

surface phenotypes present to ensure that all leukemic subclones are properly tracked 
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during flow cytometry based residual disease monitoring. Finally, further investagtion of 

the dRI transcriptomic profile and metabolic rewiring may be used to uncover the 

vulnerabilities of dRI subclones resulting in new therapeutic targets. Improved 

eradication of dRIs during early treatment phases before the subclones evolve would 

prevent progression to  more aggressive, therapy resistant disease. Prior studies from us 

and others have shown that xenografting of a wide spectrum of primary patient samples 

provides a powerful tool to evaluate novel therapeutics and develop 

biomarkers(22,24,46,47). Our study suggests that extending the xenograft-based drug 

development paradigm by including genetic analysis to uncover subclonal responses to 

drug treatment will open up avenues to evaluate whether relapse fated clones are 

effectively targeted. 
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METHODS 

Patient Samples 

Patient samples were obtained at diagnosis and relapse from six adult and eight pediatric 

B-ALL patients according to pre-established guidelines approved by the Research Ethics 

Board of the University Health Network and the St. Jude Institutional Review Board 

respectively and were conducted in accordance with recognized ethical guidelines. Adult 

samples were collected at the Princess Margaret Cancer Centre and pediatric samples 

were collected at St. Jude Children’s Research Hospital. Written informed consent was 

obtained from all patients or patient families. All samples were frozen viably and stored 

long term at -150 °C. Samples were selected retrospectively based on sample and paired 

sample availability. 

 

Patient Derived Xenograft Generation and Limiting Dilution Analysis 

Twenty-nine clinical samples obtained from the 14 patients were stained with the 

following antibodies: anti-CD19 PE (BD, clone 4G7), anti-CD3 FITC (BD, clone SK7) 

or anti-CD3 APC (BC clone UCHT11), anti-CD45 APC (BD, clone 2D1) or anti-CD45 

FITC (BD, clone 2D1) and anti-CD34 APC-Cy7 (clone 581). Each sample was sorted on 

a FACSAria III (BD Biosciences) for leukemic blasts (CD19+CD45dim/-) and T cells 

(CD3+, CD45hi). NOD.CB17-PrkdcscidIl2rgtm1Wjl/Szj (NSG) mice were bred according to 

protocols established and approved by the Animal Care Committee at the University 

Health Network. Eight-to-twelve-week-old mice were sublethally irradiated at 225cGy 

24h before transplant. Only female mice were used in these studies. Intrafemoral 

injections of 10-250 000 sorted leukemic blasts were performed as previously 

described(48). Mice were sacrificed 20-30 weeks post-transplant or at the onset of 

disease symptoms. Human cell engraftment in the injected femur, bone marrow (non-

injected bones, left tibia, right tibia, left femur), spleen and central nervous system were 

accessed using human specific antibodies for CD45 (PE-Cy7, BD, clone HI30; v500, BD, 

clone HI30), CD44 (PE, BD clone 515; FITC, BD clone L178), CD3 (APC, BD, clone 

UCHT1), CD19 (PE-Cy5, Beckman Coulter, clone J3-119), CD33 (PE-Cy7, BD, clone 

P67-6; APC, BD, P67-6) and CD34 (APC-Cy7, BD, clone 581) analyzed on an LSRII 

(BD Biosciences). Mice were considered to be engrafted when >0.1% of cells in the 
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injected femur were positive for one or more human B-ALL specific cell surface markers 

(CD45, CD44, CD19, CD34). The confidence intervals for the frequency of leukemia-

initiating cells was calculated using ELDA software(49). 

 

Whole exome sequencing (WES) 

DNA from the adult samples was extracted from sorted leukemic blasts (CD19+CD45dim/-

, purity >90%) and sorted T cells (CD3+CD45hi, purity >90%) using the Gentra Puregene 

Cell Kit (Qiaqen). T cells from patients 2, 3 and 5 were whole genome amplified 

(REPLI-g Mini Kit, Qiagen) due to limited material. DNA from the pediatric samples 

with >90% leukemic blasts was extracted from diagnosis, remission and relapse samples 

using phenol-chloroform. Exomes were captured using the TruSeq Exome Library Prep 

kit (67Mb, 1µg DNA input) or the Nextera Rapid Capture Expanded Exome (62Mb, 50ng 

DNA input; Illumina, San Diego, CA, USA). Paired-end sequencing was performed with 

the HiSeq 2500 genome sequencer (Illumina). The data was mapped to human reference 

genome hg19 and variant calling was performed using the Bambino variant detector as 

previously described(50).  Briefly, leukemia and germline files were combined by the 

program and aligned against the reference genome. Putative sequence variants including 

SNV and indels were detected by running the variation detection module of Bambino. 

