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Polycystic ovary syndrome (PCOS) is a complex multigenic disorder and women with PCOS suffer from
several comorbidities. Although, obesity is a known risk factor for PCOS, the incidence of lean women
with PCOS is on the rise. A systematic and comparative study on lean and obese PCOS with respect to
genes, pathways and comorbidity analysis has not been attempted so far. Analysis of differentially
expressed genes (DEGs) across tissue types for lean and obese PCOS revealed that the majority of them
were downregulated for lean and obese PCOS. Ovarian and endometrial tissues shared several commonly
dysregulated genes, suggesting shared PCOS pathophysiology mechanisms exist across tissues. Several
pathways for cellular homeostasis, such as inflammation and immune response, insulin signaling,
steroidogenesis, hormonal and metabolic signaling, regulation of gonadotrophic hormone secretion, cell
structure and signaling that are known to be affected in PCOS were found to be enriched in our gene
expression analysis of lean and obese PCOS. The gene-disease network is denser for obese PCOS with a
higher comorbidity score as compared to lean PCOS.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Polycystic ovary syndrome (PCOS) is the most common
endocrinological and metabolic disorder reported in women of
reproductive age. The cause of the disease can be attributed to
genetic and lifestyle factors [1]. The underlying pathophysiology
of PCOS, based on our current understanding, can be mainly attrib-
uted to elevated LH (LuteinizingHormone)/FSH (Follicle Stimulating
Hormone) ratio and/or insulin [2]. The diagnosis of PCOS is essen-
tially based on three features which include the presence of hyper-
androgenism, menstrual irregularity and polycystic ovaries [3].

While obesity is a known risk factor for PCOS, not all women
with obesity develop PCOS and not all women with PCOS are obese
[4,5]. Around 30–70% of women, belonging to diverse ethnicities,
are affected by PCOS and obesity [6]. On the other hand, 20–50%
of women with PCOS are normal weight/lean and the pathophysi-
ology may vary in these two phenotypes [7].
Metabolic syndrome, which is a constellation of conditions such
as hypertension, abdominal obesity, insulin resistance and hyperc-
holesterolemia, is commonly seen in women with obesity and
PCOS [8,9]. Dyslipidemia and insulin resistance are more pro-
nounced in obese PCOS as compared to lean PCOS; suggestive of
dissimilar metabolic profiles in these phenotypes [4,10–12]. For
the same reason, the incidence of acanthosis nigricans and
impaired lipid profiles and glucose tolerance, which are indicators
of insulin resistance, are more widespread in obese PCOS [13].

Altered secretions of adipokines such as adiponectin (ADIPOQ),
leptin (LEP) and resistin (RETN) by adipose tissues is one of the
important contributory factors to insulin resistance, cardiovascular
diseases and metabolic disorders [14,15]. ADIPOQ is downregu-
lated while LEP and RETN are upregulated in obese conditions
[14,15]. Accordingly, levels of ADIPOQ have been found to be lower
in obese PCOS as compared to lean PCOS, and levels of LEP gene
have been reported to be lower in lean PCOS as compared to obese
PCOS [15,16]. Levels of RETN were found to be similarly upregu-
lated in obese and lean PCOS cases as compared to controls [14].

Although PCOS and obesity are characterized by increased
androgen production, the bioavailable androgen levels are normal
in obese non-PCOS cases as compared to PCOS, due to its high
clearance rate [5]. Sex hormone binding globulin (SHBG) plays a
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Fig. 1. Summary of the workflow adopted in this study.
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major role in metabolic clearance of free androgens and other
hydroxysteroid ligands to the target tissues and liver. Lower serum
levels of SHBG in PCOS leads to elevated levels of circulating andro-
gens [17,18]. The androgen levels are elevated similarly in lean and
obese PCOS cases [19]. With respect to hormonal profiles of lean
and obese PCOS phenotypes, levels of LH, FSH, LH to FSH ratio, free
testosterone, dehydroepiandrosterone (DHEA), anti-müllerian hor-
mone (AMH), estradiol and progesterone are similar in both the
phenotypes [19,20].

