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Abstract 

Single-cell RNA sequencing promises to revolutionize our understanding of tissues at the 

molecular level.  Single-cell transcriptomics should allow us to identify the various cell types of 

a tissue by their transcriptomes, as well as indicating how they coordinate to carry out tissue 

function by the ligands and receptors they present.  To fulfill the promise of molecular models of 

tissue function from scRNAseq data, we must be able to: collect single-cell transcriptomes at 

scale; identify all contributing cells of a tissue from their transcriptome; and predict how these 

cell types are communicating based on their expressed ligands and receptors.  In this work I 

address some of the challenges that have arisen in our efforts to realize this potential of 

scRNAseq technology.   

The software tool scClustViz is my contribution to the workflow required to cluster single-cell 

sequencing libraries into cell type transcriptomes.  It proposes a novel method to determine 

appropriate cluster resolution by differential gene expression and fixes a common error in 

differential expression magnitude due to pseudocounts.  Its web-based interactive interface 

simplifies both the annotation of clusters and the sharing of results. 
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A systematic review of methods using scRNAseq to predict intercellular communication 

between cell types revealed that most, including my CCInx tool, infer communication solely 

based on ligand and cognate receptor expression.  Specificity of these predictions may be 

improved by using evidence of ligand perturbation in the receptor cell transcriptome, as 

implemented by a handful of methods.  These methods commonly expect that receptor activation 

yields a characteristic downstream gene expression signature.  I test that assumption using both 

high-throughput and individual ligand perturbation assays and show that transcriptional response 

to ligand perturbation is cell type specific.  If transcriptional response to ligand interaction can be 

inferred per cell type, this barrier to improving ligand-receptor inference methods can be 

overcome. 
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 Introduction 

Single-cell RNA sequencing (scRNAseq) promises to revolutionize our understanding of tissues 

at the molecular level.  Where previous technologies were limited to either quantifying the 

product of a handful of genes on a per-cell basis (i.e. flow cytometry) or required many cells 

worth of input to capture the full transcriptome (RNAseq), we now have the benefits of both in a 

single experiment.  Single-cell transcriptomics should allow us to identify the various cell types 

of a tissue by their transcriptomes, as well as indicating how they coordinate to carry out tissue 

function by the ligands and receptors they present.  To fulfill the promise of molecular models of 

tissue function from scRNAseq data, we must be able to: collect single-cell transcriptomes at 

scale; identify all contributing cells of a tissue from their transcriptome; and predict how these 

cell types are communicating based on their expressed ligands and receptors.  In this work I 

address some of the challenges that have arisen in our efforts to realize this potential of 

scRNAseq technology. 

1.1 High-throughput single-cell transcriptomics 

To collect the transcriptomes of single cells, they must first be isolated prior to lysis and cDNA 

library generation.  There are a few ways of doing this, but to capture a sufficient number of cells 

to represent the entire tissue the most common method is to encapsulate cells in droplets (Klein 

et al., 2015; Macosko et al., 2015).  The cells of the tissue are suspended in an aqueous solution, 

which is then emulsified in oil using a microfluidic device with the aim of capturing a single cell 

per droplet (Figure 1-1).  Each cell is tracked by the inclusion of a droplet-specific genetic 

barcode in the primer.  Notably, inDrop (Klein et al., 2015) and the now widespread 10X 

Chromium platform (Zheng et al., 2017) use soft gel beads as a primer delivery method to ensure 

that each oil droplet contains barcoded primers, thereby avoiding situations where a droplet 

captured a cell but lacks the reagents to capture its mRNA.  After emulsification, cell lysis and 

reverse transcription proceeds in each droplet.  The reagent beads are in a solution containing 

lysis buffer, so that when they and a cell are emulsified together the cell is lysed.  Unlike in 

traditional RNAseq, there is no fragmentation step; instead the mRNA is captured by primers in 

the reagent bead by its polyadenylated tail.  After reverse transcription each cDNA molecule 

contains a barcode unique to its contributing reagent bead, which is therefore common to all 

cDNA molecules in the droplet, as well as a random octamer unique to each cDNA, known as its 
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Unique Molecular Identifier (UMI).  At this point the emulsification can be broken so that 

amplification and preparation of the sequencing library can take place in a pooled fashion.  After 

sequencing, barcodes are used to demultiplex the library into transcripts contributed by each 

droplet, and UMIs are used to remove redundant copies of the same cDNA transcript.  The 

resulting single-cell libraries can be aligned to a reference genome to attain relative counts of 

genes expressed per cell. 

 

Figure 1-1. Single-cell cDNA library preparation in droplets. 

A. Gel beads loaded with barcoded primers are mixed with cells and reagents before being 

encapsulated in oil, one bead per droplet.  Cell lysis and reverse transcription takes place in oil 

droplets, then emulsion is broken for cDNA amplification and library construction to proceed.  

B. Primers in gel beads contain both a barcode unique to each bead, a random octamer which 

serves as the unique molecular identifier (UMI) for that cDNA product, and a poly-T tail to 

capture polyadenylated mRNA. Figure adapted from Zheng et al. 2017.  

The massive scalability of droplet-based scRNAseq does have unique drawbacks, however.  

Encapsulating a single cell per droplet is not a trivial task.  There is always the possibility of 

getting more than one cell per droplet (a “doublet), and since droplets are transient, unlike wells 

of a plate, they cannot be easily imaged to determine aberrant loading.  The number of cells per 

droplet can be modelled as a Poisson distribution, with rate being determined by the 

concentration of cells in the input suspension.  By reducing the input concentration, you improve 

the likelihood of getting less than two cells per droplet.  The number of transcripts detected in 

each library (“library size”) was used as a filter for doublets, but there is not sufficient separation 

to use this as a filter (Figure 1-2).  More recently, computational methods such as DoubletFinder 
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(McGinnis et al., 2019) perform better at this task by predicting doublet transcriptomes from the 

various cell type transcriptomes present in the experiment.  This relies on doublets being a rare 

occurrence, which means the cells being loaded must be well suspending and in low 

concentration. 

 

Figure 1-2. Transcript counts are not sufficient to distinguish single cell libraries from doublets. 

Mouse and Human cells were mixed in suspension at 50 cells/µL prior to single-cell cDNA 

library preparation by DropSeq (Macosko et al., 2015).  cDNA transcripts were mapped to 

human and mouse reference genomes, and libraries containing transcripts mapping to both were 

used to determine rate at which two or more cells were captured in the same library (“Mixed”).  

While doublet libraries did have significantly more transcripts than single cells, library size alone 

is not sufficient to identify doublets in an scRNAseq analysis pipeline. 

A low concentration of cells in the input suspension means most droplets will be empty.  They 

will, however, contain primer and reverse transcriptase, and thus any mRNA encapsulated in the 

droplet may contribute transcripts to the final sequencing library.  Thus, identification of these 

empty droplets is also an important, albeit relatively simple task.  Thresholding by library size is 

generally sufficient to identify empty droplets. 

The fact that empty droplets contribute reads suggests that cell-free mRNA exists in the cell 

suspension, which brings us to another important consideration in data interpretation from 

single-cell RNAseq.  This is exemplified by the original DropSeq study of the mouse retina, 

where nearly 70% of cells were rod cells (Macosko et al., 2015).  Specific marker genes of rod 
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cells, especially their photoreceptor rhodopsin, were found in all cell transcriptomes in the data.  

Since rod cells highly express rhodopsin, are relatively delicate, and make up such a high 

proportion of the mouse retina, it follows that these cells would contribute the majority of mRNA 

from damaged and dying cells contaminating the input cell suspension.  Most tissues contain a 

more even mixture of cell types, making the contribution of contaminant transcripts less obvious.  

To address this, methods such as SoupX use the transcripts sequenced from empty droplets to 

predict and correct for contaminant transcripts (Young and Behjati, 2020). 

Some of those damaged cells are inevitably encapsulated and sequenced.  Libraries sequenced 

from these droplets can be identified by the enrichment of RNA species prevalent in membrane-

enclosed subcellular compartments relative to cytoplasmic mRNA (Ilicic et al., 2016; Muskovic 

and Powell, 2021).  These species include mitochondrial gene products transcribed and translated 

solely in the mitochondria, as well as RNA that has yet to be spliced into mRNA and exported 

from the nucleus.  Because these molecules are sequestered within an organelle, the assumption 

is that they are less likely to be lost if the cell’s membrane is damaged when compared to 

cytoplasmic mRNA.  

Another difference between droplet-based scRNAseq and traditional transcriptomics is the 

location along each gene where transcripts can be sequenced.  Because input mRNA is not 

fragmented and the primer used for cDNA generation is a poly-T sequence, only the 

approximately 50 base pairs at the 3’ end of an mRNA are sequenced.  Genotyping, isoform 

identification, and detection of preprocessed RNA are thus limited to events occurring near the 

3’ end of each gene.  This generally limits their use to applications such as demultiplexing of 

samples (Xu et al., 2019) or predicting expression dynamics (La Manno et al., 2018).  On the 

other hand, the one-to-one relationship between captured mRNA molecules and their uniquely 

barcoded cDNAs is possible thanks to this lack of RNA fragmentation step.  The addition of the 

UMI eliminates concerns of quantification error due to PCR amplification bias, where transcripts 

with lower G+C content are preferentially amplified (Kivioja et al., 2011; Islam et al., 2014). 

Finally, the most apparent downside of droplet scRNAseq over plate-based or bulk methods is 

sensitivity.  In a direct comparison of FACS, microfluidics plate, and droplet based methods 

(Ziegenhain et al., 2017), droplet-based methods detected both fewer transcripts and genes per 

cell than their contemporary alternative methods (Figure 1-3).  One might assume this is due to 
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the reduction in sequencing depth per cell necessitated by having more cells to sequence, but 

increased sequencing does not necessarily capture more unique transcripts, nor genes (Figure 

1-4).  For most applications, this is not a limiting factor, as the reduction in sensitivity can be 

mitigated by the increase in number of cells sequenced.  Since the probability of detecting a 

specific gene expressed by a cell is dependent on both its expression rate and the sensitivity of 

the assay, increasing the number of cells of that type sequenced increases the probability of 

detecting that gene in at least one of those sequenced cells.  As a result, single-cell sequencing 

libraries should be considered a random sample of each cell’s transcriptome, whereby pooling 

libraries from the same cell type will give a more accurate representation of that cell type’s 

transcriptome.  For identification tasks (what genes are expressed?) this is sufficient, though 

quantitative tasks (how much did expression change) may suffer from poor dynamic range due to 

fewer transcripts. 

 

Figure 1-3. Comparison of droplet versus plate-based scRNAseq data. 

500 mouse embryonic stem cells were sequenced using contemporary droplet-based (Dropseq) 

or microfluidic plate-based (SmartseqC1) technologies. Data from (Ziegenhain et al., 2017). 

Dropseq (green) captures fewer mRNA molecules (and consequently, genes) per cell than 

SmartseqC1 (orange). On a per-gene basis, Dropseq (x-axis) detects each gene fewer times and 

in a lower proportion of cells than SmartseqC1 (y-axis). 
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Figure 1-4. Low sequencing depth is sufficient to capture transcriptome complexity. 

The relationship between sequencing depth and per-cell sensitivity metrics for various droplet-

based technologies.  Drop-seq and inDrop are contemporary methods, while 10X (Chromium) is 

a modern commercial platform.  Adapted from (Zhang et al., 2019b). 

Making single-cell RNAseq scalable to whole tissues has trade-offs relative to traditional 

transcriptomics, but these can be mitigated with the appropriate adjustments to analysis.  Without 

the increase in scale, efforts such as the first human whole-organ cell atlas would not be possible 

(MacParland et al., 2018). 

1.2 Cell type identification from single-cell transcriptomics 

1.2.1 What is a cell type? 

Generating sequencing libraries from thousands of single cells is an important first step in 

building a molecular map of a tissue.  The next challenge is determining what each of those 

libraries represents.  As discussed above, scRNAseq is not sufficiently sensitive to treat each of 

those libraries as a comprehensive representation of an individual cell’s transcriptome, so to take 

advantage of the quantity of cells assayed, the libraries must be classified and amalgamated.  

Because transcriptional information is all we have, the cells are necessarily grouped by 

transcriptional similarity and then identified as a cell type by prior knowledge.  This definition of 

cell type is controversial, partly in response to questions raised by scRNAseq (Clevers et al., 

2017).   
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Some argue that while a cell can be at least partly defined by its protein content, mRNA 

expression does not sufficiently correlate with protein content for this to be a satisfactory 

corollary.  Correlation of protein and mRNA abundance in eukaryotes has been reported as low 

as 0.35 and high as 0.85, a range that dips low enough to cause alarm (Maier et al., 2009; Vogel 

and Marcotte, 2012; Li et al., 2014; Battle et al., 2015).  However, this correlation between 

protein and mRNA abundance improves with increased expression; the most abundant proteins 

in a cell are most likely to be the products of the most highly expressed genes (Figure 1-5).  

Thus, assuming one is comfortable defining a cell by its most abundant proteins, the 

transcriptome should serve as an acceptable substitute. 

 

Figure 1-5. Highly abundant protein and mRNA are well correlated. 

Association between protein and mRNA abundance in both multicellular and unicellular 

eukaryotes.  Adapted from (Vogel and Marcotte, 2012). 

A more compelling debate around the definition of cell types is concerned with whether it is an 

error to classify cells discretely when they may be more appropriately considered as positions in 

a manifold of cell states, akin to Waddington’s epigenetic landscape (Waddington, 1957).  

Proponents of this theory argue that even terminally-differentiated cells can change their gene 

expression and function in response to external stimulus, essentially switching cell types 

(Pesaresi et al., 2019).  Moreover, this switch is not discrete, and cells appear in between 

terminal points on this manifold in gene expression space when sequenced with scRNAseq.  

Since in gene expression space these cell types are not discrete, it is argued that defining cells by 

their position in gene expression space is more appropriate than using discrete cell type labels.  

Some use the term “cell state” to distinguish this view from the discrete “cell type”.  While this 
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concept of a manifold of cell states is important to bear in mind, the admittedly artificial concept 

of the cell type as a tool for classifying and inferring cell function still has utility.  For one thing, 

mapping scRNAseq data to prior knowledge would not be possible without using existing 

definitions of cell type.  Furthermore, transcriptomes derived by scRNAseq are by definition a 

collection of Poisson distributions for each gene’s expression in each cell; even if cell types were 

discrete positions in gene expression space, they would appear as probability densities when 

measured using scRNAseq due to stochasticity in both gene expression and its measurement.  To 

incorporate scRNAseq data into our existing models of tissue function, the definition of cell 

types as sets of cells that share transcriptional similarity remains useful. 

Finally, some argue that the transcriptome alone is not sufficient to differentiate cell types that 

have largely been defined by anatomical position or function.  The most extreme example of this 

may be in the brain, where individual neurons may be transcriptional similar but functionally 

different by virtue of their role in a neural circuit.  This is a valid concern that reinforces the need 

for a heuristic with which to classify scRNAseq libraries and map them to prior knowledge – in 

other words, the concept of cell types.  By mapping single-cell transcriptomes to an existing 

classification based on histology and functional assays, we allow our model of a tissue to 

represent both functional and molecular definitions of a cell. 

1.2.2 Clustering single-cell transcriptomes into cell types 

To group thousands of single-cell sequencing libraries by their contributing cell types requires 

some data processing and unsupervised machine learning.  First, libraries must be normalized 

both so that counts of each gene are meaningful relative to each other, and so that the 

assumptions of downstream analysis tasks are met.  Transcriptomes are high dimensional with 

many correlated features, so feature selection and dimensionality reduction are the next 

important tasks.  Finally, cell libraries are clustered to generate groups of transcriptionally 

similar cells that may be mapped to known cell types.  While common practices have been 

established by consensus for most of these steps, they are still active areas of research.  Here I 

outline established workflows and highlight evidence in support of best practices or alternatives 

where available. 
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Each single-cell library is a separate RNA sequencing experiment, where approximately 50 

thousand cDNA molecules per cell are sequenced (see Figure 1-4).  Since the number of reads 

per cell is not fixed, we must account for differences in sequence depth when comparing gene 

expression between cells.  Scaling each single-cell library relative to its size (i.e. Reads Per 

Million mapped or RPM) is an intuitive solution, and the default in popular scRNAseq analysis 

software (Butler et al., 2018).  However, because there are a finite number of reads available in a 

sequencing experiment, the composition of RNA being sequenced affects the relationship 

between actual abundance and proportion of reads for each gene product (Robinson and Oshlack, 

2010; Quinn et al., 2019).  This effect becomes more pronounced with asymmetric differences in 

expression – where one cell has more highly abundant genes than another.  Calculating this 

asymmetry can be done by inferring the ratio of global RNA abundances between samples under 

the assumption that the majority of genes are not differentially expressed (Anders and Huber, 

2010; Robinson and Oshlack, 2010).  Unfortunately, while calculating these ratios works well in 

bulk RNAseq where cDNA counts are highly abundant, scRNAseq counts are sparse and counts 

of zero complicate ratio calculation.  Pooling cells together ameliorates issues of sparsity, 

allowing a scaling factor to be calculated for the pool of cells by normalizing against the average 

of all cell libraries (Lun et al., 2016a).  By iteratively generating pools, a system of linear 

equations can be generated to deconvolute cell-specific scaling factors.  This pool and 

deconvolute strategy for normalization can be made robust to large-scale differential expression 

between groups of cells by clustering the libraries prior to normalization, and then normalizing 

each cluster separately before rescaling the cluster-specific scaling factors relative to each other.  