The output contained detailed read counts for each variant with columns for 

tumour/normal status, allele and strand. Variants were not filtered for coverage prior to 

combination with targeted-sequencing results. 

  

Copy Number Analysis 

Patient copy number aberrations were determined using SNP6.0 microarrays according to 

manufacturer’s instructions (Affymetrix, Santa Clara, CA, USA). Data was analyzed as 

previously described(51) using optimal reference normalization(52) and circular 

binary(53,54) segmentation with Genotyping Console (Affymetrix) and dCHIP (build 

Apr 2010)(55). Detection of loss of heterozygosity (LOH) and allelic ratios were 

performed using Nexus 7.5.2 software (BioDiscovery Inc, Hawthorne, CA, USA). All 

segments were manually curated. 
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Recovery of Human Cells and DNA Isolation from Xenografts 

Cells from the injected femur (IF), bone marrow (BM) and spleen (SPL) were frozen 

viably after sacrifice. The IF and BM of mice engrafted with > 10% human cells were 

combined. These cells as well as cells from diagnosis PDX spleens were depleted of 

mouse cells by using the Miltenyi Mouse Cell Depletion Kit (Miltenyi Biotech) (samples 

with >20% engraftment) or by cell sorting with human CD45 and human CD19 and or 

CD34 cell surface antibodies to a purity of >90% as determined by post-processing flow 

cytometry. CNS cells from mice with greater than 60% engraftment were used directly 

for DNA isolations. DNA was isolated using the QIAamp DNA Blood Mini or Micro Kit 

(Qiagen).  

 

Targeted Sequencing 

All somatic SNVs and indels identified by WES were validated in the patient samples 

using NimbleGen SeqCap Target Enrichment according to manufacturer’s instructions 

(Roche, NimbleGen). Library preparation was completed using 250-500ng of DNA using 

the NEXTflex DNA-SEQ Library Prep Kit (BiooScientific) with NEXTflex-96 DNA 

Barcodes (BiooScientific). Sequencing was performed on a HiSeq 2500 genome 

sequencer to a mean coverage >350x for patient samples and >200x for PDXs. 

 

Targeted-sequencing data analysis 

Final patient variant calls used the combined results of WES and capture validation. 

Variants were filtered out if the variant allele frequency (VAF) in the germline was 

greater than 10% or if there was a dbSNP frequency of greater than 1%. Variants were 

classified based on the VAFs in the bulk patient diagnosis and relapse samples as: 

preserved variants (VAF > 30% in both diagnosis and relapse samples, or preserved 

between samples); diagnosis-specific variants (present at diagnosis (> 1%) and absent at 

relapse (< 1%)); latent variants (present at diagnosis with VAF < 30% and increasing at 

relapse); relapse-specific variants (absent at diagnosis (<1%) and present at relapse 

(>1%)). For xenograft analysis, varaints with less than 5x coverage or unconvered in 

numerous xenografts were removed. Results were analyzed by visualization in heatmaps 

(ie. Figure 1C).  Phylogenetic analysis showing genetic relationships of patient samples 

Research. 
on February 24, 2020. © 2020 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 21, 2020; DOI: 10.1158/2159-8290.CD-19-1059 

http://cancerdiscovery.aacrjournals.org/


 26 

and xenografts were estimated using Minkowski’s distance calculated from the VAFs and 

represented visually using a nearest neighbour joining algorithm. Genetic concordance 

between different tissues of the same xenograft were determined by visual assessment by 

three independent and blinded individuals. Discordance was only called when all three 

investigators were in agreement. 

 

Generation of Mutational Trees from Patient Samples and Xenografts 

Two independent computational analyses were performed—first for patient-only 

tissue samples, and then patient samples augmented with xenografts (BM and 

SPL)—using an early version of the PairTree algorithm (Wintersinger et al., in 

preparation). PairTree uses variant read counts to estimate the posterior probability 

distribution over four possible ancestral relationships between every variant pair 

(A, B). The four ancestral relationships are as follows: variant A and variant B 

occurred in the same cells, such that no cell possessed one variant but not the other; 

variant A is ancestral to variant B, such that some cells have A but not B; variant B is 

ancestral to variant A, such that some cells have B but not A; or neither is the 

ancestor of the other, such that A and B are on different branches of the evolutionary 

tree. 