The factors associated with PCOS such as anovulation, insulin
resistance and altered steroidogenesis are known to increase the
risk of cancers in females with PCOS [21–23]. Amongst the repro-
ductive cancers, clinical studies have reported that women suffer-
ing from PCOS have a higher risk of suffering from endometrial
cancer [24] followed by ovarian cancer [22]. The mortality rate of
ovarian cancer for women who are suffering from obesity and
PCOS women is higher as compared to lean women [25]. Although
few studies have suggested that the obesity and anovulation in
PCOS women can increase the risk of breast cancer [21,22], the
association of breast cancer and PCOS is undecided [26,27].

The information currently available for lean PCOS is scarce as
most of the reported literature is based on patients managed in
hospital or fertility clinics, which is known to better represent
obese PCOS [19]. Probably for the same reason, there are inconsis-
tencies in the observations from the genetic studies [28]. There is a
need to systematically study and compare the gene expression
profiles of lean and obese PCOS to gain a more complete under-
standing of the syndrome.

Here, we identify differentially expressed genes, enriched path-
ways and associated comorbidities for lean and obese PCOS, based
on systematically reviewed and analyzed lean and obese PCOS data
from the Gene Expression Omnibus (GEO) [29]. We used a meta-
analysis approach, where each study containing cases and controls
was normalized and analyzed individually to identify differentially
expressed genes and enriched pathways and then these results
were compared across studies. Information available in literature
was used to validate some of the resulting observations. The study
has helped to generate novel mechanistic hypotheses for lean and
obese phenotypes of PCOS and also to validate existing observa-
tions such as higher comorbidity in women who are obese and suf-
fer from PCOS as compared to lean PCOS [19].
2. Methods

The workflow adopted in this study is illustrated in Fig. 1.
2.1. Data collection and microarray gene expression

The Gene Expression Omnibus (GEO) database was searched on
30th September 2019 to retrieve human microarray gene expres-
sion studies on PCOS using the query terms (((‘‘polycystic ovary
syndrome”) AND ‘‘Homo sapiens”[Organism]) AND gse[Filter])
AND ‘‘Expression profiling by array” [Filter]. 26 datasets were iden-
tified using this query, which were further manually curated for
excluding studies that involved lncRNA, drug-treated samples, cell
line studies and non-BMI matched samples. Eight GEO datasets
(GSE98421, GSE5850, GSE10946, GSE6798, GSE98595, GSE48301,
GSE5090 and GSE43264) qualified for the meta-analysis (Table 1,
Supplementary Table S1 and Fig. 1). The women in these studies
were classified as lean/non-obese (BMI � 23) or obese (BMI > 23)
based on their body mass index (BMI). In case of GSE98421, the
BMI of the women are not provided in GEO; however the study
states that the tissue samples are from lean PCOS patients and
hence this study was categorized under lean PCOS.
2.2. Microarray data pre-processing and identification of differentially
expressed genes (DEGs)

The CEL files were retrieved for the selected GEO datasets and
each dataset was analyzed following a meta-analysis approach,
where each case-control study was separately analyzed from raw
data to the differentially expressed gene stage, then these DEG lists
were compared across studies [30]. In particular, the raw data
available in each of the CEL files of the selected GEO datasets were
background corrected and quantile normalized. Probe sets were
summarized using the Robust Multi-Array Average (RMA) algo-
rithm implemented in the affy [31] and oligo [32] R packages. Rel-
evant and updated annotations were retrieved for the probesets
using the biomaRt [33] R Package. Differential gene expression
was calculated using the limma [34] R package. Statistically signif-
icant DEGs were determined based on p-value (p < 0.05) and log
fold change (logFC > 2 for upregulated and < -0.5 for downregu-
lated genes). The DEGs were identified with reference to PCOS
cases versus controls for each of the GEO datasets.
2.3. Analysis using DEGs