While there have been many methods proposed to address the challenges associated with depth 

normalization, systematic benchmarking studies have demonstrated that the challenge of 

compositional effects is more prevalent in single-cell transcriptomics, and thus normalization 

methods explicitly designed to address them are most appropriate for this data (Vieth et al., 

2019).  The pool and deconvolute strategy implemented in scran shows robust performance in 

benchmarking, even in the context of abundant and asymmetric differential expression. 
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Figure 1-6. Normalization must be robust to asymmetric differential expression. 

Deviance (Root Mean Squared Error, RMSE) between estimated and simulated library scaling 

factors.  The expression of ten thousand genes over 768 cells (384 cells per group) were 

simulated with different proportions of differentially expressed (DE) genes following 

increasingly asymmetric narrow gamma distributions.  TMM is a normalization based on the 

ratio of global RNA abundances between samples used in traditional RNAseq (Robinson and 

Oshlack, 2010).  The pool and deconvolute strategy is implemented in scran (Lun et al., 2016a).  

Adapted from (Vieth et al., 2019). 

The second goal of normalization is to make the data suitable for downstream analysis.  Many 

statistical tests and analyses are based on linear models, and a fundamental assumption of these 

models is homoscedasticity – equal variance of all variables.  Sampling gene products from a cell 

is a Poisson process where the likelihood of capturing a particular gene’s transcript is dependent 

on the abundance of that mRNA in the transcriptome.  Unlike the normal distribution, in the 

Poisson distribution the variance increases linearly with the mean and is thus heteroscedastic.  To 

further complicate matters, single-cell RNA sequencing represents a whole collection of Poisson 

distributions with different rates for each gene in each cell.  The gamma-Poisson or negative 
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binomial distribution can be interpreted as a mixture of Poisson distributions with the rate 

parameter sampled from a gamma distribution specified by the dispersion term.  This distribution 

models scRNAseq data well (Figure 1-7).  It is worth noting at this point that the rate of zeroes 

present in droplet scRNAseq data (referred to as dropout, overdispersion, or zero-inflation in the 

literature) fit the negative binomial model (Svensson, 2020).  To render data sampled from a 

negative binomial distribution homoscedastic, one can apply a variance-stabilizing 

transformation (Anscombe, 1948).  Anscombe’s transformation has been simplified slightly in 

the field of transcriptomics to the binary logarithm of the normalized counts, plus a pseudocount 

of one: log2(x+1).  In Anscombe’s transformation the pseudocount is related to the dispersion 

parameter, but has been simplified to a constant to both eliminate the need to estimate parameters 

and to maintain zero counts as zero after transformation.  The choice of pseudocount does have 

ramifications, as explored further in Figure 2-1.  Despite simplifying the pseudocount, this log-

transformation does render the data homoscedastic, allowing for downstream analyses based on 

linear models. 

 

Figure 1-7. Mean-variance relationships in droplet scRNAseq data. 

Data from inDrop (Klein et al., 2015), DropSeq (Macosko et al., 2015), and 10X Chromium 

(Svensson et al., 2017).  Points are genes in negative control datasets from each technology.  Red 

line is the expected variance relationship when sampling from the negative binomial distribution.  

Adapted from (Svensson, 2019a). 

There are nearly twenty thousand protein coding genes in the human reference genome 

(GRCh38).  Since in any cell library most of these gene products will be missing, and as 

discussed above correlation between transcriptome and proteome improves when considering 

highly expressed genes, some filtering of genes may improve the calculation of cell similarities 

necessary for clustering.  A common choice is to select genes that are the most highly variable, 

with the assumption that this eliminates those genes whose changes in the dataset are due to 
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noise or stochasticity in transcription.  This can be performed by modeling the mean-variance 

relationship and selecting genes that show higher than expected variance (Lun et al., 2016b; 

Stuart et al., 2019).  More advanced methods of feature selection have also been developed, 

including NBDrop (Andrews and Hemberg, 2019), which identifies genes whose expression is 

missing in more cells than expected under the assumption that they are more likely to reflect 

differences in cell type, and DUBStepR (Ranjan et al., 2021), which looks for a minimally 

redundant set of genes with the maximal range of gene-gene correlations with the assumption 

these are involved in cell type specific biological pathways.  An incomplete benchmark of 

feature selection methods (missing both NBDrop and DUBStepR) was performed by the authors 

of an iterative feature selection method FEAST (Su et al., 2021) which found that after their 

novel method, identifying highly variable features based on the mean-variance relationship 

performed reasonably well in subsequent clustering.  It is notable, however, that they used only 

feature selection to shrink feature space prior to clustering, skipping a further dimensionality 

reduction step such as PCA. 

Dimensionality reduction methods are not limited to selecting meaningful features.  Since gene 

expression is a structured process, where genes in the same biological pathway are more likely to 

be coexpressed, the features in a transcriptomic dataset can be highly correlated.  We can take 

advantage of this by summarizing correlated features into a set of factors using linear algebra 

methods such as Principal Component Analysis (PCA).  PCA transforms the feature space into 

an ordered set of orthogonal components where each linear component aims to explain the 

maximum amount of remaining variance in sample space.  By selecting the top principal 

components (PCs), one attains a small set of features that explain much of the variance in the 

data.  Note that though PCs are ordered by the proportion of variance they explain in the original 

data, their loadings are not scaled to reflect their relative importance.  Performing this scaling is a 

necessary step to avoid overemphasizing minor sources of variance in the original data.  

Dimensionality reduction methods were benchmarked in the context of both clustering and 

trajectory inference, and PCA was one of the best performing methods in both contexts (Sun et 

al., 2019).  Given that most feature selection methods (with the exception of DUBStepR) 

prioritize the removal of “noisy” features over the reduction of the redundancy inherent in gene 

coexpression, a common workflow for shrinking feature space prior to clustering is to filter for 

highly variable genes in an attempt to reduce technical noise, then using PCA to transform the 
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redundant feature space into a small number of uncorrelated components (Amezquita et al., 

2020). 

Clustering of single-cell libraries to identify contributing cell types is performed on this matrix of 

scaled PC loadings per sample.  Segregating samples into groups by feature similarity is a 

common unsupervised learning task, and many existing algorithms have been adapted for 

scRNAseq analysis.  Comprehensive benchmarking of these methods (Figure 1-8) revealed that 

the PhenoGraph clustering method adapted for the popular Seurat workflow was the top 

performer, narrowly surpassing the consensus clustering method SC3 (Kiselev et al., 2017; 

Butler et al., 2018; Duò et al., 2018).  The PhenoGraph algorithm, developed for analysis of 

CyTOF data, clusters by maximizing modularity in a shared nearest neighbours graph (Levine et 

al., 2015).  First they construct a K-nearest neighbours graph based on Euclidean distance the 

scaled PCs of each cell.  Edge weights are calculated by Jaccard similarity of each node’s 1st 

degree neighbours, and then low-weight edges are pruned to yield a network where cells are 

connected if their expression is similar to each other and their respective similar cells.  

Communities are defined in this network using the Louvain method for modularity optimization 

(Blondel et al., 2008).  SC3 approaches scRNAseq analysis by consensus – it applies multiple 

distance metrics, dimensionality reduction techniques, and number of features retained.  It then 

performs k-means clustering on each, summarizes those results as an average of binary similarity 

matrices, and finally performs hierarchical clustering on the consensus matrix.  This is robust but 

computationally expensive, so it is notable that PhenoGraph performs similarly while being 

much more scalable. 

 

Figure 1-8. Benchmarking scRNAseq clustering methods. 
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Performance of clustering methods (columns) measured by Adjusted Rand Index (ARI) at 

capturing known structure in simulated or published scRNAseq datasets (rows).  Input features 

were selected by expression, variance, or dropout rate (Duò et al., 2018). 

The outstanding challenge in clustering remains determining how many cell types exist in an 

scRNAseq dataset.  This is an explicit or implicit input parameter of all clustering methods; k-

means sets a specified number of clusters, while input parameters can affect the size of 

communities detected by the Louvain algorithm (Lambiotte et al., 2008).  There are methods to 

determine the appropriate number of clusters prior to clustering.  SC3 implements a method 

based on random matrix theory, using the Tracy-Widom distribution to identify significant PCs 

by their eigenvalues (Tracy and Widom, 1994; Patterson et al., 2006).  More common are post-

hoc methods for assessing the quality of various cluster solutions, though these increase 

computational burden by requiring multiple clustering solutions to be calculated.  For example, if 

there is stochasticity in the method used to cluster, one can repeat clustering at different 

resolutions and assess the stability of the resulting clusters, or enforce stochasticity by 

subsampling as implemented in scclusteval (Tang et al., 2021).  A variation of this approach is to 

embed the cluster solutions into a tree structure, where each level of the tree has a different 

cluster solution with nodes as clusters and edges between levels representing shared cells 

(Zappia and Oshlack, 2018).  This allows researchers to visualize cluster stability and the effect 

of changing the number of clusters on each putative grouping of cells.  Finally, one can assess 

the quality of an individual cluster solution using metrics such as the silhouette, which calculates 

cluster cohesion in Euclidean space (Rousseeuw, 1987).  In Chapter 2 I propose a novel, 

biologically motivated method for evaluating clustering of scRNAseq data.   

Finally, once single-cell libraries are clustered into putative cell types, these cell types can be 

identified.  This has been covered in detail in our recently published protocol (Clarke et al., 

2021), but I will briefly summarize some approaches to the problem.  Prior to the explosion of 

available single-cell data, annotation of single-cell transcriptomes required extensive domain 

knowledge of the assayed tissue.  Thanks to the popularity of cell purification methods such as 

fluorescence-activated cell sorting (FACS) that isolate a cell type by its uniquely expressed 

surface proteins, many cell types have known sets of marker genes.  Databases such as MSigDB 

now include lists of cell type gene sets (Liberzon et al., 2015).  Given this knowledge, one can 
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simply compare known marker genes to those genes most differentially expressed in each 

cluster.  Identifying these marker genes per cluster is further discussed in Chapter 2, although 

this marker-based cluster annotation process can be automated using GSVA (Hänzelmann et al., 

2013).  However, some cell types are better defined histologically than molecularly, and may not 

have known marker genes.  To annotate cell libraries from such tissues, one must be able to map 

the scRNAseq data back to its spatial position in the tissue.  While spatial transcriptomics is 

rapidly improving and becoming more available, one could combine scRNAseq and fluorescence 

in situ hybridization (FISH) to accomplish this task.  First, identify sets of genes expressed in 

each cluster, the combination of which is unique to each cluster (Dumitrascu et al., 2021).  These 

gene sets can then be used in a multiplexed FISH assay to link each cluster to its histological 

information, and thus annotate the cell transcriptome.  With the increasing availability of 

published scRNAseq data, these methods may no longer be needed, at least for major, commonly 

observed cell types.  Instead, a classifier such as a Support Vector Machine (SVM) can be 

trained using a reference scRNAseq data from your tissue of interest (Tabula Muris Consortium 

et al., 2018; Tabula Sapiens Consortium et al., 2022).  One of the top performing methods for 

this task is scmap, which is notable for its ability to distinguish unknown cell types from those 

present in the reference dataset (Kiselev et al., 2018; Abdelaal et al., 2019). 

This section has outlined the steps of a robust workflow for the analysis of scRNAseq data with 

the aim of clustering single-cell transcriptomes into annotated cell types.  This workflow is the 

product of a many scientists in the single-cell community, contributing not only novel methods, 

but helping develop a consensus on best practices, and creating toolsets that enabled the wider 

community to use the methods and data generated.  This workflow is useful for identifying the 

transcriptomes of all cell types present in an assayed tissue, though continued research is 

expected to refine and extend it over time.  From here we can begin to predict how these cells 

may be communicating to coordinate tissue function. 

1.3 Intercellular signaling from single-cell transcriptomics 

1.3.1 Modelling signaling between cell types of a tissue 

To coordinate tissue function, evolution has yielded a variety of biochemical methods by which 

cells communicate.  We generally classify these signaling methods by the distance between 
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sender and receiver cells.  Autocrine signaling refers to situations where cells use intercellular 

signaling mechanisms to modulate their own behaviour.  As cells necrose in an injured tissue, 

they secrete the ligand interleukin-1 (IL-1), which is picked up by the IL-1 receptor on tissue-

resident macrophages. The macrophages respond by producing more IL-1 as well as other pro-

inflammatory cytokines in an autocrine signaling positive feedback loop that initiates the 

inflammatory response (Kaneko et al., 2019).  Cells often signal to their neighbours to coordinate 

tissue function, especially pattern formation during development.  This is juxtacrine signaling, 

unique in that both ligand and receptor are membrane bound.  Interactions between the delta 

ligand and notch receptor in spatial organization of Drosphila nervous system are a classic 

example of juxtacrine signaling (Alberts et al., 2007).  Paracrine signaling involves secreted 

ligands diffusing through a tissue to confer information to other cells.  For example, the 

morphogen sonic hedgehog is secreted from the notochord and diffuses through the epithelial 

cells of the developing neural tube, interacting with its transmembrane receptor patched1 to 

provide ventral fate cues (Garcia et al., 2018).  Finally, signaling that passes between tissues via 

the circulatory system is termed endocrine signaling.  Endocrine signaling ligands can be either 

peptide hormones such as insulin, or steroid hormones such as estrogen (Alberts et al., 2007).   

Our lab has used the transcriptome to predict how different cells of a tissue may interact for the 

past decade, beginning with the transcriptomes of isolated hematopoietic cell types collected by 

microarray (Kirouac et al., 2010; Qiao et al., 2014).  Inspired by earlier work that sought to apply 

the graph theory analyses made popular by the rise of online social networks to the interactions 

of the immune system (Frankenstein et al., 2006), they added transcriptional information as a 

way of associating nodes of the dense cytokine interaction network with their contributing cell 

types.  This allowed them to study how the cell-cell interaction networks changed with 

hematopoiesis and develop hypotheses about how individual signals guide cell fate. 

The method used to model these cell-cell interactions is relatively simple.  First, a reference 

network of ligand-receptor interactions must be curated from available data.  They began by 

using COPE, a database of cytokines curated as a passion project by one man from the early days 

of the web (Ibelgaufts, 1997).  Cell type specific transcriptomes are then used to associate 

ligands and receptors with each cell type.  To attain transcriptomes for each cell type, they 

isolated cells by FACS prior to collecting RNA for transcriptome determination by microarray 
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hybridization.  Ligands and receptors were associated with each cell type if their gene expression 

was above a certain threshold.  Using this approach, the resulting cell type specific ligand-

receptor interaction network models both autocrine, juxtacrine, and paracrine interactions.  

Autocrine interactions are predicted when a ligand and its cognate receptor are present in the 

same cell type, though this does not necessarily indicate that an individual cell is modulating its 

own function using that interaction.  When a pair of cell types each present a ligand or its 

cognate receptor, a paracrine interaction is predicted between those cell types.  Juxtacrine 

interactions can be predicted in the same way, though the physical association between cells 

required for juxtacrine signaling is not captured in these transcriptional assays.  Finally, 

endocrine signaling is outside the scope of this assay, both literally in that the sender and 

receiver cells can reside in separate tissues with the signal transported via the circulatory system, 

and because at least for steroid hormones the ligands are not gene products.   

This model makes considerable assumptions to predict protein-based intercellular signaling from 

transcriptomes, as summarized in Figure 1-9.  Essentially, if ligand and receptor genes are 

transcribed in their respective cells, the model assumes that they are able to interact.  In order for 

an interaction to occur between these gene products, a number of events must occur (Alberts et 

al., 2007).  Both mRNA must be translated by the ribosome, a step under post-transcriptional 

regulation (Zahr et al., 2018).  Ligand peptides must undergo the requisite post-translational 

modification and be packaged for secretion by exocytosis.  They must then diffuse through the 

extracellular matrix, presuming no impermeable membrane blocks their path to the receptor-

expressing cell.  Meanwhile the receptor must be post-translationally modified, integrated into a 

phospholipid bilayer, and presented at the cell surface.  It must also have the requisite co-

receptors available.  None of this information is readily available from a transcriptomic assay, so 

there is a high likelihood of false-positive predictions from this model of intercellular signaling.  