 To permit temporal ordering of mutations, the infinite sites assumption was made, 

such that variant A could never be the ancestor of variant B if A's cancer cell frequency 

(CCF) was lower than B's in any sample, after their CCFs were estimated from each 

mutation’s variant allele frequency (VAF). To simplify the estimation of CCF from VAF, 

variants were discarded if they lay in CNA-affected regions determined by SNP6.0 

analysis, of the patient samples, or if their VAFs were suggestive of an uncalled CNA 

regions. X-chromosome variants in male patients had their VAFs halved when estimating 

CCF to correct for their haploid nature. Distinct mutational populations were defined by 

semi-automatically clustering variants, with variants clustered together when their mutual 

“A and B occurred in the same cell” probabilities were high. 

 For each cluster, a representative "supervariant" was created. To compute a 

precise estimate of supervariant CCF, we summed the read counts of all variants within 

the supervariant’s cluster, then computed the pairwise ancestral relationship probabilities 
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between supervariants. These probabilities guided expert-driven tree construction, in 

which trees were built according to how well their implied pairwise relationships between 

clusters matched the computed pairwise probabilities. Confirmation that these expert-

driven trees yielded data likelihoods as good as or better than fully automated tree 

reconstructions produced by a more mature version of the PairTree algorithm 

(Wintersinger et al., in preparation) was performed. The tree-constrained lineage 

frequencies of each population in each sample were then computed using PairTree. The 

variants included in the populations defined by the patient-only analysis were then 

compared to the variants included in the populations defined for the patient and xenograft 

combined analysis to reveal the overlap, differences and additional clonality described 

with inclusion of the xenograft samples. 

 

RNA-Sequencing 

For PDX: Cell pellets for PDX RNA extraction were frozen in 1mL of TRIzol 

(Invitrogen) and kept at -80 °C. Total RNA was purified by phenol/chloroform and 

integrity and concentration were verified on a Bioanalyzer pico chip (Agilent 

Technologies). cDNA conversion was performed using SMART-Seq® v4 Ultra Low 

Input RNA Kit for Sequencing (Takara) (1ng total RNA input) and libraries were 

prepared using Nextera XT DNA Library Preparation Kit (Illumina) (1ng input of 

cDNA). Equimolar quantities of libraries were pooled and sequenced 4 cDNA libraries 

per lane on a High Throughput Run Mode Flowcell with v4 sequencing chemistry on the 

Illumina HiSeq 2500 following manufacturer’s protocol generating paired-end reads of 

126-bp in length to reach depth of 65 million reads per sample.  For patient samples: 

RNA was extracted from sorted leukemic blasts (CD19+CD45dim/-, purity >90%) using 

RNeasy Micro Kit (Qiagen) for adult patient samples. From these samples approximately 

10ng of total RNA was processed using the SMART™ cDNA synthesis protocol 

including SMARTScribe Reverse Transcriptase (Clontech) as per manufactures 

instructions. The amplified cDNA was subject to automated Illumina paired-end library 

construction using the NEBNext paired-end DNA sample Prep Kit (NEB) and libraries 

were sequenced on HiSeq2000 (Illumina) to an average of approximately 161 million 

Chastity-passed paired reads of 75bp in length per sample.  For pediatric samples RNA 
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was extracted from patient samples with >90% leukemic blasts using TRIzol (Life 

Technologies) and quality and quantity assessed by Qubit (ThermoFisher) and RNA6000 

Chip (Agilent). 1ug of RNA was used for library preparation with TruSeq RNA Library 

Prep Kit v2 (Illumina) and 2x 100bp paired-end sequencing was performed on a HiSeq 

2500 (Illumina). Patient RNA-seq samples were aligned against the human genome 

(hg19) using STAR v2.3 with default parameters. All PDX samples were aligned with 

STAR v2.5.2b(56) against the human genome build version GRCh38 and the ensembl 

v90 gtf file. Default parameters were used except for; chimeric segments were screened 

with a minimum size 12, junction overlap 12 and segment reads gap maximum 3; splice 

junction overlap 10, aligned mates gap maximum 100000, aligned intron maximum 

100000 and alignSJstitchMismatchNmax 5 -1 5 5. For both patient samples and PDX, 

transcript counts were obtained using HTSeq v0.7.2(57). Data was library size 

normalized using RLE, followed by a variance stabilizing transformation using DESeq2 

v1.22.1(58). PCA plots were generated on a per sample basis using  the top 1000 variable 

genes. For downstream visualization, differential expression and pathway analysis, the 

mean expression of each sample clone condition was utilized.  On a per patient level, 

differentially expressed genes were identified. Genes with adjusted p-value of < 0.05 and 

absolute log2 fold change of > 1 were considered significant. All visualizations were 

generated using R v3.5.1 and the pheatmap v1.0.10 and lattice v0.20-38 packages and 

ggplot2 v3.1.0 packages. 