The DEGs obtained from each dataset were compared to detect
commonly dysregulated genes in PCOS across diverse sample types
and GEO platforms. For tissue-based analysis, the aforementioned
list of DEGs were clustered based on their tissue source to identify
commonly dysregulated genes across the tissue types. The array
expression datasets were grouped based on their source, into four
tissue types, namely ovarian, endometrial, adipose and skeletal.
The ovarian group included metaphase II oocyte, cumulus cells
and lutein granulosa cells. The endometrial group included cell
types of epithelial, endothelial, stromal fibroblasts and mesenchy-
mal stem cells. The adipose group had subcutaneous adipose tissue
and omental adipose tissue. The skeletal group had skeletal muscle
tissue.
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2.4. Pathway enrichment analysis

Pathway enrichment analysis was performed using the Gene
Set Enrichment Analysis (GSEA) method. The Java desktop appli-
cation of GSEA (v. 3.0) developed by Broad Institute was used to
identify statistically enriched gene sets and pathways in each of
the datasets [35]. The Bader lab human gene set database contain-
ing updated information collected from various pathway data-
bases such as GO [36], Reactome [37], KEGG [38] and MsigDB
[39], excluding annotations that have evidence code IEA (inferred
from electronic annotation), ND (no biological data available) and
RCA (inferred from reviewed computational analysis) were used
for GSEA analysis [40]. The ‘‘Max” size was set at 200 and ‘‘Min”
size was set at 10 in order to remove the ‘‘too general” and ‘‘too
specific” gene sets and pathways, respectively. The number of per-
mutations was set to 2000. The analysis was performed using the
weighted enrichment statistic, using the default weight set to
p = 1.

The GSEA output and normalized expression data were used
to perform Enrichment analysis. The Enrichment Map Analysis
Pipeline [41] in Cytoscape version 3.6.1 [42] was used to visual-
ize the pathway enrichment analysis results. All the parameters
were set to their defaults. FDR q-value and p-value cutoff were
set at 0.1 and 1.0, respectively. For all datasets of GPL570, indi-
vidual networks were created. A master network was created
using all tissue types of GPL570 only, except metaphase II oocyte
(as oocyte may have distinct cellular events and metabolic path-
ways) for identifying the common and unique enriched path-
ways in lean and obese PCOS. The AutoAnnotate [43]
Cytoscape app was used to identify clusters present in the
enrichment map for grouping redundant pathways and ease of
interpretation.
2.5. Comorbidities and disease distribution in lean and obese PCOS

The KEGG disease database (Release 88.2) was used to obtain
information for human diseases and its associated genes. The dis-
eases were categorized as per International Classification of Dis-
eases 11th Revision (ICD-11). The KEGG gene and disease IDs
were used for mapping genes with the highest level of ICD11 clas-
sification. The DEGs were further mapped to this data to obtain the
gene-disease association score (GDS) for PCOS. For each ICD-11
category, GDS was calculated as below
GDS ¼ Number of DEGs from metaanalysis mapped to the disease
Total number of genes mapped to the disease

� 100

Gene-disease association was further used to construct gene-
disease networks for lean and obese PCOS.
2.6. Gene set variation analysis (GSVA)

The R packages GSVA [44] and complexheatmap [45] were used
to generate a heatmap displaying the variation of gene sets in dif-
ferent tissues of women with PCOS. The gene expression matrix
(logFC values) was analyzed by GSVA using gene set wherein each
gene set contains a list of genes associated with diseases classified
by ICD-11 codes from the KEGG database. GSVA was performed to
understand the regulation of genes across the ovarian tissue types
for lean and obese PCOS (GPL570 platform only) and its impact on
reproductive and endocrine diseases.