However, the advent of single-cell RNAseq has made this model very attractive by eliminating 

the need to isolate cell types in vitro.  Many adaptations and expansions on this model have now 

been developed for scRNAseq data, as catalogued in Appendix A.  The following sections will 

review these advances, both in the generation of ligand-receptor interaction networks and 

modeling these interactions in a tissue from single-cell transcriptomes. 
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Figure 1-9.  Assumptions inherent in predicting intercellular signaling from transcriptomics. 

Many things must happen for an interaction between a ligand from one cell (orange, left) and its 

cognate receptor on another cell (blue, right) to occur.  A. Both gene products must be translated 

by the ribosome, and packaged for transport in the golgi.  B. Ligands must be exocytosed and C. 

diffuse through the extracellular matrix to the receptor-expressing cell.  D. Receptors must be 

appropriately post-translationally modified and presented on the cell membrane.  Created with 

BioRender.com  

1.3.2 Curating ligand-receptor interaction networks 

To model cell-cell interactions from the transcriptome, we must first identify ligand- and 

receptor-encoding genes.  Traditionally our understanding of ligand-receptor interactions stems 

from hypothesis-driven science, where through a combination of genetics and biochemistry a 

phenotype has been determined to be the result of an interaction between these two gene 

products.  Mutagenesis may be used to systematically knock out genes until the phenotype is 

abrogated, thereby identifying a gene involved in the phenotype.  Cloning the gene in 

conjunction with a fluorophore allows its subcellular location of its protein product to be 

determined, potentially identifying it as a secreted ligand or membrane-associated receptor. 

Protein-protein interaction assays such as affinity chromatography or two-hybrid screening may 

then identify interacting proteins, and further genetic experiments could determine which 

interactions are necessary and sufficient for induction of the phenotype in question.  This is not a 
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high-throughput process, and thus early databases of ligands and receptors relied entirely on 

expert curation of primary literature.   

While experimental evidence of a functional interaction between ligand and receptor remains the 

gold standard, high throughput assays and computational predictions have expedited the 

cataloguing of potential intercellular signaling proteins.  For example, a cell’s secretome is 

readily accessible to proteomics assays thanks to the solubility of secreted proteins (Tjalsma et 

al., 2004).  Secreted proteins can also be predicted from sequence, since they canonically require 

a signal peptide to be processed by a cell’s secretory machinery, and recent efforts have built 

models to identify those secreted through non-canonical methods  (Voet and Voet, 2010; Wang 

et al., 2022).  Similarly, membrane associated proteins are identifiable by the unique 

biochemistry of their transmembrane domains, a feature used by many structure prediction 

algorithms to infer membrane association (Fagerberg et al., 2010; Baxevanis et al., 2020).  Not 

all secreted or membrane-associated proteins are ligands or receptors.  But inherent in 

broadening the scope of effort to catalogue ligands and receptors is the assumption that if a 

secreted protein is shown to physically interact with the extracellular domain of a membrane 

associated protein, they may be involved in an intercellular signaling process.  Thus we must 

also have high-throughput methods for identifying protein-protein interactions.  Two-hybrid 

systems such as yeast-2-hybrid have served this purpose, with extracellular domains of putative 

receptors being expressed as single domains to improve their solubility in the yeast cytoplasm 

(Brückner et al., 2009).  Juxtacrine interactions are overlooked by this model, however, as both 

the ligand and receptor are membrane-associated.  Novel interaction screening methods have 

been developed to capture these interactions, including a method that uses CRISPR activation to 

systematically overexpress individual putative receptors to ensure high avidity, allowing the cells 

expressing the correct receptor to be isolated by a bait consisting of the extracellular domain of a 

membrane-bound ligand (Chong et al., 2018).  Thanks to such high-throughput methods, 

databases now exist to catalogue the subcellular location and physical interactions for most 

proteins (Razick et al., 2008; Rodchenkov et al., 2020; Oughtred et al., 2021; UniProt 

Consortium, 2023). 

As the biochemical databases have become more widespread, the curation of ligand-receptor 

databases has become more of a database-parsing exercise, as exemplified by the workflow used 
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to build the widely used FANTOM5 database shown in Figure 1-10 (Ramilowski et al., 2015).  

They began with three existing databases: the Database of Ligand-Receptor Partners (DLRP), 

curated manually to support one of the first attempts at cell-cell interaction prediction from the 

transcriptional data (Graeber and Eisenberg, 2001); the Human Plasma Membrane Receptor 

(HPMR) database, a collection of receptors for the purpose of sequence phylogeny analysis 

(Ben-Shlomo et al., 2003); and the International Union of Basic and Clinical Pharmacology 

(IUPHAR) database, a regularly maintained database of druggable receptors and their 

endogenous and pharmacologic interactors (Harmar et al., 2009; Harding et al., 2022).  Since 

only IUPHAR’s database is still maintained, and HPMR contained both ligands and receptors 

lacking interactors (“orphans”), they then aimed to expand these lists by inferring ligand-receptor 

interactions.  They first used subcellular location information from UniProt, a general protein 

knowledgebase maintained by the European and Swiss bioinformatics institutes (UniProt 

Consortium, 2023), and the Human Protein Reference Database (HPRD), a database of 

experimentally determined protein information (Keshava Prasad et al., 2009).  Proteins known or 

predicted to be present at the plasma membrane were predicted to be receptors, unless already 

classified as known ligands, and proteins known or predicted to be secreted were inferred to be 

ligands.  To link both orphan and predicted ligands to their putative receptors, physical protein-

protein interaction evidence was sourced from HPRD and STRING, a regularly maintained 

database of known and predicted physical and functional protein interactions (Szklarczyk et al., 

2015).  Finally, an attempt was made to associate citations with each interaction, though 

interactions lacking primary literature evidence were only discarded if one of the partners was 

inaccurately annotated as a ligand or receptor.  This workflow was highlighted as an example 

that touches on many of the considerations involved in the production of a ligand-receptor 

database, but is also noteworthy as the FANTOM5 database has been used as the exclusive 

ligand-receptor resource for one third of the 56 novel cell-cell interaction prediction methods 

developed since its publication in 2015 (Appendix A). 
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Figure 1-10. Example of ligand-receptor database curation. 

The FANTOM5 database curation workflow.  Adapted from (Ramilowski et al., 2015). 

Many of the cell-cell interaction prediction methods that don’t use the FANTOM5 database 

curate their own using a similar workflow, albeit curating from different databases, including 

most of the databases compared in Figure 1-11.  That is reflected in the 334 ligand/receptor 

nodes present in all but the smallest database compared.  That smallest database is ICELLNET 

(Noël et al., 2021), which focused solely on immune signaling.  The three databases with the 

more unique nodes took a notably different approach to database curation.  CellChat (Jin et al., 

2021) and LIANA (Dimitrov et al., 2022) focused more heavily on the ligands and receptors 

involved in intracellular signaling pathways, using KEGG (Kanehisa et al., 2016) and OmniPath 

(Türei et al., 2021) respectively.  The largest database is our contribution, CCInx (Ximerakis et 

al., 2019), which leaned heavily on the large Gene Ontology (GO) classification of protein 

subcellular location and function to assign ligands and receptors.  Another notable difference in 

the curation of ligand-receptor databases is explicit consideration of receptor complexes, first 

introduced by CellPhoneDB (Vento-Tormo et al., 2018; Efremova et al., 2020) and expanded 

upon in CellChat (Jin et al., 2021), where agonist and antagonist cofactors have also been curated 

so that their function can be modeled in interaction scoring. 
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Figure 1-11.  Comparison of ligand-receptor databases used for cell-cell interaction prediction. 

A. An UpSet plot (Lex et al., 2014) showing overlap of ligands and receptors included in the 

backing databases of recent cell-cell interaction inference methods reviewed by (Armingol et al., 

2021).  B. An UpSet plot comparing overlap of interactions. Datasets are ordered as in A. 

Despite being curated using similar curation workflows, ligand-receptor databases differ a 

surprising amount in their links between ligand and cognate receptor (Figure 1-11b).  As noted 

in a recent benchmarking study, this contributes to the lack of consensus in findings from 

different methods (Dimitrov et al., 2022).  This was a major motivation of our work on the 

database backing CCInx.  By using a broad definition for ligands, receptors, and their 

interactions, we aimed to reduce the amount of bias introduced by our database, at the cost of 

decreasing the specificity of the resulting predictions (Isserlin et al., 2020).  InterCellDB takes 

this concept even further, as it indexes all human and mouse proteins, providing annotations of 

location, function, and interactions where available, and allows the user to set their own filters to 

define their required interaction database (Jin et al., 2022).  One method completely omits the 

use of a ligand-receptor network as a prior, building a network of cell-cell interactions purely 

based on coexpression of gene modules, though it lacks the resolution to infer individual ligand-

receptor interactions as a result (Chen et al., 2022).  The problem with reducing the reliance on 

prior knowledge of ligand-receptor interactions is that it puts more reliance on the method used 

to infer specific interactions from transcriptional data.  As the following section outlines, there is 

no clear solution to that problem. 

1.3.3 Methods to predict cell-cell interactions from single-cell RNAseq 

With a database to map scRNAseq transcript counts to putative ligands and their cognate 

receptors, the final step is the prediction itself – how to weight the edge represented by each 

ligand-receptor pair expressed in a pair of cell types.  Prior to cell type-specific resolution of 

transcriptomes, correlation of ligand and cognate receptor expression across cell type pairs was 

used to score interactions, though this makes the implicit assumption that receptor activation 

drives a positive feedback loop that increases receptor expression (Graeber and Eisenberg, 2001).  

That assumption was more valid when considering autocrine interactions in cancer, but is less 

generally relevant, which might explain why few modern methods employ ligand-receptor 

correlation scores.  Instead, many of the methods outlined in Appendix A use either the 
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arithmetic or geometric mean of normalized expression of ligand and receptor to score each 

interaction.  The advantage of the geometric mean is that it preserves zeroes – if either interactor 

is not expressed, the interaction score will be zero.  While this is convenient, most of the 

methods using the arithmetic mean also implement a filter requiring sufficient expression of both 

ligand and receptor, so in practice the difference between the different mean implementations is 

inconsequential.  These techniques aggregate the transcript counts from clusters of single-cell 

libraries representing putative cell types which increases the number of genes detected, so the 

resulting ligand-receptor interaction networks tend to be very large.  Various filtering strategies 

have been adopted, including requiring a minimum transcript count for inclusion of a ligand or 

receptor node in the network.  While using a fixed count runs the risk of being arbitrary, there is 

some evidence that a threshold of 10 transcripts per million (TPM) maximizes the likelihood of 

the resulting gene product being present in that cell (Ramilowski et al., 2015).  An alternative to 

fixed thresholds of expression is to use frequentist statistics to determine which nodes or edges 

are notable.  Some methods use this as their node filter, considering only ligands or receptors that 

are significant “marker genes” for their cluster, genes significantly positively differentially 

expressed in the specific cell cluster relative to all cells.  Others, notably CellPhoneDB, build the 

ligand-receptor network based on gene expression and then use a statistical model to test cell 

type pair specificity of each edge (Vento-Tormo et al., 2018).  Caution must be used when 

interpreting these models, however, since they are no longer prioritizing edges solely on the 

likelihood that the interaction is occurring.  In fact, none of the scoring methods discussed so far 

address the disconnect between ligand and receptor transcript expression, and the interaction of 

their protein products in a tissue.  This motivated the development of my scoring method CCInx, 

published in our collaboration studying age-mediated changes in the murine brain transcriptome 

(Ximerakis et al., 2019).  Using our lab’s large ligand-receptor database to reducing literature 

bias as much as possible, CCInx weights nodes and edges by differential expression magnitude 

between tested states.  While the resulting networks are large, the ranking highlights interactions 

most strongly associated with the tested hypothesis.  I reasoned that if the scoring method is 

unlikely to improve accuracy, then it can at least help generate meaningful hypotheses associated 

with the question under investigation. 

Beyond scoring ligand-receptor interactions, methods have also considered cell-cell interaction 

inference from the scale of whole cell types rather than their individual ligand-receptor pairs.  
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The simplest method used to weight a cell-cell edge is to simply sum the number of discrete 

ligand-receptor pairs predicted to interact between two cell types.  If the ligand-receptor edge has 

an associated weight, often those weights are summed rather than treating each edge discretely.  

As with ligand-receptor interactions, a frequentist approach can be used to filter these cell-cell 

edges for statistical significance, either by comparing summed ligand-receptor edge weights to a 

null distribution (Farbehi et al., 2019), or testing for specificity of those interactions to the cell 

type pair (Smillie et al., 2019; Armingol et al., 2022b).  An alternative to aggregating ligand-

receptor edges to form a cell-cell edge is to consider both.  Hypergraphs are networks where a 

cell type node can contain ligand and receptor nodes, and cell-cell edges can be composed of 

ligand-receptor edges (Tsuyuzaki et al., 2019).  Tensors are multidimensional matrices, allowing 

for 2D matrices of ligand-receptor expression across all sender and receiver cells to be arranged 

in a 3D tensor containing all ligand-receptor pairs (Armingol et al., 2022a).  A fourth dimension 

representing experimental context can be added, allowing tensor factorization methods to 

determine associations with experimental context at the ligand-receptor and cell-cell level 

concurrently.  There are methods that focus solely on infering interactions at the cell type level, 

using gene correlation networks to build causal Bayesian networks predicting the degree to 

which a cell type impacts the phenotype of other cell types in the tissue (Chen et al., 2022; Yuan 

et al., 2022).  Finally, recently there has been a shift in focus from cell-cell networks to cell-

niche networks.  Rather than considering both ligand- and receptor-expressing cell, the focus is 

on the receptors of a single cell type and considers the proportions of all available ligands (by 

weighting ligand expression by proportion of ligand-expressing cells) in an attempt to predict 

how the cell’s phenotype is a product of the niche (Griffiths et al., 2022; Raredon et al., 2023). 

Since the publication of my CCInx method, novel ligand-receptor scoring methods have been 

published that aim to have edge weight reflect the likelihood of interaction.  CellChat uses a 

database containing ligands, receptors, and their agonist and antagonist cofactors, and uses the 

expressions of all contributing factors in lieu of concentrations when modeling each interaction 

using the law of mass action (Jin et al., 2021).  This is a theoretical improvement on the more 

basic scoring methods as it accounts for the fact that ligand-receptor interactions are not 

independent events, and require or are modulated by various cofactors.  Another method that 

considers confounding interactions is REMI, which uses partial correlation of expression 

between nodes in the ligand-receptor interaction network to build a graphical Bayesian model of 
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conditional dependence amongst ligand-receptor interactions (Yu et al., 2022).  The assumption 

here is that if cells are communicating through a ligand-receptor interaction, the expression of 

ligand and receptor will be tuned either in direct response to the interaction or through other axes 

of communication between the cell pair, and thus their expression is not independent.  Finally, 

there are multilayer network models such as the popular NicheNet that use the transcriptome of 

the receptor-expressing cell to support ligand-receptor interaction inference (Browaeys et al., 

2020).  They do this by connecting ligand-receptor interactions to the downstream intracellular 

signaling pathway of each receptor, and then linking the terminating transcription factors of these 

signaling pathways to their target genes.  This is heavily dependent on prior knowledge: 

databases such as OmniPath (Türei et al., 2016) and Pathway Commons (Cerami et al., 2011) 

contain intercellular signaling networks, and TRRUST (Han et al., 2015) and JASPAR 

(Mathelier et al., 2014) can associate transcription factors with the genes they may regulate.  

However, as the authors of NicheNet discovered, these networks can branch extensively 

resulting in many genes putatively being regulated by a single ligand-receptor interaction.  Their 

solution was to curate experiments where the transcriptome was measured in response to ligand 

perturbation and use these to train weights for their multilayer network to improve its ability to 

predict transcriptional response to ligand-receptor interaction.  But the question remains: do the 

edge weights returned by this method reflect the likelihood of the actual interaction occurring in 

a tissue? 

