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The International Cancer Genome Consortium (ICGC) 
aims to catalog genomic abnormalities in tumors 
from 50 different cancer types. Genome sequencing 
reveals hundreds to thousands of somatic mutations 
in each tumor but only a minority of these drive 
tumor progression. We present the result of 
discussions within the ICGC on how to address the 
challenge of identifying mutations that contribute 
to oncogenesis, tumor maintenance or response to 
therapy, and recommend computational techniques 
to annotate somatic variants and predict their 
impact on cancer phenotype.

Large-scale sequencing of cancer genomes often 
reveals many thousands of somatic missense (amino 
acid–changing) mutations in proteins. However, not  
all cancer mutations provide a selective (‘driving’) 
advantage to cancer cells1,2. Many mutations are so-
called ‘passengers’ because their impact on protein 
function is either minor or the affected protein is 
not important for tumor progression. The important 

practical problem is to determine which mutations 
are likely drivers. Although the carcinogenicity of a  
particular mutation depends on concurrent genomic 
alterations in the cell, one can considerably decrease 
the number of potential driver candidates by deter-
mining the functional impact of each mutation. Thus,  
a key challenge is to distinguish between functional 
and nonfunctional mutations, and by extension 
between those that contribute to tumorigenesis (driv-
ers) and those that do not (passengers) (see Box 1  
for definitions).

Cancer has been likened to an evolutionary process 
by which tumor cells gain a fitness advantage over 
their neighboring cells2. The process creates cells 
with altered abilities such as the circumvention of 
apoptosis and senescence, deregulated cell division 
and failed responses to external cues such as contact- 
contact inhibition and ligand-mediated cell signal-
ing3,4. Normal cells are reprogrammed by changes 
in the genome that are subsequently selected and 
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clonally expanded. In a similar manner to the way germline  
mutations can leave behind patterns indicative of negative or 
positive selection over millions of years, somatic mutations that 
engender increases in tumor fitness also can leave telltale signs 
in the protein sequence. The analysis of a given protein can  
thus reveal a pattern of alterations that recurrently result in its 
loss of function, as in classic tumor suppressors, such as TP53, 
RB1 or PTEN5.

Mutation events collected across several patient samples  
can also reveal signs of clustering in the peptide sequence or 
the three-dimensional protein structure that indicate a critical 
domain has been modulated. In the extreme case, the presence 
of the same amino acid change in the same position in different 
individuals can be a strong indicator of such gain-of-function  

or oncogenomic events, as is the case with the KRAS6 or  
BRAF7 oncogenes. Such patterns can be leveraged by informatics 
tools to predict whether a particular mutational event induces a 
selectable phenotype.

Here we review the computational analyses that are commonly 
carried out after the detection of somatic mutations across a 
cohort of cancer samples to identify likely functional mutations 
and likely driver mutations (Fig. 1). Our focus will be on single-
nucleotide variants and small insertions and/or deletions (opera-
tionally defined here as variants shorter than 50 base pairs) that 
change the amino acid sequence or affect regulatory regions. The 
output of these analyses consists of prioritized lists of mutations, 
genes and pathways that may be analyzed in follow-up experi-
ments to test their actual role in cancer.

We divide the process of identifying func-
tional and driver variants into three inde-
pendent, but related, approaches (Fig. 1).  
The first consists of mapping mutations 
to annotated functional genomic features, 
identifying their consequences and deter-
mining whether these mutations have been 
previously reported. The second uses com-
putational methods to predict the nature and 
magnitude of the functional impact of muta-
tion in particular elements (for example, pro-
teins or regulatory regions). The third relies 
on statistical methods to find signs of posi-
tive selection across the cohort. In Figure 1, 
we list a subset of the computational tools 
used in each of the approaches. In the sec-
tions that follow, we review the rationale and 
tools for each approach and conclude by pre-
senting some of the unsolved challenges and 
future perspectives in the field.

BOX 1 DEFINITIONS 

We define a functional variant as a genomic variant that  
affects the molecular function of a protein (as a gain,  
loss or switch of function). A nonfunctional variant does  
not appreciably affect the molecular function of a protein.  
A driver variant confers a selective advantage to a parti- 
cular tumor cell, whereas a passenger variant does not.  
It is important to distinguish between functional versus 

nonfunctional and driver versus passenger as they describe 
different concepts. For example, a substitution might  
dramatically affect the function of a protein without  
providing any selective advantage to the tumor (it is a  
functional passenger variant).

Nonsynonymous mutations are those that alter the amino 
acid sequence of a protein.