1738 S. Idicula-Thomas et al. / Computational and Structural Biotechnology Journal 18 (2020) 1735–1745
3. Results

3.1. The majority of differentially expressed genes in PCOS are
downregulated

A total of 5014 (unique = 4224) statistically significant DEGs
were identified by analyzing the eight GEO datasets individually
(see Method section 2.2, Supplementary Table S2). Of these, 123
(unique = 96) genes were upregulated and 4891 (unique = 4101)
genes were downregulated (Supplementary Table S3). Regardless
of tissue type and phenotype, the majority of the genes were
downregulated in PCOS. Endometrial cells of obese PCOS and
cumulus cells of lean PCOS displayed the highest number of dys-
regulated genes (Fig. 2). Seven (ETV3, GABPB1, ELF3, GABPA, ELF1,
ELF4 and SRF) genes were identified to encode transcription factors
using the iRegulon Cytoscape app [46] (Supplementary Table S4).
Of the 4224 unique DEGs, the association of 136 genes with PCOS
has been established in the literature. The links to the relevant
publications can be viewed under the ‘‘Literature Evidence” col-
umn in Supplementary Table S2.
3.2. Commonly dysregulated genes are identified in lean PCOS

Array analysis of lean and obese PCOS, revealed that there were
no commonly dysregulated genes across the platforms and tissue
sources. Seven genes (PRRT1, SLITRK4, CRHBP, HAPLN1, SRGN, EREG
and WNT5A) were found to be commonly dysregulated when anal-
ysis was restricted to two tissues (cumulus cells and subcutaneous
adipose tissue) using GPL570 platform for lean PCOS (Supplemen-
tary Table S5).

WNT5A participates in the WNT signaling pathway that is asso-
ciated with tissue development process and inflammatory
response [47]. WNT5A has been reported to be overexpressed in
the granulosa cells of lean women with PCOS through qPCR studies
[48] and this is in agreement with our observation of upregulation
of WNT5A expression in cumulus granulosa cells of lean PCOS
(GSE10946) [49]. The association and the regulation status of the
other six genes in PCOS is not well-studied and it would be worth-
Fig. 2. DEGs across all tissue types. For each dataset (x-axis), DEGs were identified
downregulation (blue bars). (For interpretation of the references to colour in this figure
while to investigate the role of these genes in the pathophysiology
of PCOS.

3.3. Tissue-based gene dysregulation in PCOS

Of the 4224 identified DEGs, 1284 were exclusive to ovarian tis-
sue, 2473 were exclusive to endometrial tissue, 202 were exclusive
to adipose tissue and 7 were exclusive to skeletal tissue. Six genes
(GPX7, SERPINI1, TMEM256, SVIP, MAT2A and SRGN) were com-
monly dysregulated in ovarian, endometrial and adipose tissues.
Apart from these six genes, ovarian and endometrial tissues shared
181 (4.3%); ovarian and adipose tissues shared 21 (0.5%); adipose
and endometrial tissues shared 45 (1.1%); endometrial and skeletal
tissues shared 5 (0.1%) commonly dysregulated genes (Fig. 3, Sup-
plementary Table S6).

3.4. Biological pathways enriched in lean and obese PCOS

The pathway gene sets that were found to be enriched across all
tissues for lean and obese PCOS from GPL570 are listed in Supple-
mentary Table S7. Comparison of the enriched pathway gene sets
identified from studies on GPL570 (GSE10946 lean and obese,
GSE98421 lean, GSE6798 obese) revealed that there were 86 path-
way gene sets (6.7%) common for lean and obese PCOS, 1031 path-
way gene sets (80.8%) unique to lean PCOS and 159 pathway gene
sets (12.5%) unique to obese PCOS cases (Fig. 4A, Supplementary
Fig. S1).

3.4.1. Diverse pathways are commonly enriched across tissue types
Biological pathway gene sets that are enriched based on the

commonly dysregulated genes in lean and obese PCOS included
mitochondrial gene expression, cell migration, DNA recombina-
tion, ubiquitin catabolic process, cell cycle associated pathways,
inflammation and immune response, cell growth and develop-
ment, cell adhesion and signal transduction, cytoskeletal reorgani-
zation, cell cycle progression, nucleotide phosphorylation,
regulation of ion levels, FOXO signaling, cell adhesion and differen-
tiation, microtubule organization, negative regulation of amide
based on p-value <0.05 and logFC >2 for upregulation (red bars) and <�0.5 for
legend, the reader is referred to the web version of this article.)