Evaluating accuracy of ligand-receptor inference is very difficult, as there is not sufficient 

labeled data to test on.  One may have high confidence that individual ligand-receptor 

interactions are occurring in their tissue of interest due to prior knowledge (e.g., growth factors 

patterning the developing Drosphila nervous system) but it would be challenging to make such 

an evaluation systematic and the reliance on known interactions encourages literature bias.  No 

studies have linked cell type resolved transcriptomes of a tissue with interactions involving the 

cell surface proteome of the tissue-resident cell types, which would be required for an unbiased 

assessment of ligand-receptor inference methods.  Two groups have made efforts to benchmark 

these methods, using various strategies in lieu of a testing dataset with known ligand-receptor 

interactions.  One group constructed LIANA, an evaluation framework to decouple the ligand-

receptor database from the interaction scoring method (Dimitrov et al., 2022).  They found that 

despite using the same set of ligand-receptor interactions, there was very little consensus among 



28 

 

 

scoring methods.  This reinforces the importance of understanding what hypothesis each scoring 

method is testing when applying them as a researcher.  It also gives credence to the notion that 

few if any ligand-receptor interaction scores reflect the likelihood of those interactions occurring 

in situ.  To evaluate prediction accuracy, they compared inferred ligand-receptor interactions to 

predictions from CytoSig, a predictive model of cytokine activity based on systematic 

experimental transcriptomic assays (Jiang et al., 2021).  The methods were evaluated on two 

breast cancer CITE-Seq datasets, where the receptor availability per cell was confirmed by 

antibody binding (Wu et al., 2021).  To quantify their comparison, they calculated odds ratios 

between the top ranked ligand-receptor interactions and predicted active cytokines across a range 

of ranks (Figure 1-12a).  Results were inconsistent, with some methods performing well on one 

dataset and very poorly on the other, and other methods showing more consistently moderate 

performance.  Another approach to evaluating ligand-receptor interaction inference assumes that 

spatially proximal cells will interact with each other more often.  A benchmarking study based 

on this assumption assigned ligand-receptor interactions as short- or long-range on the basis of 

distribution of expressed genes in the spatial transcriptomics datasets used for testing (Liu et al., 

2022).  They then evaluated ligand-receptor interaction predictions for their ability to predict 

short-range interactions between proximal cell types and long-range interactions between distant 

cell types.  By this evaluation criteria they found that CellChat was the top performer (Figure 

1-12b), though it is unclear whether their usage of CellChat’s ligand-receptor database in the 

construction of their evaluation criteria introduced bias in the results.  The LIANA authors also 

used proximity of cell-cell pairs as an evaluation metric with notably different conclusions.  The 

evaluation metrics used in these benchmarking efforts are meant to serve as a proxy for a (non-

existent) transcriptomic dataset with known interactions, but without the ability to evaluate their 

relationship with that ground truth, these benchmarking studies suffer from the same limitations 

as the methods they are testing – it is difficult to be confident in their results.   
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Figure 1-12.  Benchmarking ligand-receptor inference methods. 

A. Comparing CytoSig cytokine activity predictions with top ranked ligand-receptor interaction 

predictions from various methods (Dimitrov et al., 2022).  B Left. Ranking ligand-receptor 

inference methods by their ability to associate expected short- and long-range interactions with 

nearby and distant cell pairs respectively (Liu et al., 2022).  B Right. Comparing cell pairs 

involved in top ranked interaction predictions with spatially adjacent cell types (Dimitrov et al., 

2022).  Adapted from cited papers. 

While the rise of high-throughput single-cell transcriptomics has led to a renewed interest in 

inferring intercellular signaling from the transcriptome, it is unclear whether any of these novel 

methods accurately reflect the realities of intercellular signaling in a tissue in vivo.  Despite this 
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they still have utility as a hypothesis-generating tool, in conjunction with follow-up assays.  To 

make the most of these methods, its important to have a specific hypothesis in mind, and select a 

method whose assumptions and ranking criteria reflects the hypothesis being tested.  Without 

this focus, the fundamental problems plaguing this field become apparent – poor specificity or 

filters that don’t reflect the probability of the interaction occurring in situ means you either get 

biased results or are swamped with too many hypotheses to test. 

1.4 Outline & Rationale 

The advent of high-throughput single-cell transcriptomics has created an opportunity to 

systematically generate molecular models of tissue function.  To create such a model, the cell 

types of the tissue must be identified, and communication between cell types mapped.  Resolving 

scRNAseq libraries into cell type transcriptomes allows for both identification of cell types and 

inference of ligand-receptor interactions between them.  This thesis aims to facilitate the 

generation of intercellular signaling models from scRNAseq data by aiding interpretation of 

clustering results and guiding improvements to ligand-receptor interaction inference. 

In Chapter 2 I demonstrate the software tool scClustViz, which I built to help our collaborators 

investigate their scRNAseq data.  It generates an interactive data report with visualizations 

tailored to help biologists identify and compare cell clusters.  Along with its development, I 

propose a novel method for determining an appropriate number of clusters and note an error in 

the way the field represents magnitude of gene expression change caused by data transformations 

during normalization.   

In Chapter 3 I test a fundamental assumption that underlies state-of-the-art multilayer ligand-

receptor interaction inference methods, most notably the popular tool NicheNet (Browaeys et al., 

2020).  The promise of these methods is that they use the available transcriptomic information to 

identify evidence of ligand-receptor interactions.  This requires knowledge of the transcriptomic 

signatures of ligand stimulus, which is often obtained by inference from published intracellular 

signaling pathways and gene regulatory networks.  There is evidence that gene regulatory 

networks are cell type specific (Margolin et al., 2006; Chasman and Roy, 2017), which led me to 

ask whether transcriptional response to a ligand is also cell type specific.  I systematically 
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demonstrate that ligand response signatures are not consistent between cell types, but also show 

that the transcriptome does contain information that may allow these signatures to be inferred. 

A model of intercellular signaling creates many opportunities to generate hypotheses around 

modulating tissue development and function by targeting relevant receptors.  My collaboration 

with the Miller-Kaplan lab on the developing mammalian forebrain serves as a motivating 

example.  In 2016 our labs published a study that inspired my work, identifying the intercellular 

signaling necessary for neurogenesis in the developing subventricular zone (SVZ), the forebrain 

region responsible for the generation of glutamatergic excitatory neurons (Yuzwa et al., 2016).  

The goal of this line of inquiry is to improve adult neurogenesis in response to disease or injury 

by understanding how neurogenesis is regulated in development.  During embryonic 

neurogenesis,  radial precursors of the SVZ make glutamatergic excitatory neurons and persist 

into adulthood to contribute to an adult neural stem cell (NSC) pool in the forebrain (Gauthier-

Fisher and Miller, 2013; Fuentealba et al., 2015).  However, in adulthood these NSCs make only 

GABAergic inhibitory neurons, leading to the prevailing view that they have restricted potency.  

First, using the software developed in Chapter 2 we established that the embryonic radial 

precursors of the SVZ share a core transcriptional identity with adult forebrain NSCs (Yuzwa et 

al., 2017).  Then, using lineage tracing to differentiate adult NSCs derived from the SVZ (where 

their daughter cells make glutamatergic excitatory neurons in development) and the ganglionic 

eminence (GE, where GABAergic inhibitory neurons are made during development), we showed 

that NSCs derived from both regions share the previously defined transcriptional signature 

(Borrett et al., 2020).  Furthermore, when these adult NSCs are activated, they become 

transcriptionally similar to the radial precursors seen in development (Figure 1-13).  Finally, we 

showed that SVZ-derived adult NSCs, apparently fate-restricted to make glutamatergic neurons 

during development, are capable of making GABAergic neurons just like GE-derived adult 

NSCs.  This suggests that fate specification is not fixed but is perhaps guided by intercellular 

signaling in the stem cell niche.   
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Figure 1-13. The transcriptional states of forebrain NSCs. 

Independent Component Analysis (ICA) was used to identify gene expression components 

uniquely separating adult NSCs from embryonic radial precursors (RPs) and cortical (ctx) and 

ganglionic eminence (GE) derived RPs. IC1 (x-axis) was thus identified as the gene expression 

program defining activation versus dormancy, while IC11 (y-axis) separates glutamatergic 

versus GABAergic fated progeny. Adult activated NSCs (actNSCs) and transit-amplifying 

precursors (TAPs) were then projected onto this space based on the expression of genes involved 

in these components. This analysis showed that adult NSCs reacquire a transcriptional state 

similar to their embryonic counterparts when performing the same task (proliferation and 

differentiation to GABAergic neurons). Adapted from (Borrett et al., 2020). 

There is another population of adult NSCs residing in the hippocampus that make glutamatergic 

excitatory neurons during adulthood.  We investigated these two spatially-distinct adult NSC 

populations fated to make different types of neurons and found that the hippocampal NSCs were 

transcriptionally similar, following a dormancy-activation trajectory to the forebrain NSCs 

previously investigated, and identified the transcriptional programs defining GABAergic versus 

glutamatergic fate specification (Borrett et al., 2022).  Ultimately these studies have led us to 

hypothesize that adult NSCs are functionally distinct by virtue of their environment rather than 
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intrinsic limits, and thus with the appropriate perturbations to the ligand-receptor signaling 

guiding their fate specification, we may be able to improve their ability to regenerate the injured 

brain.  These findings relied heavily on analysis facilitated by the software developed in Chapter 

2, and my work in Chapter 3 will help guide future predictions of the ligand-receptor networks 

regulating adult NSC fate specification. 
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Chapter 2  
scClustViz – Single-cell RNAseq cluster assessment and 

visualization 

This work was published in F1000Research (Innes and Bader, 2018). I conceived of, designed, 

and conducted this project.  Gary D. Bader supervised and advised on this project. 
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 scClustViz – Single-cell RNAseq cluster assessment 
and visualization 

Single-cell RNA sequencing (scRNAseq) represents a new kind of microscope that can measure 

the transcriptome profiles of thousands of individual cells from complex cellular mixtures, such 

as in a tissue, in a single experiment. This technology is particularly valuable for characterization 

of tissue heterogeneity because it can be used to identify and classify all cell types in a tissue. 

This is generally done by clustering the data, based on the assumption that cells of a particular 

type share similar transcriptomes, distinct from other cell types in the tissue. However, nearly all 

clustering algorithms have tunable parameters which affect the number of clusters they will 

identify in data. 

The R Shiny software tool described here, scClustViz, provides a simple interactive graphical 

user interface for exploring scRNAseq data and assessing the biological relevance of clustering 

results. Given that cell types are expected to have distinct gene expression patterns, scClustViz 

uses differential gene expression between clusters as a metric for assessing the fit of a clustering 

result to the data at multiple cluster resolution levels. This helps select a clustering parameter for 

further analysis. scClustViz also provides interactive visualisation of: cluster-specific 

distributions of technical factors, such as predicted cell cycle stage and other metadata; cluster-

wise gene expression statistics to simplify annotation of cell types and identification of cell type 

specific marker genes; and gene expression distributions over all cells and cell types. 

scClustViz provides an interactive interface for visualisation, assessment, and biological 

interpretation of cell type classifications in scRNAseq experiments that can be easily added to 

existing analysis pipelines, enabling customization by bioinformaticians while enabling 

biologists to explore their results without the need for computational expertise. It is available at 

https://baderlab.github.io/scClustViz/.  

2.1 Introduction 

The development of high-throughput single-cell RNA sequencing (scRNAseq) methods, 

including droplet-based (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 2017) and 

multiplexed barcoding (Rosenberg et al., 2018) techniques, has led to a rapid increase in 

experiments aiming to map cell types within tissues and whole organisms (Ecker et al., 2017; 

https://baderlab.github.io/scClustViz/
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Regev et al., 2017; Han et al., 2018; Saunders et al., 2018). The most common initial analysis of 

such scRNAseq data is clustering and annotation of cells into cell types based on their 

transcriptomes. Many workflows have been built and published around this use case (Satija et 

al., 2015; Lun et al., 2016b; Risso et al., 2018b), and many clustering algorithms exist to find cell 

type-associated structure in scRNAseq data sets (Xu and Su, 2015; Ntranos et al., 2016; 

Žurauskienė and Yau, 2016; Li et al., 2017; Shao and Höfer, 2017). This paper focuses on how 

to interpret the results of a scRNAseq clustering analysis performed by existing methods, 

specifically when it comes to selecting parameters for the clustering algorithm used and analysis 

of the results. This is implemented as an R Shiny software tool called scClustViz, which 

provides an interactive, web-based graphical user interface (GUI) for exploring scRNAseq data 

and assessing the biological relevance of clustering results. 

Nearly all unsupervised classification (clustering) algorithms take a parameter that affects the 

number of classes or clusters found in the data. Selection of the appropriate resolution of the 

classifier heavily impacts the interpretation of scRNAseq data. An inappropriate number of 

clusters may result in missing rare but distinct cell types, or aberrantly identifying novel cell 

types that result from overfitting of the data. While there are general machine-learning-based 

methods for preventing overfitting, we propose a biology-based cluster assessment method; 

namely whether you could identify a given cluster-defined cell type in situ using imaging 

techniques based on marker genes identified, such as single molecule RNA fluorescence in situ 

hybridization. To identify marker genes and quantify the measurable transcriptomic difference 

between putative cell types given a clustering solution, scClustViz uses a standard differential 

expression test between clusters. If there are few differentially expressed genes between two 

clusters, then those clusters should not be distinguished from each other and over-clustering is 

likely. The researcher can then select a cluster solution that has sufficiently fine granularity, 

while still maintaining statistically separable expression of genes between putative cell types. 

Once cell types are defined using the clustering method and parameters of choice, the researcher 

must then go through several data interpretation steps to assess and annotate these clusters and 

identify marker genes for follow-up experimentation. Before a final clustering result is chosen, it 

is important to assess the impact of technical factors on clustering. While that may have been 

done as part of the upstream workflow, it is helpful to see the cluster-wise distribution of 

technical factors such as library size, gene detection rates, and proportion of transcripts from the 
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mitochondrial genome (Ilicic et al., 2016). To annotate cell types identified by the classifier, it is 

helpful to see the genes uniquely upregulated per cluster, as well as assess the gene expression 

distribution of canonical marker genes for expected cell types in the data. Finally, novel marker 

genes may be identified for a cell population of interest, which requires identifying genes that are 

both upregulated in the cluster in question and detected sparingly or not at all in all other clusters 

in the experiment. 

We describe scClustViz, an R package that aids this frequently encountered scRNAseq analysis 

workflow of identifying cell types and their marker genes from a heterogenous tissue sample. 

The package comprises two parts: a function to perform the differential gene expression testing 

between clusters for any set of clustering solutions generated by existing scRNAseq analysis 

workflows, and a R Shiny GUI that provides an interactive set of figures designed to help assess 

the clustering results, annotate cell types, and identify marker genes. The package was designed 

with transparency and modularity in mind to ease merging into existing workflows and sharing 

the results with collaborators and the public. This enables the tool to be of value to both 

experienced bioinformaticians developing workflows and bench scientists interpreting the results 

of a scRNAseq experiment. 

2.2 Methods 

2.2.1 Implementation 

We propose a metric for assessing clustering solutions of scRNAseq data based on differential 

gene expression between clusters. We use the Wilcoxon rank-sum test to evaluate the statistical 

significance of differential gene expression between clusters (Wilcoxon, 1945). This test was 

selected based on the rigorous differential expression methodology review carried out by 

Soneson and Robinson (Soneson and Robinson, 2018). In their testing, the Wilcoxon test had 

accuracy on par with that of the majority of methods tested (most methods were adequately 

accurate) and identified sets of differentially expressed genes similar to MAST (Finak et al., 

2015) and limma (Ritchie et al., 2015), two popular alternatives. What little bias the Wilcoxon 

rank-sum test does have tends to be towards genes detected at lower rates in the data (Soneson 

and Robinson, 2018), which can easily be corrected by using a detection rate filter prior to 

testing. In terms of power and control of type I error rate, the Wilcoxon test was less powerful 

than more advanced methods, with a false discovery rate (FDR) more conservative than 



38 

 

expected. However, unlike some more complicated tests, the Wilcoxon test is compatible with 

parallel processing of testing calculations to increase computation speed. Ultimately, the 

simplicity of the Wilcoxon test made it appealing for default use in this tool, as it is understood 

by most users, is fast to compute and is available in base R. Alternatively, given the wide variety 

and constant growth of scRNAseq-specific differential gene expression tests, scClustViz can use 

the results of any test method that returns measures of effect size and statistical significance. 

Two measures of effect size of differential gene abundance are reported by scClustViz: 

difference in detection rate (dDR) and gene expression ratio (logGER, log2 gene expression 

ratio). Detection rate refers to the proportion of cells from each cluster in which the gene in 

question was detected (per cluster gene detection rate). The concept of detection rate in 

scRNAseq data stems from the low per-cell sensitivity and minimal amplification noise of 

droplet-based assays. Since there is a correlation between gene expression magnitude and per 

cluster gene detection rate, the detection rate is a meaningful quantification of gene expression. 

Furthermore, it is suitable for identifying genes that uniquely “mark” certain cell populations, as 

such marker genes should be undetected outside of the cells they mark. 