Figure 1 | Scheme depicting the three main 
approaches routinely used in the analysis of 
cancer somatic mutations. Although there  
are important relationships of precedence 
between elements from different approaches, 
they do not necessarily correspond to sequential 
steps. Tools used in each of the approaches  
are shown in the middle; those tools are  
defined in Supplementary Tables 2–4. 
Integrative pipelines refer to tools that 
facilitate the use of methods across all 
approaches (for example, IntOGen- 
mutations pipeline).
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Approach 1: mutation mapping and annotation
The first step in determining the possible functional conse-
quences of somatic mutations is to identify annotated genomic 
features that may be affected by them. Features that are more likely  
to encode genomic functions include protein-coding and non-
coding transcripts, transcription factor binding sites and other 
potential regulatory regions. Less well-characterized features, 
such as highly conserved regions or regions of open chromatin, 
may also be of interest. There are a variety of software tools that 
infer the consequences of mutations, but frequently these use 
different terms and different definitions for the effect itself 8–10 
(Supplementary Table 1).

A large consortium such as the ICGC requires a common set 
of terms describing mutation consequences to facilitate the com-
parison of results among different groups. We have developed a 
standard set of ‘consequence terms’ drawn from the Sequence 
Ontology11 (Supplementary Table 2). This list will be extended 
and updated as the projects of the consortium unfold. Along with 
the Sequence Ontology term used to describe the effect of a muta-
tion, we also identify a minimal set of ancillary information that 
annotation tools should provide for each relevant consequence 
term, such as coding DNA sequence, protein relative coordinates 
and predicted amino acid substitutions. Several of these annota-
tions will depend on the specific transcript the mutation falls 
within, and so we recommend that a transcript identifier always 
be included. Note that this caveat means that a single mutation 
can be, and frequently will be, assigned multiple consequences 
on multiple transcripts.

We recommend using tools that can output mutation descrip-
tions in the format defined by Human Genome Variation Society 
at all relevant levels (for example, DNA level for all mutations, 
and RNA and protein level descriptions where applicable). 
This nomenclature provides a succinct and feature-centric for-
mat for description of variants, and some of the tools listed in 
Supplementary Table 1 (for example, the Ensembl Variant Effect 
Predictor (VEP)) have options to produce output in this format. 
We propose a common ranking scheme for the term set that sum-
marizes the effects of a mutation that falls in multiple genomic 
features, such as multiple transcripts (Supplementary Table 2). 
In addition, the ranking may be used to prioritize mutations for 
follow-up analysis.

When assigning consequence terms to variants, one must note 
the source of all underlying annotations, such as gene models 
and regulatory elements, to clearly document the event. In the 
context of ICGC, we recommend using the GENCODE12 com-
prehensive set of gene models for all gene-associated annotations 
and identifying the specific release that was used. We advocate 
the use of GENCODE annotations because of the detailed and  
frequently updated annotation of splice variants, pseudogenes 
and noncoding RNA loci, and the ready accessibility of all data 
for automated annotation via the Ensembl genome browser13 
and the University of California Santa Cruz (UCSC) genome 
browser14. Using the same gene models as the Encyclopedia 
of DNA Elements (ENCODE) project15 will also allow addi-
tional integration of somatic mutation data and the wider set of 
ENCODE annotations.

Comparing the list of mutations to catalogs of known variants.  
An obvious step in determining the implication of detected variants  

is to identify those that have been observed previously in other 
cancers, that are involved in other diseases or that exist as germ-
line polymorphisms. The growing collection of somatic variants 
detected in different ICGC projects is a useful source of infor-
mation, as are databases such as dbSNP16, 1000 Genomes17, 
Catalogue of Somatic Mutations in Cancer (COSMIC)18 and 
databases of variants associated with hereditary diseases, such as 
The Human Gene Mutation Database19 and Exome Variant Server 
(http://evs.gs.washington.edu/EVS/). Several of the tools listed in 
Supplementary Table 2 automatically report whether the vari-
ant is already known. As none of these sources are definitive, the 
ICGC recommends that, at a minimum, projects report matches 
to variants known in dbSNP, Online Mendelian Inheritance 
in Man (OMIM)20, 1000 Genomes and COSMIC along with  
the version number of the database. Although dbSNP his-
torically contained germline variants for the most part, many  
somatic mutations including mutational hotspots are also present 
in newer releases, for example in JAK2, KRAS and BRAF. Thus, 
projects should make sure that the origin of dbSNP variants is 
taken into account, especially if the database is used to filter out 
somatic mutations.