Fig. 3. Tissue-based distribution of DEGs in PCOS. Endometrial tissues presented
the maximum number of DEGs. Ovarian and endometrial tissues shared the
maximum number of common DEGs.
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metabolic process, RNA processing, cell polarity regulation and
regulation of microtubule polymerization (Fig. 4B).
Fig. 4. A) Pathway analysis of lean and obese PCOS. 86 pathway gene sets are commonly
PCOS. Nodes represent pathway gene sets. Size of the node is indicative of the number
between the pathways. Pathways are grouped by similarity. The analysis was restricted
3.4.2. Differentially regulated biological pathways group into four
major themes

The pathways, obtained from enrichment analysis of differen-
tially regulated genes in lean and obese PCOS, were clustered based
on functional themes. Four themes were observed: (i) Cell-motility
and immune response; (ii) FAK-related; (iii) ERBB1 and PDGFRB
signaling; and (iv) Mitochondrial gene expression. Pathway gene
sets involved in ‘Cell-motility and Immune response’, ‘FAK-
related’ and ‘ERBB1 and PDGFRB signaling’ were downregulated
in lean PCOS and upregulated in obese PCOS. Pathway gene sets
involved in ‘Mitochondrial gene expression’ were upregulated in
lean PCOS and downregulated in obese PCOS (Table 2).
3.5. Differentially expressed genes in PCOS are also linked to
developmental, metabolic and nervous system diseases

The identified DEGs were mapped to genes associated with the
ICD-11 disease categories (Supplementary Fig. S2). The maximum
number of DEGs were mapped to developmental anomalies (222
genes), followed by disorders of the metabolic (192 genes) and ner-
vous system (127 genes). It is interesting to note that 37 DEGs
mapped to disorders of the visual system (Supplementary
Table S8). This list included genes such as CFH and CYP1B1 which
enriched in lean and obese PCOS. B) Biological pathways enriched in lean and obese
of genes involved in the pathway. An edge between nodes represents shared genes
to commonly dysregulated genes for GPL570.



Table 2
Differentially regulated biological pathways in lean and obese PCOS

Cluster Lean PCOS Obese PCOS

Cell-motility and immune response

FAK-related

ERBB1 and PDGFRB signaling

Mitochondrial gene expression *

* Pathway names are redundant due to the use of multiple database sources. For example, mitochondrial translation involves 111 genes from the GOBP database and
Mitochondrial translation involves 93 genes from the Reactome database. Each node is segmented into two halves representing the two constituent GEO datasets (GSE10946
and GSE98421 for lean PCOS; GSE10946 and GSE6798 for obese PCOS) of GPL570 and is colored based on the normalized enrichment scores (NES) values obtained from GSEA
analysis. Red and blue represents upregulation and downregulation, respectively.
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are well studied for its role in eye diseases [50]. There are very few
published reports on association of PCOS and disorders of visual
system [51]. It would be worthwhile to evaluate the expression
of these DEGs in ocular tissues to confirm the comorbidity hypoth-
esis. Another interesting observation was that 8 DEGs, including
FN1, ACTN4 and TRPC6 mapped to the pathological condition of
the glomerulus. It is noteworthy that DEGs identified from GEO
datasets of obese PCOS and endometrial tissues displayed maxi-
mum GDS (Fig. 5).

3.5.1. Phenotype-specific gene-disease network
To visualize the DEGs-disease mapping as a map to support

hypothesis generation, we constructed gene-disease networks for
lean and obese PCOS. Although the disease categories that mapped
to DEGs of lean and obese PCOS were similar, the number of DEGs
associated with the diseases was much higher in obese PCOS as
compared to lean PCOS (Fig. 6, Supplementary Table S9).