Log gene expression ratio (also known as log fold change) is a measure of effect size that 

considers both magnitude of gene expression as well as detection rate, as it is the ratio of mean 

gene abundance between two cell clusters. However, due to the sparsity of scRNAseq data, some 

clusters may not contain any cells in which a certain gene was detected. It is thus necessary to 

add a pseudocount to the logGER calculations to prevent divide-by-zero errors and the resulting 

logGER magnitudes of infinity. As exemplified in Figure 2-1, the choice of pseudocount 

impacts logGER results. A pseudocount of 1 is commonly used in the field of transcriptomics but 

creates two problems when used on the low abundance values common to droplet-based 

scRNAseq data. Since a value of 1 is a considerable fraction of small count data, adding 1 to all 

counts tends to compress the magnitude of the gene expression ratio in a manner that inversely 

correlates with the magnitude of abundances being compared (Figure 2-1a). As a result, not only 

is the calculated logGER less than true logGER, but this compression of true logGER is more 

pronounced when at least one side of the comparison has values near zero. Using a small 

pseudocount such as 10-99, on the other hand, results in logGER values being very close to their 

true value, rather than suffering from the compression caused by the pseudocount of 1 (Figure 

2-1b). The problem with this is that comparisons with zero result in very high magnitude 
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logGER values, well outside the range of the rest of the results. If zero counts of a transcript in a 

cell library truly represented that gene not being expressed at all in that cell (i.e. if high-

throughput single-cell RNAseq experiments were exquisitely sensitive), then this wouldn’t be a 

problem, since the true expression ratio would be infinitely large. However, zero counts are 

better interpreted to mean that transcripts for the gene in question were not detected in that cell. 

Given the relatively poor sensitivity of current high-throughput scRNAseq technology on a per 

cell basis, this does not necessarily mean that the gene was not expressed. Thus, it would be 

better if logGER values for comparisons with zero were reasonably close in magnitude to the rest 

of the results. To accomplish this, we use a pseudocount representing the smallest possible “step” 

in the count-based data, set to the reciprocal of the number of cells in the data. This is 

sufficiently small as to not compress logGER magnitudes, while keeping comparisons with zero 

reasonably close to the range of potential logGER values. In scClustViz, the reported logGER 

values are ratios of log-mean gene abundance calculated using the reciprocal of the number of 

cells in the data (the smallest possible “step” in the cDNA count) as the pseudocount. 

 

Figure 2-1. Mean and log gene expression ratio (logGER) calculations are affected by selection 

of the pseudocount used to prevent divide-by-zero errors.  

This is demonstrated by calculating log gene expression ratios for pairwise comparisons from a 

simulated scRNAseq data set where the mean abundance of a single gene varied from zero to 50 

across 15 clusters. Code to generate this figure is available in the scClustViz folder of the R 

library under paperFigs/Fig1.R A. A scatter plot comparing true logGER (x-axis) with logGER 

calculated with a pseudocount of 1 (y-axis). Points are coloured by the mean gene abundance of 
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the comparison, with darker being larger. The black line denotes equality between x- and y- axes. 

With a pseudocount of 1, the magnitude of logGER is compressed at both ends relative to true 

logGER, and the magnitude of this compression is inversely correlated with gene abundance in 

the clusters being compared. B. Same plot comparing true logGER with logGER calculated with 

pseudocounts of 1e-99 (diamonds) and 1 / # of cells (squares). Calculated logGER are very close 

to true logGER when using smaller pseudocounts (as denoted by the black line). When using a 

very small pseudocount of 1e-99, the magnitude of logGER values are over 300 when comparing 

a cluster with zero gene abundance (division-by-zero resulting in a true logGER magnitude of 

infinity). This is far from the range of other logGER values. An alternative is to set the 

pseudocount to the smallest possible “step” in count-based data (1 / # of cells) to prevent 

magnitude compression of logGER calculations caused by using a pseudocount of 1, while 

keeping division-by-zero values within the range of the data. 

Three different sets of differential gene expression results are reported by scClustViz. These are 

the results of two sets of hypothesis tests: each cluster versus the rest of the data combined 

(calculated by the function CalcDEvsRest), and all pairwise comparisons between clusters 

(calculated by the function CalcDEcombn). These comparisons are made using the Wilcoxon 

rank-sum test, with false discovery rate controlled using the method of Benjamini and Hochberg 

(Benjamini and Hochberg, 1995). Genes are included in the test if they pass a detection rate 

threshold (default is 10%) in at least one of the pair of clusters tested. In the case of both sets of 

tests, the results can be substituted with those of another statistical method by adding its results 

to the sCVdata object outlined below. 

The first set of genes reported by scClustViz are those that are differentially expressed between 

each cluster and the rest of the data combined (referred to as DE vs Rest in the Shiny interface). 

This is not used to assess clustering results but may be visualized by the user to identify 

distinguishing genes for that cluster, although this will only be valuable if there is enough 

heterogeneity in the data to identify differential genes. Though this represents an unbalanced 

comparison, the non-parametric nature of the Wilcoxon rank-sum test makes it robust to such 

imbalances. 

The second is referred to as marker genes. These are genes that are significantly positively 

differentially expressed in a cluster in pairwise comparisons with every other cluster (at a default 

FDR of 5%). This is taken from the results of the pairwise comparisons outlined above and 

returned by the function DEmarker. This method is one of the two sets of differential gene 
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expression results used in scClustViz to quantify cluster granularity. It ensures that there are 

marker genes for all clusters that are unique to each cluster, given all other clusters in the data. 

The other way cluster granularity is quantified by scClustViz is by comparing each cluster to its 

nearest neighbouring cluster. By ensuring there is at least one positively differentially expressed 

gene (default FDR of 5%) between each set of neighbouring clusters, this metric enforces the 

requirement for having statistically separable clusters, which is less restrictive than requiring 

unique marker genes per cluster. Nearest neighbours are clusters with the fewest differentially 

expressed genes between them, as calculated above. These are also taken from the results of the 

pairwise comparisons outlined above and returned by the function DEneighb.  

To quickly compare multiple clustering solutions in the user interface, the above differential 

gene expression tests and other cluster-wise gene expression statistics are precomputed for each 

cluster solution. The results are stored as a named list containing entries for each cluster solution. 

The precomputed results for each cluster solution are stored as a novel S4 object class, sCVdata. 

To support quick display of the various figures in the user interface, other cluster-wise gene 

statistics are calculated. Detection rate (DR) is the proportion of cells in a cluster in which a 

given gene has a non-zero expression value. Mean detected gene expression (MDGE) is the 

mean of the normalized transcript counts for a gene in the cells of the cluster in which that gene 

was detected. And mean gene expression (MGE) is the mean normalized transcript count for a 

gene for all cells in the cluster. These are stored as a named list of dataframes in a slot in 

sCVdata.  

Both pairwise and one versus all differential expression test results are similarly stored in slots of 

sCVdata (DEvsRest and DEcombn). For the results of comparisons between a cluster and the 

rest of the data, each named list element contains a data frame with logGER for all genes, and p-

value and FDR results for all tested genes. For pairwise comparisons between clusters, each 

named list element contains a data frame with logGER and dDR for all genes, and p-value and 

FDR results for all tested genes. List elements are named with cluster names, separated by a dash 

for pairwise comparisons. 

The sCVdata object also stores the results of silhouette analysis, a metric for assessing the 

contribution of each cell to cluster cohesion and separation (Rousseeuw, 1987). This is included 
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in the visualization as a complementary metric for cluster solution assessment. Finally, user-

defined parameters pertaining to calculations on the input data are also stored as a slot in 

sCVdata, supporting replicability. 

The package was built in R v3.5.0 (R Core Team, 2018). The R Shiny interactive web page 

generating tool (shiny v1.1.0) was used to generate the scClustViz user interface (Chang et al., 

2018). Silhouette plots are generated using the R package cluster v2.0.7-1 (Maechler et al., 

2018). Colour-split dots for plotting use code from the R package TeachingDemos v2.10 (Snow, 

2016). Colour scales with transparency use the R packages scales v1.0.0, viridis v0.5.1, and 

RColorBrewer v1.1-2 (Neuwirth, 2014; Wickham, 2017; Garnier, 2018). 

2.2.2 Operation 

The scClustViz tool is available as an R package from GitHub, with usage details and example 

code available on the website. The typical usage requires one setup step prior to running the 

visualization to precompute and save the differential gene expression testing results. Once setup 

is complete, the user can quickly view and easily share the results of their analysis. 

Setup is done using the function CalcAllSCV, which takes as input the user’s scRNAseq data 

object and a data frame of cluster assignments where each variable refers to a different cluster 

solution. Currently scClustViz supports both the Bioconductor SingleCellExperiment class (Lun 

and Risso, 2017) and Seurat class (Satija et al., 2015; Butler et al., 2018). This function also 

takes optional arguments describing the state of the data and customizing testing thresholds. To 

calculate means of log-normalized data accurately, the function needs to know the log base and 

pseudocount used in the normalization. In most cases, gene expression data is transformed in log 

base 2, though Seurat uses the natural log. Most log-normalization methods add a pseudocount of 

1 to avoid log-zero errors. As such, the function defaults to expecting log2-normalized data with 

a pseudocount of 1. The function also allows the user to set the gene detection rate threshold for 

inclusion in differential gene expression testing, defaulting to 10%. 

Since this step may be time-consuming with many cluster solutions to test, the function includes 

an option to stop testing cluster solutions once differential gene expression between nearest 

neighbouring clusters has been lost. In order to do this, the function tests cluster solutions in 

order of increasing numbers of clusters and ensures that all nearest neighbouring cluster pairs (as 
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determined by number of differentially expressed genes in pairwise tests) have at least one 

significant comparison. As such, the user may indicate the false discovery rate threshold for 

determining significance, which defaults to 5%. 

Alternatively, the differential gene abundance testing and cluster overfitting determination can be 

incorporated into an existing analysis pipeline. This can be done by iteratively clustering with 

increasing resolution and calling CalcSCV after each clustering step. CalcSCV generates an 

sCVdata object for a single cluster resolution, and is called by CalcAllSCV to generate the list of 

sCVdata objects needed to run the Shiny interface. By checking for differential expression 

between nearest neighbouring clusters, this can be used to automatically stop generating cluster 

solutions once differential expression between clusters is lost. 

The resulting list of sCVdata objects and input scRNAseq data object should be saved to disk as 

a single compressed RData file prior to viewing them in the GUI. This is done to ensure that 

setup is a one-time process, and to simplify sharing and reproducibility of analyses. The function 

runShiny launches the R Shiny instance with the interactive data figures in the R integrated 

development environment (IDE) or a web browser. It loads the data from a file and has optional 

arguments to specify the annotation database and marker genes for expected cell types. The 

annotation database is used to find gene names to improve clarity of some figures and expects a 

Bioconductor AnnotationDbi object such as org.Mm.eg.db for mouse or org.Hs.eg.db for human. 

Finally, if passed a named list of canonical marker genes for expected cell types in the data, 

scClustViz will automatically generate cluster annotations (labels). This is done by assigning 

each cluster to the cell type with the top aggregate rank of gene expression for its marker genes. 

More in-depth and unbiased methods for assigning cell type identities to clustering results exist 

(Crow et al., 2018; Kiselev et al., 2018), so this is meant more as a convenience option for 

labelling purposes than a definitive automatic cluster annotation method. 

System requirements for this tool will depend heavily on the data set in question, since the data 

will have to be loaded into memory, and the memory footprint of scRNAseq data depends on the 

number of cells being analysed. However, in all tests loading objects from Seurat into 

scClustViz, the saved objects after the setup and differential expression testing steps were 

smaller than the original Seurat object. It is thus safe to assume that scClustViz will run on the 

computer on which the data set in question was analysed. For the data from the MouseCortex 
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package, the largest data set (E15, containing nearly 3000 cells) uses less than 1.2GB of 

memory. Opening Shiny apps can be difficult in some computing environments, especially 

remote R sessions to servers without browsers or rendering capabilities. There are options in the 

Shiny runApp function to help troubleshoot these situations, and these are accessible from the 

runShiny function in scClustViz. 

2.3 Use cases 

To demonstrate the convenience of sharing analysed data with scClustViz, the MouseCortex 

package was built with data from a recent publication exploring the development of the mouse 

cerebral cortex using scRNAseq (Yuzwa et al., 2017). A tutorial for building similar R data 

packages calling scClustViz as the visualization tool can be found on the scClustViz website. 

The MouseCortex package contains the four data sets published in the paper, and a wrapper 

function for runShiny that loads each data set with the appropriate arguments. The embryonic 

day 17.5 data set (opened by the command viewMouseCortex(“e17”)) will be used to 

demonstrate the purpose of the various figures in scClustViz and highlight its role in identifying 

a core gene set expressed in the neurogenic stem cell population of the cerebral cortex in the next 

sections. All figures from this point on were generated in the scClustViz Shiny app and saved 

using the “Save as PDF” buttons. 

2.3.1 Clustering solution selection 

The first step in the post-clustering workflow is to assess the results of the various clustering 

parameterizations used. scClustViz uses a combination of differential gene expression between 

clusters and silhouette analysis for this. Differential gene expression is used as a metric in two 

ways: the number of positively differentially expressed genes between a cluster and its nearest 

neighbour, and the number of marker genes (positively differentially expressed vs. all other 

clusters in pairwise tests) per cluster. In Figure 2-2a differential expression to the nearest 

neighbouring cluster is represented as a series of boxplots per cluster resolution, arranged on the 

x-axis to indicate the number of clusters in each boxplot. The highlighted boxplot indicates the 

currently selected cluster from the pulldown menu in the user interface. Both differential 

expression-based metrics can be visualized this way by switching the metric used, via the 

interface. 
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Figure 2-2. Interactive figures to assess clustering solutions.  

A. Boxplots representing number of differentially expressed genes between neighbouring 

clusters for each cluster resolution. For each cluster at a specific resolution, the number of 

positively differentially expressed genes to its nearest neighbouring cluster is counted, and those 

counts are represented as a boxplot. The boxplots are arranged along the x-axis to reflect the 

number of clusters found at that resolution. Highlighted in red is the cluster resolution currently 

selected in the interface. This figure has been zoomed using the interactive interface to make it 

clear that at the selected resolution there is more than one differentially expressed gene between 

neighbouring clusters. The number of marker genes per cluster and average silhouette widths can 

be similarly viewed with the scClustViz interface. B. Silhouette plot for the selected cluster 

resolution. A horizontal bar plot where each bar is a cell, grouped by cluster. Silhouette width 

represents the difference between mean distance to other cells within the cluster and mean 

distance to cells in the neighbouring cluster. Distance is Euclidean in reduced dimensional 

(generally PCA) space. Positive values indicate that the cell is closer to cells within its cluster. 

When a cluster resolution is selected, its silhouette plot is rendered to add another method of 

cluster assessment (Figure 2-2b). A silhouette plot is a horizontal bar plot where each bar is a 

cell, grouped by cluster. The width of each bar, referred to as silhouette width, represents the 

difference between mean distance to other cells within the cluster and mean distance to cells in 

the neighbouring cluster. Distance is Euclidean in the reduced dimensional space used in 

clustering (this is generally PCA space and is pulled from the input data object based on a user-

defined parameter). Positive values indicate that the cell is closer to cells within its cluster. It is 

worth noting that the dimensions returned by methods such as PCA are not equally meaningful, 
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since each explains a different proportion of the variance in the data, while Euclidean distance 

treats them all equally. This can be addressed by weighting the PCs by variance explained, a 

method implemented in newer versions of Seurat (Butler et al., 2018). To prevent unexpected 

results caused by assuming a PC weighting option in upstream analysis, the silhouette plot in 

scClustViz does not reweight PCs, so users are encouraged to consider this when interpreting 

this plot. 

Once the user has chosen the appropriate cluster solution, they can click the “View clusters at 

this resolution” button to proceed to in-depth exploration and visualization of the results. They 

can also save this as the default resolution for future sessions. If a cluster resolution is saved as 

default, a file specifying the saved resolution will be generated in the same directory as the input 

data (or an optional output directory). Specifying a separate output directory is useful when the 

input data is part of a package, as in MouseCortex. If the same output directory is specified the 

next time the command is run, all saved data in that directory will be reloaded in the app. 

2.3.2 Data set and cluster metadata inspection 

In this section, the user can explore the data set as a whole. The first panel, Figure 2-3a shows a 

two-dimensional representation of cells in gene expression space. This is generally a tSNE or 

UMAP plot, and is pulled from the input data object based on a user-defined parameter (Maaten 

and Hinton, 2008; McInnes and Healy, 2018). The cells are coloured by cluster and can be 

labelled by cluster number or automatically annotated with a predicted cell type based on known 

marker genes for expected cell types passed to runShiny. The user can select any cluster for 

downstream exploration by clicking on a cell from that cluster in this plot. This will highlight the 

cluster in other plots in the interface. Since we are interested in identifying marker genes for the 

precursor cell population, we may click on cluster 8 (purple) to select it for downstream analysis. 
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Figure 2-3. Visualizations of the data and its metadata.  