Approach 2: assessing the functional impact of mutations
For many variants, no additional assessment other than deter-
mining the functional element they affect can be made about  
their potential impact on cell operation. Nevertheless, for the 
specific subset of mutations that affect either protein-coding 
sequences or known regulatory sites, one can make computa-
tional predictions about their potential effects. Here we describe 
computational analyses that may shed light on the possible func-
tions of these variants.

Mutations affecting protein-coding sequence. Several computa-
tional methods have been developed to differentiate ‘functional’ 
or ‘disease-associated’ nonsynonymous mutations from ‘nonfunc-
tional’ or polymorphic variants21–26 (Supplementary Table 3). 
Some of these are specifically designed for cancer variants27–30. 
As a general rule, these approaches use evolutionary information 
(multiple sequence alignments), secondary and tertiary struc-
ture features, physicochemical properties of amino acids as well 
as information about the role of amino acid side chains in the 
three-dimensional structure of proteins, such as protein surface 
placement in interaction sites.

Methods aimed at assessing the functional effect of nonsyn-
onymous mutations can be classified as based on machine learn-
ing and direct. Machine learning–based methods use relevant 
properties of the original and mutant residues (for example, size 
and polarity), structural information (for example, surface acces-
sibility and hydrogen bonding) and/or evolutionary conservation 
and other features. These methods are then trained to distinguish 
between positive sets of disease-associated variants and negative 
control sets of presumably nonfunctional or passenger variants. In 
contrast, direct methods assess the effect of a mutation through a 
computed phenomenological score based on a particular theoreti-
cal model that does not require training sets.

Most of these computational approaches have been benchmarked 
on variants with pronounced phenotypic effects31 (for exam-
ple, functionally deleterious and Mendelian disease-associated  
variants) and appropriate negative control sets, resulting in 
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reporting accuracies close to ~80%. Although these approaches 
were not originally designed for this purpose, some of them have 
been widely used to rank cancer somatic mutations for their likeli-
hood to be drivers, without previously benchmarking their per-
formance on this problem.

One of the main challenges to produce such benchmarking 
is the difficulty of collecting well-curated sets of driver and  
passenger mutations. A recent effort to circumvent this prob-
lem used various data sets of likely driver mutations and likely 
 passenger mutations27. Under the assumption that each proxy 
data set is incomplete in nonoverlapping ways, this study com-
pared the performance of three well-known methods and their 
impact scores, transformed to account for the baseline tolerance 
across several data sets rather than on individual data sets27. In the 
future, when many more cancer genomes have been sequenced 
and we understand better the implication of genetic variants on 
cancer phenotype, it may be possible to collect gold-standard data 
sets to perform more accurate validation.

Given the high-throughput nature of cancer genome projects, 
one important aspect to consider for tool selection is the com-
putational efficiency of the tools when thousands of variants are 
analyzed. Precomputation of functional impact scores for all 
possible mutations in the human proteome is a useful remedy 
(as done by some tools presented in Supplementary Table 3). 
There is also at least one database (database of nonsynonymous 
single-nucleotide polymorphisms, dbNSFP32) devoted to collect-
ing and integrating such precomputed functional impact scores 
from different tools. In some cases it may be useful to visualize the 
location of substitutions in protein three-dimensional structure, 
if available, to assess their potential role with respect to protein 
stability and/or function, for instance using MuPIT Interactive33 
or the MutationAssessor web server24.

The output of any computational method should be interpreted 
as a ranked list of candidate driver variants based on the user-
submitted mutations, with the vast majority not likely to be true 
positives. The purpose of this ranking is to prioritize mutations 
for experimental testing. Using a combination of methods based 
on different theoretical principles (and hence independent error 
models) may help mitigate false positive and negative rates suf-
fered by any one method alone, thus resulting in a cleaner list of 
candidates for experimental validation.

Mutations affecting regulatory sites. Only very recently has it 
become feasible to identify and characterize somatic noncod-
ing mutations that affect putative regulatory sites. Predicting 
the functional effects of regulatory variants typically starts 
either by purely statistical approaches, such as the application 
of machine-learning methods to learn motif models from the 
regulatory sequences or by modeling the transcription factor to 
DNA binding biophysics aided by experimental data such as those 
obtained from microfluidics or protein-binding experiments34,35. 
Both approaches result in predictions of binding sites for different 
transcription factors in regulatory sequences. There are several 
tools for making such predictions, such as The Meme Suite36,  
and the ENCODE project catalogs relevant experimental data 
sets15. Furthermore, RegulomeDB provides an integrated 
approach to analyze regulatory variants37. It uses data sets from 
ENCODE15 and other sources and also uses motif models (for 
example, from JASPAR38).