3.5.2. Disease gene set enrichment analysis suggests divergent etiology
of lean and obese PCOS

GSVA was performed to assess the association of the dysregu-
lated genes identified in ovarian tissue samples of lean and obese
PCOS (GPL570 platform only) to reproductive and endocrine dis-
eases. The genes associated with the disease category of pregnancy,
childbirth or the puerperium were upregulated in the cumulus cell
and metaphase-II oocytes derived from obese PCOS as compared to
non-PCOS samples. Conversely, these genes were downregulated
in cumulus cell derived from lean PCOS as compared to non-
PCOS samples. The difference in the gene expression pattern in
cumulus cells obtained from lean women and women with obesity



Fig. 5. GDS analysis for lean and obese PCOS. Blue bars indicate the percentage of DEGs mapped to the disease groups across all tissue types and array platforms. Red and
green bars indicate the percentage of DEGs mapped to the disease based on lean and obese PCOS datasets respectively. The purple, orange, brown, pink and black bars indicate
the percentage of DEGs mapped to the disease based on analysis of ovarian, endometrial, ovarian + endometrial, adipose and skeletal tissues respectively. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and PCOS suggests that the etiology of PCOS may be different in the
lean and obese PCOS (Supplementary Fig. S3). The genes associated
with these reproductive and endocrine diseases were traced to the
GSEA pathway enrichment plots to identify the pathways associ-
ated with these genes and compare the enrichment status of these
pathways across lean and obese PCOS (Supplementary Tables S10
and S11).
4. Discussion

PCOS has a multigenic etiology and women with PCOS are at
risk of multiple comorbidities that include obesity, cardiovascular
diseases and insulin-resistant diabetes.

Insulin resistance, leading to hyperinsulinemia and type-2 dia-
betes, is frequently observed in women with PCOS [52–54]. The
altered gene expression of multiple tissues; such as ovarian, adi-
pose and skeletal muscle; is known to contribute to this complex
pathophysiology [53,55]. Hyperinsulinemia also contributes to
ovarian androgen excess, another common feature in women with
PCOS [52,54]. Insulin, along with LH, can elevate the levels of intra-
cellular cAMP concentration in thecal cells leading to increased
expression of steroidogenic genes and androgen biosynthesis
[10,54]. Insulin signaling, hyperinsulinemia and androgen synthe-
sis are influenced by molecular pathways such as PI3K, MAPK and
lipid metabolism [54,56–58]. Nine pathways were found to be
enriched in our meta-analysis. A list of enriched pathways, associ-
ated DEGs and literature evidence for the association of these path-
ways with PCOS can be seen in Supplementary Table S12. Several
research groups are working on potent insulin sensitizers such as
inositol and its stereoisomers [57,59,60], that could be effectively
used in the treatment protocol for women with PCOS.

While there are numerous high throughput studies that aim to
delineate the genes and pathways that are dysregulated in obese
PCOS and PCOS in general, the studies on lean PCOS are scarce
and studies that compare obese and lean PCOS are far scarcer
[19]. Another important aspect that is not well studied is the com-
parative analysis of tissue-based gene dysregulation in PCOS.

In the present study, we have attempted to address the above
two aspects by collating information from literature and perform-
ing a meta-analysis of gene expression studies and pathways for
lean and obese PCOS from diverse human cell types/tissue sources
and array platforms. The salient observations from the meta-
analysis are discussed below.

1) The pathophysiology of lean and obese PCOS seems to be
different

Although the majority of DEGs associated with PCOS seems to
be downregulated across the lean and obese PCOS phenotypes;
the expression profile of genes from similar cell types seems to
be different between lean and obese PCOS (Supplementary
Fig. S3). Moreover, we did not find any commonly dysregulated
genes between lean and obese PCOS datasets (Supplementary
Table S5). The genetic contributors of lean and obese PCOS may
therefore be different. However, additional research would be
required to substantiate this hypothesis. The pathway analysis also
reveals that the etiology of lean and obese PCOS is different
(Table 2).