A. A 2D projection of cells in gene expression space (frequently a tSNE plot) is coloured by 

cluster. Clusters can be labelled by number, or automatically annotated as seen here. B. An 

example of a metadata overlay on the tSNE plot. The library size (number of transcripts 

detected) per cell is represented by colour scale, where darker cells have larger library sizes. C. 

Metadata can be represented as a scatter plot. The relationship between number of unique genes 

detected (total features – y-axis) and library size (total counts – x-axis) is shown here. The cells 

from the selected cluster (cluster 8, cortical precursors) are highlighted in red. D. Categorical 

metadata is represented as a stacked bar plot showing the number of cells contributing to each 

category per cluster. This plot shows predicted cell cycle state, with G1 phase in green, G2/M in 

orange, and S phase in purple. 
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The distribution of various cellular metadata can be visualized in Figure 2-3b. Metadata is 

selected from a pulldown menu and is represented as colours on the cells in the 2D projection. In 

this manner the user can inspect the impact of technical artefacts such as gene detection rate, 

library size, or cell cycle stage on the clustering results. Numeric metadata can also be assessed 

as a scatter plot, where the axes can be defined by selecting from pulldown menus. Figure 2-3c 

shows the relationship between number of genes detected and library size per cell for both the 

data set as a whole and the selected cluster. The cells from cluster 8, a cortical precursor cluster, 

were selected in the previous plot and are thus highlighted in red here. The cluster 8 cells are 

similar to other cells in the data, thus do not seem to be biased by the measures visualized in this 

plot. If this was not the case, we may want to consider investigating confounding variables in the 

normalization process. For example, many authors have noted that gene detection rate is often 

strongly correlated with the first few principal components and can unduly influence clustering 

results (Finak et al., 2015; Risso et al., 2018a). There are a few ways to handle this, from simply 

excluding those principal components, or explicitly normalizing for those factors when scaling 

the data (as implemented in Seurat), to including the offending technical variables as covariates 

in more complex dimensionality reduction (i.e. ZINB-WaVE) or differential expression testing 

(i.e. MAST) models. While those specialized analyses are outside the scope of this tool, it is 

important to be able to visualize these technical factors in the analysed data to assess the efficacy 

of the chosen correction method. 

Categorical metadata is represented as a stacked bar plot in Figure 2-3d, as either absolute 

counts or relative proportions. Here we see that by E17.5 the cortical precursors of cluster 8 are 

not predicted to be actively in the cell cycle using the cyclone method (Scialdone et al., 2015). 

This fits expectations from known developmental biology, since neurogenesis is nearly complete 

by this stage, and the stem cell population that persists into adulthood is thought to enter 

quiescence around E15.5 (Fuentealba et al., 2015). For demonstration purposes, we will continue 

to focus on cluster 8, which is predicted to form the adult neurogenic stem cell population in the 

cerebral cortex. We will aim to identify marker genes for these cells. 
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2.3.3 Differentially expressed genes per cluster 

Once the user is satisfied that their cluster solution is appropriate and unaffected by technical 

factors, the next step in data interpretation is to determine the cellular identity of each cluster by 

its gene expression profile. The differential expression tests done prior to running the 

visualization assist with this by highlighting the most informative genes in the data set. In a 

sufficiently heterogeneous data set, differential expression between a cluster and the rest of the 

data can be useful for identifying genes that uniquely define a cluster’s cellular identity. A more 

conservative form of this is the identification of marker genes – those genes that are significantly 

positively differentially expressed in all pairwise tests between a cluster and all other clusters. 

This highlights genes expected to be found at a significantly higher expression in this cluster 

than anywhere else in the data. Finally, there is the testing between each cluster and its nearest 

neighbour to highlight local differences in expression. Each of these sets of differentially 

expressed genes can be presented as a dot plot comparing clusters, as seen in Figure 2-4. A dot 

plot is a modified heatmap where each dot encodes both detection rate (by dot diameter) and 

average gene expression in detected cells (by dot colour) for a gene in a cluster. Here up to the 

top ten marker genes per cluster are shown, but both the type of differential expression test used 

to generate the gene set and the number of differentially expressed genes contributed per cluster 

can be adjusted using the interactive interface. At this point in the analysis, it is also possible to 

download any of these differential gene expression results as tab-separated value files for further 

analysis, by selecting the cluster of interest and differential expression type and clicking 

“Download gene list”. This may be of value if the user is using this platform to share the data 

online, or with those who would prefer not to use R for further analysis. In this dot plot, we can 

see the top 10 marker genes for our putatively quiescent cortical precursor cell population 

(cluster 8) include known marker genes for cortical radial precursors (Fabp7, Slc1a3, Ptprz1, and 

Vim), a known marker for adult neural stem cells (Dbi), as well as novel marker genes for this 

population (Mfge8, Ttyh1, Pea15a, and Ednrb) (Yuzwa et al., 2017). The dot plot format also 

shows us that while Ckb and Gpmgb are significantly positively differentially expressed in 

cluster 8 relative to all other clusters, they are still detected in high proportions in all clusters, 

and thus would not be optimal marker genes. 
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Figure 2-4. Visualizing differential gene expression.  

A dot plot showing the relative expression of a subset of marker genes (x-axis) across all clusters 

(y-axis). A dot plot is a modified heatmap where each dot encodes both detection rate and 

average gene expression in detected cells for a gene in a cluster. Darker colour indicates higher 

average gene expression from the cells in which the gene was detected, and larger dot diameter 

indicates that the gene was detected in greater proportion of cells from the cluster. Cluster 

colours are indicated for reference on the left side of the plot. Cluster numbers are also indicated 

on the left side, along with the number of differentially expressed genes in each cluster. The 

genes included can be changed to reflect those differentially expressed per cluster when 

compared to the rest of the data set as a whole (i.e. the tissue), the nearest neighbouring cluster, 

or marker genes unique to that cluster. This figure shows marker genes per cluster. The number 

of differentially expressed genes contributed per cluster can also be adjusted, here set to 10. 

2.3.4 Gene expression distributions per cluster 

To more closely inspect the gene expression of an individual cluster, scClustViz presents gene 

expression data per cluster as a scatter plot with the proportion of cells from that cluster in which 

a gene is detected (more than zero transcript counts) on the x-axis and mean normalized 

transcript count from cells in which the gene was detected on the y-axis, as seen in Figure 5a. 

This visualization method helps separate the contribution of zeros from the mean gene 
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expression value, since like the dot plot it separates magnitude of gene expression from gene 

detection rate. It also highlights the strong relationship between magnitude of gene expression 

and likelihood of detection in droplet-based single-cell RNAseq data, since the trend goes from 

the plot’s bottom left (genes have low expression and are rarely detected) to top right (genes 

have high expression and are detected often). In this figure, the cortical precursor cluster 8 is 

shown, but the user can select the cluster shown from a pulldown menu in this panel as well. 

There are three ways to highlight various genes in this plot. First, the genes passed as known 

marker genes for expected cell types can be highlighted in colours corresponding to their cell 

type, if a marker gene list is defined by the user (Figure 2-5a). This figure indicates that this 

cluster was classified as cortical precursors based on the high relative expression of both Sox2 

and Pax6, as well as Nes and Cux1 (markers for both cortical precursors and projection neurons). 

In Figure 2-5b, the plot shows differentially expressed genes, specifically the genes contributed 

by this cluster to the dot plot shown immediately above in the app (Figure 2-4). Thus, by 

changing the differential gene set or number of genes in the heatmap, the user can also adjust the 

genes highlighted in this scatter plot. Finally, the user can search for genes manually by entering 

a list of gene symbols or using a regular expression in the search box below the figure. To 

identify and compare gene expression for any point in this figure, the user can click on the 

corresponding data point. 
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Figure 2-5. Exploring cluster-wise gene expression.  

A. A scatter plot representing gene expression in the highlighted cluster, the cortical precursor 

cluster 8. The x-axis represents the proportion of cells from that cluster in which a gene is 

detected (more than zero transcript counts), and the y-axis is the mean normalized transcript 

count from cells in which the gene was detected. The cell type marker genes are highlighted, 

indicating that this cluster was classified as cortical precursors based on the high relative 

expression of both Sox2 and Pax6, as well as Nes and Cux1 (markers for both cortical precursors 

and projection neurons). B. The same scatter plot is shown with the top 10 marker genes for 

cluster 8 highlighted, though the user can choose other differentially expressed gene sets from 

the heatmap, or search for genes of interest using the interface. The identity of any point can be 

determined by clicking on it in the interface. C. Boxplots comparing the expression of a gene of 

interest across all clusters. Clusters are arranged on the x-axis based on the cluster dendrogram 

generated for the dot plot above (Figure 2-4), and normalized transcript count for the gene of 

interest (Mfge8, in this case) is represented on the y-axis. The dots on each boxplot represent the 

individual data points, gene expression per cell. The black dash is an optional indication of the 

gene detection rate per cluster, as indicated on the y-axis on the right side. This figure shows that 

Mfge8 may be a marker of cortical precursors. D. Gene expression overlaid on the cell 

projection. Gene expression is represented by a colour scale on the cells of the two-dimensional 
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projection, where darker indicates higher expression. Clusters can be optionally labelled by 

number or annotation. This figure shows the distribution of Mfge8 expression in the data set. 

Clicking on a data point in the figure above will generate a series of boxplots comparing gene 

expression for the selected gene across all clusters (Figure 2-5c). Since the above scatter plot can 

be crowded, all genes near the clicked point are shown in a pulldown menu, so that the user can 

select their gene of interest. Alternatively, the gene(s) entered in the search box in the previous 

panel can be used to populate the pulldown list for selecting the gene of interest for this figure. 

By comparing gene expression across clusters, it is easier to assess the utility of putative marker 

genes. Here we see that Mfge8 is expressed nearly exclusively in cluster 8, with rare detection in 

any other clusters. This suggests that Mfge8 may be effective for identifying the cells of this 

cluster in situ. In fact, both fluorescence in situ hybridization for Mfge8 and 

immunohistochemistry for its protein lactadherin showed specificity for the cortical precursor 

cells in the embryonic mouse brain, as well as the B1 neural stem cells of the adult 

ventricular/subventricular zone (Yuzwa et al., 2017). 

Finally, the user can directly plot the expression of a gene or genes of interest on the tSNE plot to 

better visualize the distribution of gene expression in the data set, as shown in Figure 2-5d. 

Genes are selected by entering gene symbols or a using a regular expression and selecting the 

matching gene symbols from a dropdown list. Gene expression is represented by a colour scale 

on the cells of the two-dimensional projection. If multiple genes are selected, the maximum gene 

expression value per cell is shown. This serves as another way of highlighting the specificity of 

Mfge8 for the cortical precursor cells in this data set. 

2.3.5 Cell set comparisons 

The final feature of scClustViz is the ability to generate volcano and MA plots comparing gene 

statistics for any two clusters, or any two sets of cells specified by the user (Figure 2-6a). This is 

useful for two reasons. First, such detailed investigations of differences between clusters may 

help identify cell types or classify their relationships. It may also reveal systematic differences in 

gene expression data between two sets of cells that could indicate a technical or biological 

confounding factor. Volcano plots show relationships between effect size and statistical 

significance for sets of differential gene expression comparisons between clusters. MA plots 

(also known as Tukey’s mean-difference plot or Bland-Altman plot) show differences between 
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samples comparing the log-ratio of gene expression between samples to the mean gene 

expression across those samples. We modify the traditional MA plot by showing the mean on the 

y-axis and difference on the x-axis to maintain visual consistency to volcano plots. We further 

expand this plot’s utility by giving the user the option of viewing the difference and average of 

all three gene statistics used in scClustViz: mean gene expression, mean detected gene 

expression, and detection rate. Furthermore, the user can manually select sets of cells to 

compare, and scClustViz will calculate differential gene expression statistics between the 

selected cells and the remaining cells in the data, and between sets of selected cells. Once the 

calculations are complete, the resulting comparison is represented as a separate “cluster solution” 

and can be explored in all the figures of scClustViz. These results can be saved to disk by 

clicking “Save this comparison to disk” when selecting it in the pulldown menu for cluster 

solution selection. Any saved comparisons will be loaded along with the data any time runShiny 

is run. 

 

Figure 2-6. Comparing manually defined sets of cells.  

A. A volcano plot showing log-ratio of gene expression between cell sets on the x-axis, and 

differential gene expression significance score (-log10 FDR) on the x-axis. Set A here is a subset 

of cluster 5 with low library sizes (< 1500 counts per cell), while set B is the subset of cluster 5 

with high library sizes (> 1500 counts per cell). Highlighted are the top differentially expressed 

genes upregulated in set A (red) and set B (blue). B. An MA-style plot showing difference in 

gene detection rate between set A and set B on the x-axis, and average gene detection rate across 

sets on the y-axis. The vertical line is at zero difference in detection rate. Highlighted in red are 
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genes from the mitochondrial genome, which are generally used as markers of damaged cells in 

single-cell RNAseq analyses. 

In Figure 2-6 we’re investigating a potential technical artefact in the data, specifically the poor 

cohesion of cluster 5 as seen in the silhouette plot in Figure 2-2b. This poor cohesion could be 

due to the differences in library size within the cells of the cluster, as seen in Figure 2-3b. To 

investigate this, the cell selection tool in scClustViz was used to select the cells of cluster 5 with 

low library sizes (Set A, < 1500 UMIs per cell) and those with high library sizes (Set B, > 1500 

UMIs per cell). After running the differential gene expression calculations, we can view the 

differentially expressed genes between the sets in the dot plot or volcano plot (Figure 2-6a). Set 

B seems to have more positively differentially expressed genes, which may be due to improved 

gene detection rate from higher library sizes. This can be seen in Figure 2-6b, where an MA-

style plot showing difference in detection rate vs average detection rate across sets is shown. 

Most genes are more detected in the set with larger library sizes (set B), which might be 

expected, since more transcripts detected correlates with higher average transcript counts per 

gene. Clicking on a gene in this figure has the same functionality as the scatter plot in Figure 

2-5; it will be selected for viewing in the boxplot above (Figure 2-5c). Using this, we noticed 

that genes from the mitochondrial genome were seemingly unaffected by the difference in library 

sizes, as they tended to fall near zero difference in detection rate. To highlight this, we searched 

for all genes from the mitochondrial genome using the search tool, which allowed us to highlight 

them here. If cells are damaged and leaking cytoplasm, they are likely to have smaller library 

sizes as they lose mRNA. However, since RNA from the mitochondrial genome is sequestered in 

a separate organelle, they are less likely to lose those transcripts (Ilicic et al., 2016). We can see 

evidence for this in the cells of cluster 5 with small library sizes, since the detection rate of their 

mitochondrial genes is unchanged. While this data set was filtered to remove cells with higher 

than average mitochondrial gene transcript proportions, including that metric in the metadata 

would allow for tuning of the threshold used. Since these cells have both low library sizes and 

higher relative detection rate of mitochondrial transcripts, it is safe to assume they are damaged 

cells and remove them from the analysis. 
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2.4 Conclusion 

We developed scClustViz to aid in the annotation of cell types and identification of marker genes 

from scRNAseq data. It provides both a metric for cluster assessment based on inter-cluster 

differential gene expression, as well as a convenient user interface for accomplishing this 

analysis and interpretation task. Using differential gene expression to assess clustering solutions 

ensures that the results are suited to addressing the relevant biological task of identifying cell 

types and their marker genes. The user interface is also focused specifically on this task by 

generating publication quality figures and providing analyses that help the user determine the 

appropriate number of clusters, identify cell types, and highlight genes unique to those cell types. 

There are other user interfaces available for the analysis of scRNAseq data (Zhu et al., 2017; 

Rue-Albrecht et al., 2018). However, scClustViz fills a niche between existing GUIs, which are 

either very user-friendly for non-technical users, at the cost of the ability to customize analysis, 

or very powerful and customizable, at the cost of providing a simple framework for 

accomplishing a common analysis task. The one-time setup step for scClustViz also simplifies 

data sharing, as it generates a file that can be shared for viewing by anyone using R. Data sharing 

can be made more user-friendly by building an R data package with a wrapper function calling 

scClustViz, as seen in the use case outlined in this paper. Building such a package is a quick 

process, and a tutorial is available on the scClustViz website. scClustViz is available at 

https://baderlab.github.io/scClustViz/ as free, open source software under the permissive MIT 

open source license. 