 

Pathway enrichment analysis and visualization 

Pathway enrichment analysis and visualization was performed as described 

previously(59). Briefly, a score to rank genes from top up-regulated to down-regulated 

was calculated using the formula -sign(logFC) * -log10(pvalue). The rank file from each 

comparison was used in GSEA analysis (http://software.broadinstitute.org/gsea/index.jsp) 

using 2000 permutations and default parameters against a pathway database containing 

Msigdb c2 and c3, NCI, IOB, NetPath, HumanCyc, GO BP, Reactome and Panther 

(http://baderlab.org/GeneSets, version June 2018). GSEA progressively examines genes 

from the top to the bottom of the ranked list, increasing the enrichment score if a gene is 

part of the pathway and decreasing the score otherwise. These running sum values are 
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weighted, so that enrichment in the very top- (and bottom-) ranking genes is amplified, 

whereas enrichment in genes with more moderate ranks are not amplified. The ES score 

is calculated as the maximum value of the running sum and normalized relative to 

pathway size, resulting in a normalized enrichment score (NES) that reflects the 

enrichment of the pathway in the list. Positive and negative NES values represent 

enrichment at the top and bottom of the list, respectively. A permutation-based p-value is 

computed and corrected for multiple testing to produce a permutation-based FDR q-value 

that ranges from zero (highly significant) to one (not significant). EnrichmentMap 

version 3.1.0 in Cytoscape 3.7.0 was used to visualize enriched gene-sets at FDR q-

value<=0.05 for each comparison with a Jaccard coefficient set to 0.375. The Enrichment 

Map software takes as input a text file containing pathway enrichment analysis results 

(from GSEA) and another text file containing the pathway gene sets used in the original 

enrichment analysis (http://baderlab.org/GeneSets, version June 2018). An enrichment 

map is a network representing overlaps among enriched pathways with pathways 

represented as circles (nodes) that are connected with lines (edges) to other pathways 

with overlapping genes. The network layout and clustering algorithm Autoannotate app 

in Cytoscape was used to automatically display and group similar pathways as major 

biological themes. Pathways differentially enriched in dPDX vs dRI-PDX and/or dPDX 

vs rPDX clones were classified as: dRI-PDX-unique (pathways significantly enriched 

(FDR q-value<=0.05) in dRI-PDX in comparison to dPDX), dRI-PDX/rPDX common 

(pathways significantly enriched (FDR q-value<=0.05) in both dRI-PDX and rPDX in 

comparison to dPDX) or rPDX-unique (pathways significantly enriched (FDR q-

value<=0.05)  in rPDX in comparison to dPDX).  

 

Isolation of HSC and B cells from human cord blood samples 

Human cord blood samples were obtained with informed consent from Trillium and 

Credit Valley Hospital according to procedures approved by the University Health 

Network Research Ethics Board. Mononuclear cells were obtained by centrifugation on 

Lymphoprep medium (Stem Cell Technologies) followed by red blood cell lysis using 

ammonium chloride (Stem Cell Technologies). Human CD34+ and CD34- CB cells were 

separated using CD34 Microbeads kit (Miltenyi Biotech) according to manufacturer’s 
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protocol and stored at -150°C. Cells were stained with antibodies (all from BD, unless 

stated otherwise): FITC–anti-CD45RA (1:50, 555488), PE–anti-CD90 (1:50, 555596), 

PECy5–anti-CD49f (1:50, 551129), V450–anti-CD7 (1:33.3, 642916), PECy7–anti-

CD38 (1:100, 335790), APC–anti-CD10 (1:50, 340923), APCCy7–anti-CD34 (1:200, 

custom made by BD) and sorted on FACS Aria III (Becton Dickinson), consistently 

yielding >95% purity. HSC were sorted based on the following markers: CD34+ CD38- 

CD45RA- CD90+ CD49f+ from CD34+ CB cells as previously described(60). B cells 

were sorted as CD34- CD38+CD19+CD33-CD3-CD56-. 

 

Gene set variation analysis (GSVA) 

Read counts from 5 B cell and 3 HSC sorted populations from normal human umilical 

cord blood were normalized using the trimmed of M values using the edgeR_3.24.3 R 

package and gene differential expression was calculated using the quasi likelihood ratio 

method and include cord blood batch correction in the experimental design. The top 1000 

genes enriched in B cells (B cell genes) and the top 1000 genes enriched in HSC (HSC 

genes) were selected to be used as the reference signature. Two mixed profiles were used: 

dPDX, dRI-PDX and rPDX clones and 14 bulk diagnosis and relapse patient samples. 