When a somatic mutation falls within a transcription factor 
binding site, it is possible to score its effect in multiple ways. 
Perhaps the simplest is to take the relevant binding site motif 
model38 and evaluate the score difference that the variant causes 
in that binding site’s match to the model. This is close in spirit 
to scores that are derived from multiple alignments, such as 
Pfam log E value39. However, the interpretation of this particu-
lar score is not straightforward because the actual probability of 
a transcription factor binding to DNA depends strongly on the 
factor concentration in the cell and the presence of other protein- 
binding factors, and may thus vary across cell types. Furthermore, 
it is not clear in general whether stronger or weaker predicted 
binding is better or worse for transcription factor function, and 
clarifying this will require studying the particular promoter and 
gene in more detail.

Pleasance et al.40 used a specific tool41 to address the function-
ality of mutations in promoters in a lung cancer cell line. Although 
somatic mutations did not differ from the null expectation as 
a set, individual variants were predicted to have considerable  
disruptive effects on potential binding motifs. More recently,  
systematic analyses integrating transcription factor binding, 
histone marks and other epigenomic data were used to identify 
pathways disrupted in a genome-wide association study at the 
regulatory level42.

In addition to considering effects of mutations in promoters 
and enhancers, it is also important to consider possible effects 
of mutations on splicing, especially now that the connection 
between splicing and cancer is becoming increasingly clear43. 
Consequences of mutations in splicing regulatory elements are 
still difficult to predict, but including additional experimental 
data, such as RNA sequencing data, may lead to improvements 
in this area.

Given that the majority of somatic mutations reside in non-
coding sequence, the need to computationally prioritize them 
for follow-up functional validation is clear. The recent discovery 
of melanoma driver mutations in the promoter sequence of telo-
merase reverse transcriptase (TERT) gene highlights the poten-
tial of regulatory variation to drive tumorigenesis44,45. As cancer 
genome projects are moving toward sequencing whole genomes, 
more noncoding driving mutations will likely be discovered.  
To facilitate such discoveries, more computational method  
development to score regulatory variants is needed.

Approach 3: finding signs of positive selection across a cohort
Independent of whether or not a functional consequence can be 
predicted for a given mutation, one can assess to what extent a 
given mutation has been observed at a higher frequency than 
expected. The rationale for assessing mutation frequency is that 
driver mutations provide an adaptive advantage to cancer cells 
(Box 1; for example, the BRAF V600E substitution found in 
melanoma7) and should thus be positively selected during the 
clonal evolution of tumors. Provided that similar selective pres-
sures act on different patient tumors and that the same muta-
tion is positively selected, one should be able to trace driver 
mutations by noting their higher frequency, a common trace of  
positive selection.

In principle, exploiting this fact to find driver genes is straight-
forward: it is simply a statistical comparison between the muta-
tion rate observed in a gene versus what is expected under a 
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neutral model. However, in practice this approach involves dif-
ficult choices with respect to the selection of appropriate models 
for neutral evolution. For example, germline variation should not 
be used to calibrate a null model for somatic mutation analysis28 
because this reflects evolutionary pressures and mutation pro-
cesses during species evolution rather than during the develop-
ment of cancer. In addition, many cancers have defects in DNA 
repair processes that change the neutral mutation rate, which have 
different regional impacts40,46,47, and local mutation rate is vari-
able depending on other factors such as replication timing48.

To accurately identify genes with more mutations than expected, 
gene-specific mutation rates should thus be computed. This can 
be done using synonymous mutations49 and/or mutations in 
introns and untranslated sequences (for example, ‘Introns versus 
Exons’; InVEx)50; these approaches, however, can only be effec-
tively used in tumors with very high mutation rates. In other 
cases, gene-specific mutation rates must be estimated, taking into 
account factors known to affect mutation rate such as mutation 
context, replication timing and expression levels (for example, 
‘Mutational Significance in Cancer’ (MuSiC)51 and ‘Mutational 
Significance’ (MutSig)52).

Given the difficulties that are intrinsic to recurrence-based 
methods, new methods have been developed that try to infer 
signs of positive selection using other means. One such approach, 
OncodriveFM53, consists of detecting genes that exhibit a bias 
toward the accumulation of somatic mutations with high func-
tional impact. This method relies on well-known metrics of 
the functional impact of individual mutations (those listed in 
Supplementary Table 3) to detect genes and pathways with this 
functional impact bias53. Another approach, ActiveDriver54, 
involves the discovery of genes enriched for somatic mutations 
that alter ‘active sites’ in proteins, such as signaling sites, regula-
tory domains or linear motifs, assuming that such active muta-
tions are more likely to have a widespread downstream effect and 
lead to a phenotypic advantage for tumor cells54.