2.5 Software and data availability 

scClustViz is available from: https://baderlab.github.io/scClustViz/  

Source code is available from GitHub: https://github.com/BaderLab/scClustViz  

Archived source code at time of publication: https://doi.org/10.5281/zenodo.2582090  

Licence: MIT 

The example data set used is available as an R package: 

https://github.com/BaderLab/MouseCortex  

Archived code at time of publication: https://doi.org/10.5281/zenodo.2582093  

Licence: MIT

https://baderlab.github.io/scClustViz/
https://baderlab.github.io/scClustViz/
https://github.com/BaderLab/scClustViz
https://doi.org/10.5281/zenodo.2582090
https://github.com/BaderLab/MouseCortex
https://doi.org/10.5281/zenodo.2582093
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Chapter 3  
Transcriptional signatures of cell-cell interactions are dependent 

on cellular context 

This work is an expanded version of the preprint available on bioRxiv (Innes and Bader, 2021).  I 

conceived of, designed, and conducted this project.  Gary D. Bader supervised and advised on 

this project.  
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 Transcriptional signatures of cell-cell interactions are 
dependent on cellular context 

Cell-cell interactions are often predicted from single-cell transcriptomics data based on 

observing receptor and corresponding ligand transcripts in cells. These predictions could 

theoretically be improved by inspecting the transcriptome of the receptor cell for evidence of 

gene expression changes in response to the ligand. It is commonly expected that a given receptor, 

in response to ligand activation, will have a characteristic downstream gene expression signature. 

However, this assumption has not been well tested. We used ligand perturbation data from both 

the high-throughput Connectivity Map resource and published transcriptomic assays of cell lines 

and purified cell populations to determine whether ligand signals have unique and generalizable 

transcriptional signatures across biological conditions. Most of the receptors we analyzed did not 

have such characteristic gene expression signatures – instead these signatures were highly 

dependent on cell type. Cell context is thus important when considering transcriptomic evidence 

of ligand signaling, which makes it challenging to build generalizable ligand-receptor interaction 

signatures to improve cell-cell interaction predictions. 

3.1 Introduction 

The advent of single-cell RNA sequencing has enabled researchers to explore the cell 

composition of complex tissues and better understand how cells work together in the context of 

the entire tissue. Cell-cell interaction prediction from scRNAseq data is useful to support this 

‘cellular ecosystem’ study (Shao et al., 2020; Armingol et al., 2021; Dimitrov et al., 2022). The 

fundamental idea behind cell-cell interaction inference is that if one cell type expresses a ligand, 

and another cell type expresses its cognate receptor, these cell types may be communicating via 

paracrine signaling through this putative ligand-receptor interaction. Given an adequate database 

of ligand-receptor interacting pairs, one can quickly generate lists of candidate interactions 

between cell types, represented by scRNAseq-derived cell clusters. The disadvantage is that by 

ignoring myriad factors not directly assayed by scRNAseq that affect ligand-receptor signaling 

(e.g. post-translational regulation, protein expression level, cellular localization, small molecule 

cofactors, receptor dimerization), these predictions lack specificity. Most existing cell-cell 

interaction inference tools attempt to highlight interactions of interest in various ways but do not 

attempt to improve the accuracy of their predictions beyond simply identifying them. However, 
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scRNAseq data contains information about a cell type’s entire transcriptome, not only its 

expressed ligands and receptors. Next-generation cell-cell interaction inference methods take 

advantage of this information, using the receptor cell’s transcriptome as evidence of predicted 

ligand-receptor interactions (Table 3-1). Evidence of a ligand-receptor interaction may exist as a 

transcriptional change in the receiving cell’s transcriptome mediated by signal transduction and 

gene regulatory events downstream of the receptor. These methods infer the expected 

transcriptional signature of a ligand-receptor interaction from multilayer network models 

constructed from existing signal transduction and gene regulatory network databases. We set out 

to complement these models by determining ligand-response signatures from experimental data 

available in pharmacogenomic resources. However, this experimental data suggested that the 

transcriptional response to perturbation by an individual ligand is not consistent between cell 

contexts. As most existing multilayer network models do not account for cell type, this work 

aims to systematically test the assumption that transcriptional response to ligand perturbation is 

consistent between cell types. 

 

Table 3-1. Cell-cell interaction inference methods using the receptor-expressing cell’s 

transcriptome to provide evidence of ligand-receptor interaction. 

SoptSC 

(Wang et al., 2019a) 

Per-cell ligand-interactions scores weighted by product of expression abundance for 

ligand, receptor, and expected up-/down-regulated receptor pathway targets. Pathway 

targets manually curated for a handful of signaling pathways. 

NicheNet 

(Browaeys et al., 2020) 

Multilayer model of ligand-receptor, receptor-pathway, and gene regulatory networks 

used to predict expected ligand-responsive genes. Model edge weights trained on a 

collection of ligand-perturbation gene expression data. Pathways curated from many 

databases, accessed through Harmonizome (Rouillard et al., 2016) 

scMLnet 

(Cheng et al., 2021) 

Multilayer model of ligand-receptor, receptor-TF, and gene regulatory networks. L-R 

and R-TF graphs pruned of weakly expressed nodes. GRN refined by requiring 

significant positive correlations between TF and target gene expression. 

Domino 

(Cherry et al., 2021) 

Gene regulatory networks inferred by SCENIC (Aibar et al., 2017). Receptor-TF 

correlations not predicted by GRN are predicted activated receptors. Expression of 

cognate ligands used to identify sender cells. 

CellChat 

(Hao et al., 2021) 

Multilayer model of ligand-receptor, receptor-pathway, and gene regulatory networks. 

Pathways from OmniPath (Türei et al., 2021). Cell type specific GRNs inferred by 

coexpression using GRN from DoRothEA (Garcia-Alonso et al., 2019) as a prior. 

CytoTalk 

(Hu et al., 2021) 

Multilayer model of ligand-receptor and intracellular gene interaction networks. Prize-

collecting Steiner forest algorithm identifies subnetwork with highest L-R correlation 

across cell types and intracellular cell type specificity. 
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FunRes 

(Jung et al., 2021) 

Multilayer model of ligand-receptor, receptor-pathway, and gene regulatory networks. 

Ligand-receptor interaction inferred by Markov chain from transcription factor 

expression. 

CellCall 

(Zhang et al., 2021a) 

Multilayer model of ligand-receptor, receptor-pathway, and gene regulatory networks. 

Scoring combines expression of L-R with expression of downstream regulon linked by 

KEGG and TF databases using GSEA (Subramanian et al., 2005). 

To determine the transcriptional signature of a ligand-activated receptor interaction, we used two 

complementary sources of data measuring transcriptional change in response to ligand 

perturbation. Connectivity Map is a database of over 1 million gene expression profiles in 

various cell lines in response to a variety of perturbands, including some secreted protein ligands 

(Subramanian et al., 2017). To efficiently measure this very large number of gene expression 

profiles, it uses a ligation-mediated amplification technique to measure the expression of 978 

selected genes (referred to as “landmark” genes), from which the expression of a further 11,350 

genes is inferred. To complement the breadth of this high-throughput resource, we also used 

published transcriptomics assays testing individual ligands perturbing a single cell type, 

originally curated by the authors of NicheNet (Browaeys et al., 2020). These individual 

microarray datasets were used to corroborate the conclusions drawn from the Connectivity Map 

data. 

Transcriptional responses to individual ligands vary between cell types. Correlation of gene 

expression change upon treatment with a ligand was significantly worse comparing between cell 

types than within each cell type. Rarely were the genes whose expression was most responsive to 

ligand treatment in one cell type common across multiple cell types. This is not due to technical 

factors, as independent assays (biological replicates) within the same cell type often identify the 

same responsive genes. Finally, a non-linear machine learning method was not able to 

extrapolate predictions of ligand-treated versus untreated samples to those from a novel cell line. 

While different cell types respond differently to the same ligand, transcriptionally similar cell 

types respond similarly, suggesting that the transcriptome contains information that will enable 

cell type specific inference of ligand-response signatures. If these ligand-response signatures are 

to improve the specificity of cell-cell interaction predictions from transcriptomic data, we must 

consider cell type differences. 
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3.2 Results 

3.2.1 Ligand-driven differential gene expression is not consistent across 
cell lines 

To test if we could identify a characteristic gene expression signature downstream of a ligand-

activated receptor, we used the Connectivity Map database of ligand-perturbed cell line gene 

expression profiles. Connectivity Map used the L1000 assay to measure the transcriptome of cell 

lines perturbed with individual ligands at given sets of concentrations and durations of treatment, 

reporting Z-scores for gene abundance comparisons to plate-matched controls (Subramanian et 

al., 2017). While the Connectivity Map uses the L1000 assay’s approximately 1000 (actually 

978) measured gene abundances to infer gene expression values for most of the wider 

transcriptome, we used only the 978 measured Z-scores unless otherwise indicated. Connectivity 

Map’s 2017 release includes assays of 295 peptide ligands across 9 cell lines immortalized from 

a variety of tissues (Figure 3-1). In these cell lines, ligands were often assayed in up to three 

biological replicates at a single concentration for a single duration of exposure. These data were 

used to assess the effect of cell context on the transcriptomic signature of ligand perturbation, 

unless otherwise indicated. 
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Figure 3-1. Summary of Connectivity Map ligand and cell line coverage. 

An UpSet plot (Lex et al., 2014) showing the distribution of ligands assayed in each of the 14 

cell lines. 16 ligands were assayed in all 14 cell lines, and 295 ligands were assayed in 9 of the 

14 cell lines, covering all seven tissue sites represented by the 14 cell lines. 

We first aimed to identify genes whose expression changed in response to ligand treatment 

consistently across all tested cell lines. To do this, differentially expressed genes were 

determined for each ligand perturbation by averaging Z-scores across all samples treated with the 

same ligand (Figure 3-2). Statistical significance was determined by converting the mean Z-

scores to p-values using the Gaussian distribution and calculating FDR (Benjamini and 

Hochberg, 1995). This resulted in the unexpected finding that most ligands did not affect gene 

expression in a sufficiently consistent manner across samples from multiple cell lines to result in 

statistically significant differential gene expression levels. Only 59 of the 295 assayed ligands 

caused significant changes in expression of any assayed genes at FDR ≤ 0.05, and only 19 

ligands caused differential expression of more genes than expected by chance (p ≤ 0.05 by 

permutation testing, Figure 3-3). If one were to use these differentially expressed genes to build 



63 

 

signatures of ligand-mediated transcriptional response, another issue becomes apparent - that 

relatively few genes are differentially expressed. Of the 978 genes whose expression was 

measured in these L1000 assays, 58 were significantly differentially expressed (DE) in response 

to any ligand, and only 32 of these were unique to a single ligand. These unique genes marked 

only 7 of the 295 assayed ligands, with Interleukin 19 (IL19) being notable for causing 

significant transcriptional changes in 23 genes not significantly affected by other ligands. 

Overall, it appears that most ligands in this dataset lack genes that are uniquely and significantly 

DE upon ligand treatment. 

 

Figure 3-2. Average changes in gene expression upon TNF ligand treatment (Z-scores) across all 

samples in Connectivity Map. 

Shown here are the genes with the highest magnitude mean Z-scores (blue dot) for samples 

treated with TNF. To determine which gene’s expression level was consistently perturbed across 

samples treated with the same ligand, Z-scores representing normalized change in gene 

expression for each treated sample were averaged. P-values for each change in gene expression 

were calculated from the mean Z-score then corrected for multiple testing by the Benjamini-

Hochberg procedure to control False Discovery Rate. 
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Figure 3-3. Few ligands drive consistent changes in gene expression across cell lines. 

A heat map showing average change in gene expression caused by ligand treatment averaged 

across all samples treated with the same ligand. Colours represent -log10 signed, false discovery 

rate corrected p-values derived from averaging Z-scores of gene expression change across all 

samples treated with the same ligand. Darker red represents a significant increase in gene 

expression, while darker blue represents a significant decrease in expression. All 59 (of 295) 

ligands where at least one gene was significantly different at an FDR threshold of 5% are shown. 

Green outline on a heat map cell represents a corrected p-value ≤ 0.05. Significantly 
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differentially expressed genes unique to specific ligands could be used as transcriptional markers 

of ligand activity. However, the presence of vertical columns representing genes responsive to 

multiple ligands, and the overall sparsity of this heat map suggest that very few ligands possess 

such marker genes. On the right is a second heat map showing the probability of detecting the 

indicated number of differentially expressed genes by chance. The values indicate the number of 

significantly differentially expressed genes identified per ligand at the given FDR thresholds. 

Darker pink colour represents decreasing probability of seeing that number of differentially 

expressed genes by chance as calculated against a background distribution of differentially 

expressed gene counts determined by permuting sample labels. 

3.2.2 The lack of common ligand-responsive genes across cell contexts in 
the Connectivity Map dataset is not due to unexpected technical 
variability 

To examine whether the Z-scoring procedure may have affected our result, we analyzed quantile-

normalized gene abundance measurements (from which ligand-treatment Z-scores were 

calculated). These gene abundance measurements showed strong pairwise correlations between 

replicate experiments (mean Spearman correlation coefficient (SCC) of 0.88, Figure 3-4a), as 

did those from samples from the same cell line, whether or not they were treated with the same 

ligand (mean SCC of 0.85). Pairwise correlations between samples treated by the same ligand 

were notably less well correlated (mean SCC of 0.72) unless considering only samples from the 

same cell line (mean SCC of 0.86). Correlation between samples based on Z-scores was far 

worse (mean SCC of 0.08 between replicates, Figure 3-4b), likely due to the relatively small 

proportion of the transcriptome responding to ligand treatment, as seen in the differential gene 

expression analysis above. Nevertheless, we observe the same overall pattern in analyses with 

both normalized gene abundance measurements and Z-scores, that pairwise correlation is 

improved when limiting the analysis to specific cellular contexts. Specifically, 213 of 295 

ligands (72%) had significantly better (p ≤ 0.05 by Wilcoxon rank-sum test) mean pairwise 

correlations within at least one cell line versus across all lines, and 281 of 295 (95%) had 

significantly better correlations in at least one replicate set (same cell line, dosage, and duration 

of treatment) (Figure 3-4c). Furthermore, there was a significant difference in the pairwise 

correlation of ligand-mediated transcriptional responses, as measured by Z-scores, across all 

samples treated with the same ligand, and those specifically from the same cell line, or same 

replicate set (Wilcoxon signed-rank p < 2.2e-16, Figure 3-4d). Thus, considering cell context 
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improves the correlation between changes in transcriptomes responding to the same ligand and 

this is not due solely to technical factors. 

 

Figure 3-4. Correlation of change in gene expression upon ligand perturbation is decreased when 

not accounting for cell context, despite good correlation of gene expression between replicates. 
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A. Distribution of pairwise Spearman correlation coefficients between quantile-normalized gene 

expression magnitude values for all sample pairs from the same cell line (red), treated with the 

same ligand (yellow-green), treated with the same ligand in the same cell line (teal), or from the 

same replicate set (same ligand, dosage and duration of treatment, in the same cell line; purple). 

B. Distribution of pairwise Spearman correlation coefficients between Z-scores representing 

change in gene expression upon ligand treatment, for the same sets of samples as panel A. C. 

Boxplots showing the change in mean pairwise Spearman correlation coefficients between Z-

scores for each ligand when considering only correlations within the same cell line (top, red) or 

within the same replicate set (same cell line, dosage and duration of treatment; bottom, blue).  

Each box represents a ligand, and the y-axis values represent the difference between the mean of 

all pairwise Spearman correlation coefficients between all samples treated with that ligand; 

subtracted from the means of all pairwise correlations between samples treated with that ligand 

in each cell line (red) or in each replicate set (blue). Ligands are ordered on the x-axis by the 

median value of these differences in means.  The small * above the boxplots indicates that at 

least one cell line (red; 213 / 295 (72%) of ligands) or replicate (blue; 281 / 295 (95%) of 

ligands) had a significant improvement in mean inter-experiment Z-score correlation compared 

to the mean of all inter-experiment correlations for that ligand (p ≤ 0.05 by Wilcoxon rank-sum 

test). D. Boxplots summarizing the results in panel C. Each boxplot contains a data point for 

each of the 295 ligands.  Each point is the difference between the mean of all inter-experiment 

correlations for a given ligand, subtracted from the mean of all inter-experiment correlations 

from each cell line (red) or each replicate set (blue). Correlations per ligand within each cell line, 

and per replicate are both significantly (* = p < 2.2e-16 by Wilcoxon signed-rank test) greater 

than across all samples treated with the same ligand. 

3.2.3 Differential gene expression in response to treatment with an 
individual ligand is consistent within the same cell type context. 