The mixes profiles read counts were variance stabilized and library size normalized using 

DESeq_1.34.1) . The gsva() function from the R GSVA_1.30.0 package was employed 

using a gaussian kernel to estimate enrichment of reference signatures in each sample of 

the mixed profile dataset. GSVA score for each patient and each category were plotted on 

a boxplot and a stripchart. Gsva score were summed for each mixed profile category and 

standardized from 0 to 1. 1000 permutations with a random gene list of size 1000 were 

performed on the mixed profile and percentages calculated to indicate how many times 

the observed score was higher than the random scores. These results were confirmed 

using the HSC and B cell expression profiles from Novershtern et al., Cell 2011(40) 

(Supplementary Table S7). 

 

Transcriptomic Validation Experiments 

Staining for mitochondria content, ROS, mitochondrial membrane potential and 

mitochondrial superoxide levels was performed by incubating thawed PDX cells at 37°C 
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with: 1mM of MitoTrackerGreen (M7514) (dilution 1:10000); 5 μM CellROX deep red 

(C10422) (dilution 1:500); 1 μM TMRE (T668) (dilution 1:1000) or 5mM MitoSOX Red 

(M36008) (dilution 1:1000) following manufacturer’s instructions (ThermoFisher) and 

directly analyzed on a BD LSRII cytometer. Mean fluorescence intensity (MFI) for each 

sample and dye is represented as ratio to dPDX for each patient. Immunostaining analysis 

for TOMM20, MRPS18B and SOD1 were performed on PDX cells. Briefly, cells were 

spun onto Poly-L-Lysine (Sigma)-coated slides (Ibidi, 200 xg, 10 min), fixed with 4% 

paraformaldehyde (Sigma) and permeabilized with 0.5% Triton (Sigma) before blocking 

(PBS, 10% FBS, 5% BSA). Slides were incubated with primary antibodies (TOMM20: 

ab56783, dilution 1/200; SOD1: ab8866, dilution 1/100 and MRPS18B: ab191891, 

dilution 1/200) in blocking solution O/N at 4C. Secondary anti-mouse AF568, anti-

rabbit AF488 and anti-sheep AF647 (Invitrogen, 1:400) antibodies were added (PBS, 

0.025% Tween, Sigma, 1.5 h, RT). After washing, nuclei were stained with 1 g/mL 

DAPI (Invitrogen) and slides were mounted (Fluoromount G, Invitrogen). Images were 

captured by a Zeiss LSM700 Confocal (oil, 63x/1.4NA, Zen 2012) and analyzed with 

ImageJ/Fiji. The Integrated Density (IntDen= Area* Mean Fluorescence Intensity) for 

40-50 cells from each clone was analyzed. The mean for each clone was normalized and 

calculated as a ratio to the dPDX for each patient separately. 

 

Secondary Transplantations for Drug Assays and Limiting Dilution Assays 

Human purified cells from the primary recipients were thawed and transplanted into 

eight-to-twelve-week-old female NSG mice sublethally irradiated as described for the 

primary recipients. The number of mice used for secondary transplantation 

experiements/drugs were determined by cell and mouse avalibility and feasibility. 

Intrafemoral injections of 26000 -100 000 leukemic blasts were performed for drug 

assays and a range of 10 – 100 000 leukemic blasts were injected for secondary limiting 

dilution assays. After 4 weeks mice were bled from the saphenous vein and human 

chimerism was evaluated by flow cytometry. Once human engraftment in the peripheral 

blood reached between 1-10%, or after 10-14 weeks for those samples in which leukemic 

blasts did not mobilize to the peripheral blood, mice were randomized and single agent 

treatments were started. Dexamethasone (15mg/kg), L-asparginase (1000kU/kg) and 
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saline were given daily by intraperitoneal injection 5 days a week. Vincristine (0.5mg/kg) 

was given once a week by intraperitoneal injection. All four arms of the drug treatment 

were performed for 4 weeks and mice were sacrificed the following day 

(vincristine/dexamethasone/saline) or one week after the last treatment (vincristine). 