In Supplementary Table 4 we list several statistical approaches 
recently developed to identify candidate driver genes with signs 
of positive selection in a cohort of tumors47,49–51,53–55. As some 
of these methods are based on different theoretical principles, 
we recommend applying multiple complementary methods and 
comparing their results.

Despite these recent advances, future methods will need to 
capture the high degree of intertumor heterogeneity, as different 
tumors may acquire the same hallmark of cancer by different means 
(known as analogous mutations56). This heterogeneity is clearly 
underestimated in the current driver versus passenger model.

Challenges and future perspectives
Sequencing of cancer genomes is a rapidly expanding field, and 
consequently computational methods used to interpret these 
data are evolving. We have described classes of practical tools 
currently available for analysis of a subset of genetic variation 
data. Because of the rapid evolution of the field, we purposely 
avoided recommending particular tools or methods. Instead, we 
presented general guidelines to assist in making educated choices 
of methods that can be used to address particular research prob-
lems. Several pipelines facilitate the user-friendly application of 
various tools presented here. For instance the Cancer-Related 
Analysis of Variants Toolkit (CRAVAT)57 maps mutations to 
their consequences on protein-coding genes and it predicts 
their implication in cancer and disease using Cancer-specific 
High-throughput Annotation of Somatic Mutations (CHASM)28 
and the Variant Effect Scoring Tool (VEST)58. IntOGen- 
mutations59 provides a way to apply tools of the three 
approaches, including mapping mutations using the Ensembl 
variant effect predictor8, reporting their functional impact on 
proteins using MutationAssessor24, Sorting Intolerant from 
Tolerant (SIFT)22, PolyPhen2 (ref. 60) and TransFIC27, and iden-
tifying genes with signs of positive selection across a cohort  
using OncodriveFM53.

It is important to emphasize the limited capacity of these 
approaches to directly identify the causative mutations for  
tumor development. Rather, they are intended to prioritize can-
didates for follow-up experiments that may demonstrate the 
actual implication of those mutations in the cancer phenotype. 
Reporting the results of these rounds of validation experiments  
to the methods’ authors could in principle help them improve 
their approaches. The current relative scarcity of established 
spaces for this information exchange should be specifically 
addressed as part of the development of this field. Furthermore, 
these validation experiments will contribute to expand the cata-
logs of well-characterized driver and passenger mutations, thus 
creating appropriate data sets for the development of computa-
tional prediction tools.

There are three key challenges in the field of cancer mutation 
analysis (Box 2). The first challenge is to improve the accuracy of 
prediction of the functional impact of a mutation. Because muta-
tions do not occur in isolation, but coexist with other somatic 
alterations that work together to alter cellular processes, separate 
gene-by-gene analyses are error-prone. A promising direction is 
the integration of multiple sources of biological information61, 
and the use of pathway and network analyses in the interpretation 
of cancer genomes24,62,63.

BOX 2 CURRENT CHALLENGES 

1. Assess the functional impact of sets of mutations. Most 
current methods cannot accurately predict changes in protein 
and cellular function because changes in tumor phenotype 
typically result from multiple genetic alterations.
2. Complement the identification of functional and driver 
mutations by the prediction of how mutations affect 
protein and cellular function. There is a need for methods 
that not only identify functional or driver mutations but also 

predict the likely cellular outcome resulting from mutations, 
such as gain, loss or switch of function, and how mutations 
might affect cellular networks.
3. Apply predictive tools to biologically relevant questions 
such as drug resistance. The ideal method should not only 
predict the effect of multiple mutations in an integrative man-
ner and how they affect protein and cellular outcome but also 
tackle translational clinical challenges such as drug resistance.
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The second challenge is to develop reliable computational 
methods for the classification of mutations by functional impact 
type: loss of function, gain of function or switch of function24,62,63. 
The computational classification of mutations by type as well as 
strength of impact will contribute to the more complete under-
standing of functional alterations in a cancer genome. The rich 
information encoded in the three-dimensional structure of pro-
teins, which is not yet well used by current approaches, can be 
particularly useful for deducing both the functional type and  
cellular consequences of mutations.

Lastly, there is the practical challenge of identifying muta-
tions that confer resistance or sensitivity to a particular form of 
therapy64,65. We look forward to the day when functional predic-
tion methods support personalized therapeutics, in which the 
patient’s therapy is informed by analysis of the specific genetic 
alteration profile in an individual tumor. The development of 
better approaches for analysis of functional and driver mutations 
will help to facilitate this process and in so doing will support the 
future development of personalized cancer medicine.

Note: Supplementary information is available in the online version of the paper. 
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