2) PCOS is caused mainly by downregulation rather than
upregulation of associated genes

Analysis of DEGs across tissue types for lean and obese PCOS
revealed that the majority of them were downregulated (Fig. 2).
GSVA analysis too indicated that the genes associated with repro-
ductive and endocrine diseases were downregulated in both lean
and obese PCOS (Supplementary Fig. S3); a trend that has been
observed for most comorbid disease-associated genes. This obser-
vation is in agreement with previous studies on PCOS that have
documented that most of the genes associated with PCOS were
found to be downregulated in the disease state [61,62]. Expectedly,



Fig. 6. Gene-disease network for DEGs from lean (A) and obese (B) PCOS. The light-blue nodes represent the ICD-11 disease categories. Green nodes represent the DEGs. Edge
represents a gene-disease association. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1742 S. Idicula-Thomas et al. / Computational and Structural Biotechnology Journal 18 (2020) 1735–1745
many of these downregulated genes are enriched in relevant path-
ways for PCOS such as apoptosis [63], angiogenesis [64], oxidative-
stress [65], glucose metabolism [66], steroid metabolism [67],
immune response [68] and circadian rhythm [69].

3) Ovarian and endometrial tissues share several commonly
dysregulated genes

Ovary is considered as the most important target organ of
PCOS [63]. Our analysis revealed that endometrial and ovarian
gene expression is considerably altered in PCOS (Fig. 2) and many
of the DEGs were shared between the two sources (Fig. 3).
Women with PCOS are known to suffer from infertility/subfertil-
ity which could be attributed to a) reduced oocyte/embryo qual-
ity and/or b) impaired endometrial support for embryo
implantation and growth [64]. The high number of DEGs of
endometrial origin obtained in our study suggests that compro-
mised embryo implantation may be an important contributing
factor for the poor reproductive outcome observed in PCOS
patients.
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4) Pathway analysis reveals that cellular homeostasis is dis-
rupted in lean and obese PCOS

Pathway analysis revealed that several fundamental pathways
responsible for cell proliferation and survival such as those
involved in gene expression, DNA recombination, cell cycle, cell
structure and signaling are perturbed in lean and obese PCOS
(Fig. 4). A striking observation is that the nuclear-mitochondrial
crosstalk seems to be differently impaired in lean and obese PCOS
(Table 2). The mitochondrial biogenesis and translation machinery
is heavily dependent on cues from the nucleus [65] and physical
activity [66]. Previous studies have demonstrated that obesity is
associated with downregulation of mitochondrial transcripts [67],
lower ATP synthesis and decreased insulin sensitivity [68]. Alterna-
tively, upregulation of mitochondrial pathways would lead to
higher mitochondrial respiration and thereby increased reactive
oxygen species (ROS) production [69]. Thus, both lean and obese
PCOS phenotypes seem to risk the adverse effects of impaired
mitochondrial translation, albeit through different manifestations.

5) The gene-disease network is denser for obese PCOS as com-
pared to lean PCOS

Gene-disease networks mapped for dysregulated genes of obese
PCOS are denser as compared to lean PCOS (Fig. 6). This data sug-
gests that obese PCOS individuals may be at significantly higher
risk of comorbidities as compared to lean PCOS.
4.1. Limitations of the study

An important limitation of the study is that the analysis and
conclusions presented here are dependent on the gene expression
data on lean and obese PCOS existing in the public domain and the
consistency maintained across the datasets for phenotype annota-
tions. The study would have benefited with higher number of tis-
sue and BMI-matched samples than the present availability in
the GEO database. A second limitation, specifically for the comor-
bidity analysis, is the lack of a comprehensive and updated gene-
disease association databases available for researchers. For exam-
ple, although the association of of CYP1B1 in PCOS is well docu-
mented in literature, [70–72] this association is not documented
in the KEGG database. Finally, this study is limited to analysis of
coding genes and its association with PCOS. We have not included
PCOS studies related to RNASeq, lncRNAs, drug-treated samples,
cell line and non-human samples in this meta-analysis, which
may have led to interesting observations.
5. Conclusions

Tissue-based comparative analysis of the DEGs, pathway net-
works and GDS revealed that endometrium and ovary are impor-
tant target organs of PCOS. The analysis offers evidence as to
why women with obesity and PCOS are at higher risk of suffering
from comorbidities as compared to lean PCOS. While the unifying
mechanisms of obesity, metabolic-related disorders and PCOS are
still unclear [73], this study has led to identification of potential
biomarkers and further research is required to establish the diag-
nostic and therapeutic applications of the identified pathways
and gene networks for PCOS and its comorbidities.
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