Analysis of the secondary limiting dilution assay was performed 16 weeks post-

transplant. Human cell engraftment in the injected femur, bone marrow and spleen were 

assessed using human specific antibodies for CD45 (FITC, BD, clone 2D1; v500, BD, 

clone HI30), CD19 (BD, PE, clone 4G7), CD33 (PE-Cy7,BD, clone P67-6), CD3 (APC, 

BD, clone UCHT1), CD10 (Qdot605, BD, clone HI10A), CD38 (BV421, BioLegend, 

clone HIT2) and CD34 (APC-Cy7, BD, clone 581). Mice were considered to be engrafted 

when >0.1% of cells in the injected femur were positive for one or more human B-ALL 

specific cell surface markers (CD45, CD44, CD19, CD34). Respose to treatment was 

analyzed as a ratio of human engraftment of drug vs saline treated mice to eliminate 

interclonal differences in engraftment levels. Ratio of human engraftment in each 

individual drug treated PDX to the average engraftment level of all saline controls was 

calculated. Lineage stains were performed on xenografts expressing CD33 (APC, BD 

clone P67-6) and CD19 (PE, BD, clone 4G7) including CD14 (PE-Cy7, Beckman 

Coulter, clone 52), CD15 (v450, BD, clone MMA), CD10 (Qdot605, BioLegend, clone 

HIT2) and CD34 (APC-Cy7, BD, clone 581). The confidence intervals for the frequency 

of leukemia-initiating cells was calculated using ELDA software(49). Statistical analysis 

was performed using PRISM 6 (GraphPad Software). 

 

Fluorescence-activated Cell Sorting from Xenografts 

Leukemic cells from primary xenografts were sorted for immunophenotypic populations 

on a FACSARIAIII (BD Biosciences). Cells from the IF and BM were pooled and 

stained with CD19, CD34, CD45, CD10 and CD33 and collected at a sort purity of 

>99%.  

 

Data availability statement 

The datasets generated during the current study are included in this published article (and 

its supplementary information files).  
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Code availability statement 

Code used in this study is available at https://www.github.com/morrislab/pairtree 
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FIGURE LEGENDS 

 

Figure 1: PDXs capture clonal diversity present in paired diagnosis and relapse B-

ALL samples 

a. Experimental schematic. PDXs were generated for 6 adult and 8 pediatric B-ALL 

patient samples at diagnosis and relapse by intrafemoral transplantation of sorted 

leukemic blasts into 30 irradiated NSG mice in a limiting dilution assay. Mice were 

sacrificed 20-30 weeks post transplant and their engraftment was assessed by flow 

cytometry. Patient samples were also subjected to genomic analysis including whole 

exome sequencing (WES). Variants identified from the WES of patient samples at either 

time point were used to create custom capture baits for targeted sequencing at a deeper 

depth in the patient samples and their corresponding PDX. PDXs representing varying 

clones were identified. b. Schematic representation of the results obtanined by mutational 

clustering of variants based on the variant allele frequencies (VAF) at diagnosis (x-axis) 

and relapse (y-axis) of patient 1 in 2D VAF plots showing evolution from a minor 

subclone as depicted. Each dot represents a variant. Shared variants are shown in grey 

clusters (clusters a and c). Diagnosis and relapse specific variants are shown in the blue 

cluster (cluster b) and red clusters (clusters d and e) respectively. c. Heatmap of the 

variant allele frequencies of leukemic variants at diagnosis, relapse and in their 

corresponding PDXs for patient 1. Variant classes are labeled with their class and a letter 

corresponding to the clusters illustrated in b.  

 

Figure 2: PDXs enrich for latent diagnosis clones  

a. and b. Heatmaps of VAF of the SNV and indel leukemic variants identified by whole 

exome and targeted sequencing in diagnosis/relapse patient samples and PDX 

respectively. Variants are clustered as preserved (present in diagnosis and relapse patient 

samples), diagnosis specific (present in diagnosis patient sample and absent in relapse 

patient sample), latent (present in diagnosis patient sample with VAF < 0.3 and 

expanding in relapse sample), and relapse specific (present in relapse patient sample and 

absent in diagnosis patient sample). PDX are ordered in decreasing numbers of 
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transplanted cell doses. a. Representative heatmap for the selection of latent variants in 

diagnosis PDX as observed in patient 9. b. Representative heatmap of patient 11 

describing the identification of a relapse specific variant undetectable in the patient 

diagnosis sample but present in diagnosis PDX.  

 

Figure 3: PDXs identify relapse-fated clones in diagnosis patient samples 

a. and b. Phylogenetic analysis showing relationship of patient 9 (a) and patient 11 (b) 

patient samples and xenografts, based on VAF of leukemic variants. The distance 

between symbols on the tree were estimated by a nearest neighbour joining method and 

represent the degrees of relation between them (Minkowski’s distance). Circles represent 

patient samples and triangles represent PDX; blue represents diagnosis and red represents 

relapse. Diagnosis clones on the trajectory to relapse were termed diagnosis relapse 

initiating clones or dRI and are indicated by a box with a hatched border. 

 

Figure 4: Generation of mutational trees from the combined genomic data of 

xenografts and bulk diagnosis and relapse patient samples 

Mutational trees of variants clustered to form  populations using the PairTree algorithm. 

Nodes in mutational trees are divided in half, with the intensity of blue in the left half 

indicating the frequency of the population’s variants at diagnosis, and the intensity of red 

in the right half showing the frequency of the population’s variants at relapse. Colour 

intensity shows subclonal prevalence as noted in the legend of a. and applicable to all 

other trees except c. a. Mutational tree of patient 1 derived by analysis of the patient 

samples (diagnosis and relapse) alone. Mutational populations identified from bulk 

patient samples alone are denoted by a square node labeled with with an alphabetical 

letter. b. Combined mutational tree derived from the variant analysis of both patient 1 

patient samples and all their generated xenografts. Mutational populations derived from 

combined patient and xenograft analysis are represented by cicrcular nodes labeled with 

numerals. The mutational populations identified using the patient samples alone in a., are 

overlaid on the tree as boxes labeled with their corresponding alphabetical letter. This 

identifies instances where single populations in a correspond to multiple populations 

when xenografts are included (ie. mutational population G). c. Combined mutational tree 
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of patient 1 shaded to indicate the prevalence of variants in dPDX 7 (instead of diagnosis 

and relapse) demonstrating that this PDX is composed primarily of variants of the relapse 

lineage. d. Presence of identified mutational populations in patient samples and 

representative xenografts. Mutational populations (Pop.) are displayed on the y-axis and 

individual patient samples or xenografts are displayed on the x-axis. The height of the 

population bar represents the prevalence of the lineage in the patient sample (Pt.) or 

xenograft. e. Mutational tree, similar to a, derived from patient samples alone of patient 

9. f. Combined mutational tree, similar to b, derived jointly from patient 9 patient 

samples and xenografts. Subclonal prevalences of populations 2-5 are shown, indicating 

the absence of diagnosis populations 2-4 and presence of population 5 (the first node in 

the relapse lineage branch) in all dPDX. g. Mutational tree, similar to a, of patient 11 

derived from patient samples alone. h. Combined mutational tree, similar to b, of patient 

11 derived from patient samples and xenografts. The prevalence of mutational population 

3 is displayed, highlighting its absence in the diagnosis patient and its detection in only 

two  dPDX.  

 

Figure 5: Competitive dRI-PDX clones identified in diagnosis PDX 

a.Flow cytometry analysis of patient samples and representative dPDX and rPDX of 

patient 9 display the presence of two different immunophenotypic populations: a 

CD45dimCD34+ and a CD45negCD34+. b.Targeted sequencing of the dPDX revealed 

variability in the VAF of latent variants that corresponded with the shift in 

immunophenotypic populations. Cell sorting for immunophenotypic populations 

followed by targeted sequencing revealed the isolation of the latent variants in the 

CD45negCD34+ population. c. RNA-sequencing analysis of differentially expressed genes 

(adjusted p-value of < 0.05 and absolute log2 fold change of > 1) between the two dPDX 

(dRI-PDX clone 2; dRI-PDX clone 1CREBBP_WT) vs rPDX for Patient 9. Relative 

expression was generated from variance stabilized normalized counts. d. Enrichment map 

of gene sets differentially enriched in patient 9 dRI-PDX clone 1CREBBP_WT vs dRI-PDX 

clone 2 (FDR q value  0.05) and dRI-PDX clone 1CREBBP_WT vs rPDX clone 3 (FDR q 

value  0.05). Node size is proportional to the number of genes included in each gene set 

(minimum 10 genes/gene set). Grey and Red edges indicate gene overlap. Green node: 
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enrichment in dRI-PDX clone 1CREBBP_WT (positive NES). Purple node: enrichment in 

dRI-PDX clone 2 and/or rPDX clone 3 (negative NES). Autoannotate app in Cytoscape 

was used to automatically annotate clusters (black squares). NES: normalized enrichment 

score; DDR: DNA Damage Response; TCR: T-Cell Receptor; UPR: Unfolded Protein Response; 

cGMP: cyclic Guanosine Monophosphate; DCC: Deleted in Colorectal Cancer gene; NO: Nitric 

Oxide; CSK: C-terminal Src Kinase; CFTR: Cystic Fibrosis Transmembrane Conductance 

Regulator; SPRY: Sprouty gene. e. Human purified cells from primary dPDX and dRI-PDX 

from patient 4 were transplanted into secondary NSG recipients. Mice were monitored 

for peripheral blood human chimerism until mean blood levels reached greater than 10% 

revealing different kinetics of chimerism between dPDX 7 and dRI-PDX 11. Symbols 

represent the mean chimerism value of dPDX 7 (n= 20 mice) and dRI-PDX 11 ( n= 16 

mice) and bars represent standard deviation. 

 

Figure 6: dRI subclones display decreased sensitivity to commonly used 

chemotherapeutic drugs 

a. Phylogenetic analysis showing clonal relationships in patient 7 based on VAF of 

leukemic variants shows clear evidence of the isolation of a relapse-fated, dRI, clone in 

dPDX 20. The distance between symbols on the tree were estimated by a nearest 

neighbour joining method and represent the degrees of relation between them 

(Minkowski’s distance). Circles represent patient samples and triangles represent PDX; 

blue represents diagnosis and red represents relapse. dRI-PDX 20 is indicated by a 

hatched border box. Purified human cells from primary dPDX 7, dRI-PDX 20 and rPDX 

5 (representative relapse genetics) xenografts were injected into secondary NSG mice and 

allowed to engraft. Mice were randomized into 4 groups (with 4-5 mice per group) and 

treated with either saline, dexamethasone, L-asparagine or vincristine. After 4 weeks of 

treatment mice were sacrificed and engraftment in the IF, BM and SPL were analyzed by 

flow cytometry. Ratio of human chimerism in the BM of drug treated mice in comparison 

to saline controls is shown. b..Ratio of human chimerism in the BM of drug treated mice 

in comparison to saline controls of dPDX, dRI-PDX and rPDX of patient 1. c. 

Representative flow plots of the CD19 and CD33 immunophenotype of dPDX and dRI-

PDX dexamethasone treated mice from patient 1. Lines represent mean and standard 
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deviation. Only significance between dPDX and dRI-PDX are shown. **p < 0.01, *** p 

< 0.001, **** p < 0.0001, unpaired two-sided t-tests. 

 

Figure 7: dRI subclones share a common metabolic and stem cell profile  

a. Plot showing the normalized enrichment score (NES) for the top differentially enriched 

gene sets (FDR q value  0.05) of dRI-PDX unique, dRI-PDX/rPDX common and rPDX 

unique groups from GSEA analysis of the following comparisons: dPDX vs dRI-PDX 

and dPDX vs rPDX. b. Heatmaps showing the expression of leading-edge genes (subset 

of genes found in the ranking at or just before the maximal enrichment score in GSEA 

analysis) for selected gene sets enriched in dRI-PDX and rPDX from enrichment map in 

(a). Relative expression was generated from variance stabilized normalized counts c. 

dPDX, dRI-PDX and rPDX from Patient 1, Patient 4 and Patient 7 were stained with 

MitoTracker and CellROX dyes and analyzed by flow cytometry. Mean fluorescence 

intensity (MFI) for each sample and dye is represented as ratio to dPDX for each patient ( 

Patient 1: dPDX n=5, dRI-PDX n=5, rPDX=4; ; Patient 4: dPDX n=5, dRI-PDX n=4, 

rPDX=4; Patient 7: dPDX n=5, dRI-PDX n=5, rPDX=5). d. Immunostaining analysis for 

TOMM20, MRPS18B and SOD1 in dPDX, dRI-PDX and rPDX cells from Patient 1, 3 

and 7. The Integrated Density (IntDen= Area* Mean Fluorescence Intensity) for 40-50 

cells from each clone was analyzed using Fiji. The mean for each clone was normalized 

and calculated as a ratio to the dPDX for each patient separately. Representative images 

for Patient 7 are shown. (Patient 1: dPDX n=1, dRI-PDX n=2, rPDX=1; Patient 7: dPDX 

n=2, dRI-PDX n=2, rPDX=1; Patient 3: dPDX n=2, dRI-PDX n=2, rPDX=1). e. GSEA 

enrichment plots from the following comparisons (1) dPDX vs dRI-PDX (n=4 pts), (2) 

dPDX vs rPDX (n=4 pts) and (3) diagnosis vs relapse patient samples from our cohort, 

were generated for mitochondrial translation and OXPHOS gene sets. f. Barplot of the 

aggregated GSVA scores for B cell genes and HSC genes in each sample. GSVA scores 

for samples in each category were summed and scaled from 0 to 1. The numbers above 

the bars represent how many times the observed score was higher than random scores 

obtained in 1000 permutations using a list of 1000 random genes. g. Schematic diagram 

of dRI with altered metabolic and stem cell programs pre-exisiting in diagnosis patient 
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samples that survive chemotherapy and seed the relapse disease. *p<0.05, **p < 0.01, 

***p<0.001 , unpaired two-sided t-test. 
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