After finding that correlation between ligand-treated transcriptomes improved when considering 

cell context, we used our differential gene expression analysis framework (Figure 3-3) to ask 

whether ligand mediated DE genes were consistent within the same cell context. We defined cell 

context by averaging gene expression Z-scores across ligand-treated samples from the same cell 

line across all experiments. In this analysis, in contrast to the analysis across all cell lines, all 

ligands cause statistically significant (FDR-corrected p-value ≤ 0.05) changes in the expression 

of at least one gene in at least one of the nine tested cell lines. This is consistent with the 

published Connectivity Map signatures (available at https://clue.io/), which are broken down by 

cell line. Nearly half (123 / 295) of the tested ligands caused differential expression (FDR-

corrected p-value ≤ 0.05) of more genes than expected by chance in at least one cell line (p ≤ 

https://clue.io/
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0.05 by permutation testing), and 31 ligands caused a significant number of DE genes in more 

than one cell line (Figure 3-5a). This is many more than the 19 ligands with more DE genes than 

expected by chance observed above (Figure 3-3). To quantify this context-dependent 

improvement in consistency of transcriptional response to ligand perturbation, we compared 

distributions of the probability of detecting as many DE genes by chance for each ligand when 

averaged across all samples versus the same, but for samples from the same cell line or 

biological replicate (Figure 3-5b). This comparison was made instead of comparing numbers of 

DE genes because when considering cell type context, we are averaging across fewer samples, 

and thus would expect higher magnitude average Z-scores by chance. We avoid this bias by 

permuting sample labels to generate null distributions of Z-scores averaged across the 

appropriate number of samples and calculating a p-value for the number of DE genes detected. 

When considering cell line context (i.e. averaging within the same cell line) these p-values 

improved for 274 (93%) of the 295 ligands (Figure 3-6), and overall it was significantly less 

likely that the number of DE genes per ligand was detected by chance (p < 2.2e-16 by Wilcoxon 

rank-sum test). This finding was robust to the FDR threshold used to determine the number of 

DE genes. Similar results were obtained when including the duration and dosage of ligand 

treatment along with cell line context - i.e. averaging Z-scores within replicates (p < 2.2e-16 by 

Wilcoxon rank-sum test compared to per ligand, no change compared to per ligand in the same 

cell line, Figure 3-5b). Thus, for most ligands tested in Connectivity Map, gene expression 

changes are dependent on cell context. 
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Figure 3-5. Many ligands drive consistent changes in gene expression in some individual cell 

lines. 

A. A heat map showing significance scores for the number of differentially expressed genes (at 

FDR of 5%) caused by a ligand’s perturbation of each cell line. The count of differentially 

expressed genes in response to each ligand (column) in each cell line (row) is shown. Statistical 

significance (indicated by darker colour) is calculated by determining the probability of seeing 

that number of differentially expressed genes by chance against a background distribution of 

differentially expressed gene counts determined by permuting sample labels. Ligands are 

included in the heat map if they cause differential expression of a significant number of genes in 

more than one cell line (p ≤ 0.05 by permutation test). B. Boxplots showing the distribution of 

significance scores (as calculated in panel A) when averaging gene Z-scores across all samples 

treated with the same ligand (as in Figure 3-3), all samples treated with the same ligand in the 

same cell line (“Lig / Line”, from panel A), and all replicate samples (same ligand, cell line, 

dosage, and duration of treatment). Significance is represented as the probability of seeing as 
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many differentially expressed genes by chance against a background distribution of differentially 

expressed gene counts determined by permuting sample labels. Numbers of differentially 

expressed genes were calculated at the FDR thresholds indicated on the right vertical axis, and * 

indicates that the center of that distribution is significantly different (p < 2.2e-16 by Wilcoxon 

rank-sum test) than when considering all samples treated with the same ligand. 

 

Figure 3-6. Significantly more differentially expressed genes are detected when considering cell 

line context for most ligands.   

Each boxplot represents the change in significance score between averaging across all Z-scores 

from samples treated with a given ligand, subtracted from the averages of Z-scores from all 

samples treated with a given ligand in each cell line. Significance score is the negative log10 

transformation of the probability of seeing that number of differentially expressed genes by 

chance, calculated using a background distribution of differentially expressed gene counts 

determined by permuting sample labels.  Values above zero indicate that significantly more 

differentially expressed genes were caused by the given ligand in that cell line than that ligand 

causes to be differentially expressed generally across all cell lines. 

3.2.4 Modeling non-linear response to ligand stimulus does not improve the 
transcriptional signature generalizability 

Using significantly differentially expressed genes, it is difficult to identify generalized (i.e. 

context-independent) transcriptomic signatures for most ligand-receptor interactions. It is 

possible that there are generalizable non-linear combinations of gene transcription responses to 

ligand perturbation that could also include genes that vary but are not significantly differentially 
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expressed in the context of whole transcriptome statistical tests. Random forest models can make 

use of non-linear information, as they use votes from a series of decision trees to build 

classifiers. They have also proven to be useful as tools for feature selection and classification 

tasks in transcriptomics and achieve state of the art performance in these tasks (Kursa, 2014; 

Acharjee et al., 2020; Xu et al., 2021). To assess the ability of a random forest model to identify 

ligands from their transcriptomic profile, models were trained for each ligand across all assayed 

cell lines for the binary classification task of determining whether the sample was treated with 

the given ligand. A subset of 16 ligands (BTC, EGF, FGF1, GAS6, GDNF, HBEGF, HGF, 

IFNG, IGF1, IGF2, IL17A, IL4, IL6, INS, TGFA, and TNF) with higher sample numbers were 

used for this task to support good model power. These ligands were tested in the 9 cell lines used 

in the Connectivity Map data above and assayed at multiple concentrations and exposure 

durations in an additional 5 breast cancer cell lines. The models’ performance on this task was 

generally poor (Figure 3-7a - rows with CTRL prefix), except when predicting IFNG and TNF 

treatment, which agrees with our differential gene expression results. To determine whether the 

models’ prediction ability is generalizable across cell types, or conversely whether 

transcriptional responses to ligands are cell type specific, these models were trained again while 

withholding data from one cell line, and performance was tested on the withheld cell line 

(Figure 3-7a). Performance decreased when extrapolating to a novel cell line, except in the case 

of IFNG (Figure 3-7b, pairwise AUPR decreased significantly (p < 1e-16) by Wilcoxon signed-

rank test). This is consistent with our previous finding that both correlation in transcriptional 

change and number of significantly differentially expressed genes increases more than expected 

by chance when considering cell type specific responses to a ligand stimulus, compared to 

considering a generalized response across cell types. 
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Figure 3-7.  Extrapolating to novel cell lines reduced performance of machine learning models 

trained to identify ligand-treated transcriptomes. 

A. Each column displays the results of a series of random forest models trained to identify 

transcriptomes treated by the indicated ligand, and each row indicates the performance of the 

given model in the cell line that was withheld for training and used for testing, or the respective 

control (“CTRL”), where equal numbers of samples from all cell lines were used for training and 

testing. Random forest model performance represented by AUPR (darker colour is higher 

performance, values shown in blue text). Columns are ordered by increasing mean control 

AUPR. B. Boxplots showing change in AUPR between training on all cell lines versus training 

on all but a withheld cell line and predicting on the withheld cell line. Boxplots are ordered as 

columns in the above heat map by increasing mean control AUPR to give context to the possible 

magnitude of change in AUPR. Data to the left of the dashed vertical line indicate that holding 

out a cell line reduces model performance, while points to the right of the dashed line indicate 

improvement. Wilcoxon signed-rank test was used to determine significance of pairwise change 

in accuracy, p-values reported to the left of each boxplot. 

A complementary classification task is to identify which ligand treatment drives each set of 

transcriptional changes. A different set of random forest models were trained to perform this task 

and this generated similar results to the previous random forest analysis (Figure 3-8). Median 

accuracy when extrapolating to novel cell lines was reduced compared to the already poor 

accuracy (32%) when training on all cell lines (5% decrease in median accuracy, p = 1.3e-4 by 

Wilcoxon signed-rank test).  
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Figure 3-8. Accuracy in identifying which ligand treatment caused the changes in the 

transcriptome of a novel cell line. 

A. Random forest models were trained to identify the ligand treatment (columns) causing 

transcriptomic changes in a withheld cell line (rows), compared to performance when trained on 

all cell lines (leave-one-out testing, rows labeled ‘CTRL’). Darker colour represents higher 

accuracy, and number of samples per ligand and cell line is shown in blue. B. Change in 

accuracy between predicting on a novel cell line versus the control model trained on all cell lines 

(x-axis - colours match ligand column names above). Lines represent range across cell lines with 

median indicated by a point on each line. Lines extending to the left of the dashed vertical line 

indicate that holding out a cell line reduces model performance, and vice versa for lines 

extending to the right of the dashed line. Wilcoxon signed-rank test was used to determine 

significance of pairwise change in accuracy (y-axis). Mean control accuracy is indicated in 

brackets in the legend to give context to the possible magnitude of accuracy change. 

One possible explanation for the general difficulty in establishing transcriptional signatures of 

ligand response (either linear or nonlinear) is poor signal in this data. This may indicate a lack of 

response to the ligand perturbation, possibly because the ligand’s cognate receptor is not 

expressed in that cell line. To assess this possibility, receptor expression was correlated with 

ligand prediction accuracy in our random forest model tasks (Figure 3-9). Cognate receptors for 

each ligand were determined from a database of known ligand-receptor interactions (Ximerakis 

et al., 2019), and their quantile-normalized gene abundance per cell line were calculated from the 

Connectivity Map control data. While epidermal growth factor (EGF) receptor family members 

showed reasonable correlation with prediction accuracy of transcriptional response to the EGF 

ligand family member TGFA, for most ligands the correlation between cognate receptor 

expression and ligand prediction accuracy was unclear. Thus, we do not find that receptor 

expression level explains ligand perturbation signal in general. 
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Figure 3-9. Cognate receptor gene expression does not sufficiently explain differences in 

transcriptional response to ligand perturbation. 

Cognate receptor expression for each ligand was compared to ligand classification accuracy per 

cell line. Lines for each receptor are coloured by the Spearman correlation coefficient between 

expression and accuracy per cell type (purple is negative, green is positive), and the three most 

correlated receptor genes are labeled. 
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3.2.5 Cell type specific transcriptional response to ligand perturbation is 
corroborated by independent microarray assays 

To corroborate our main finding from the Connectivity Map database that transcriptional 

response to ligand perturbation is cell type dependent, we repeated our analysis on a 

complementary transcriptomic dataset. The authors of the cell-cell interaction prediction method 

NicheNet (Browaeys et al., 2020) used the NCBI Gene Expression Omnibus (Barrett et al., 2013) 

to curate a collection of microarray experiments in which transcriptional response to ligand 

stimulation was assayed. Twenty ligands appeared more than once in the collected data, of which 

eleven ligands were assayed in more than one independent experiment from different cell types 

and thirteen were assayed more than once in the same cell type by independent labs in separate 

experiments (Figure 3-10). As was done with the Connectivity Map data, we calculated pairwise 

Spearman correlation coefficients between all fold-change values from experiments where the 

same ligand was used to perturb cells (Figure 3-11a). As with the Connectivity Map data, 

change in gene expression upon ligand treatment in different cell lines was poorly correlated 

(mean SCC of 0.1). Ligand-induced gene expression changes were significantly better correlated 

when comparing independent experiments in the same cell type (mean SCC of 0.35, p = 3.4e-7 

by Wilcoxon rank-sum test). This mirrors our findings analyzing the Connectivity Map data, 

albeit with a much stronger effect and better coverage of the whole transcriptome. By comparing 

overall ligand-induced changes in gene expression within and between cell types, the published 

transcriptomic data clearly support the finding that transcriptional response to ligand treatment is 

highly dependent on cell type. 
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Figure 3-10. Distribution of experimental conditions from NicheNet-curated transcriptomics 

assays assessing change in gene expression caused by ligand treatment.  

The matrix indicates which ligands (rows) were assayed in which cell types (columns), with the 

number at each matrix element indicating how many transcriptional experiments from 

independent labs contained the same combination of ligand and cell type (darker colour 

reflecting higher count). The bar plots indicate row and column sums for the unique cell types in 

which each ligand was assayed, or unique ligands assayed in each cell type, respectively. 
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Figure 3-11. Context-specific response to ligand stimulus is corroborated by independent 

transcriptomics assays. 

A. A strip plot showing pairwise Spearman correlations between log fold-change values from 

NicheNet-curated transcriptomics assays assessing change in gene expression caused by ligand 

treatment, for all pairs of assays for each ligand (left) or pairs of assays using the same cell type 

(right). Correlations in gene expression change between samples in different cell types treated 

with the same ligand are shown on the left, with correlations between samples from the same cell 

type and ligand treatment on the right. The data is summarized in the boxplot on the far right, 

which indicates that ligand-dependent transcriptional changes are significantly more correlated in 

the same cell type (p = 3.4e-7 by Wilcoxon rank-sum test). B. Ligand-dependent gene expression 

changes from published transcriptomics assays common across all assays. On the left are box 
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plots showing the statistical significance of overlapping differentially expressed genes (y-axis), 

using various cutoffs to define differential expression (x-axis). Statistical significance is 

represented as the probability of seeing such overlap occurring by chance, as calculated by 

permutation testing. Indicated p-values (top) are from Wilcoxon rank-sum tests comparing 

probabilities of overlap by chance between samples from different cell types (red) versus within 

the same cell type (blue). On the right is a representative scatter plot showing the data from one 

pair of boxplots, with the x-axis representing the number of differentially expressed (DE) genes 

shared between all datasets treated with the same ligand (in red) or all datasets from the same 

cell type and treated with the same ligand (in blue). Ligands or ligand and cell type were labeled 

if the overlap p-value was ≤ 0.05. 

We also used the NicheNet-curated gene expression data to assess the finding that some genes 

display significant and consistent changes in gene expression upon ligand treatment, but these 

are context-specific. Significantly DE genes in response to ligand treatment were defined from 

each ligand-perturbed microarray dataset at multiple effect size and statistical significance 

thresholds to ensure robustness of findings. The number of significantly DE genes shared across 

all datasets treated with the same ligand or treated with the same ligand in the same cell type, 

was then counted, and the probability of those numbers of shared DE genes occurring by chance 

was calculated by permutation testing (Figure 3-11b). The chance of differential gene overlap 

between datasets was significantly less likely when considering ligand-induced changes in gene 

expression within each cell type, irrespective of the fold change and false discovery rate 

thresholds used to define significant differential expression (Figure 3-11b right panel, p < 0.05 

by Wilcoxon rank-sum tests). This is consistent with the finding from Connectivity Map data 

analysis that most ligands show cell line specificity in transcriptional response (Figure 3-5b). 

From this analysis, we find that only two ligands, IL1B and IFNA1, share a significant number 

of ligand-responsive DE genes across all cell types in the NicheNet-curated data. None of these 

genes were DE across cell types in the Connectivity Map data (Figure 3-12). Of the ligands 

assayed in NicheNet-curated transcriptomics data, TNF and IFNG caused the most generalizable 

transcriptional changes in the Connectivity Map analysis (respectively 9 and 3 significantly DE 

genes at 5% FDR, Figure 3-3). The most consistently DE gene in response to both TNF and 

IFNG is ICAM1, but it is not upregulated in all the TNF-treated cell lines, lacking significant 

change in expression in both smooth muscle and immune cell contexts from the NicheNet-

curated data, and in the prostate tumour line VCAP from Connectivity Map (Figure 3-13). Two 
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other consistently upregulated genes in Connectivity Map in response to TNF, NFKBIA and 

RELB, were similarly inconsistent, with no significant differential expression in the breast cell 

line MCF10A or prostate tumour line VCAP in Connectivity Map. In response to IFNG, ICAM1 

was upregulated in many, but not all, cell contexts. It showed no significant response in immune 

or fibroblast cells from the NicheNet curated data, nor in the breast tumour line HS578T from 

Connectivity Map (Figure 3-14). Thus, even the most consistent transcriptional response 

signatures across many independent data are not always observed, emphasizing that cellular 

context is still important even in these special cases. 
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Figure 3-12. Gene expression changes in response to IL1B or IFNA1 differ between cell types. 

Matrix plots showing mean change in gene expression per cell line upon IL1B or IFNA1 

treatment for selected genes from both Connectivity Map and NicheNet-curated transcriptomics 

data. Cell lines are on each column, with NicheNet-curated transcriptomes indicated with *, and 
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those from time series experiments where only magnitude of gene expression change was 

recorded with a **. Genes (in rows) were included if they were significantly differentially 

expressed (at 10% FDR) in at least two Connectivity Map cell lines or the maximum possible 

number of overlapping NicheNet-curated cell lines. Genes whose expression was inferred in 

Connectivity Map are indicated with ^. Genes whose expression was not reported in an 

experiment are indicated with a red x. Dot colour indicates difference in gene expression upon 

ligand treatment, measured as Connectivity Map Z-score and log2 fold-change from NicheNet-

curated transcriptomes. Dot size indicates false discovery rate-corrected significance. 
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Figure 3-13. Gene expression changes in response to TNF differ between cell types. 

A matrix plot showing mean change in gene expression per cell line upon TNF treatment for 

selected genes from both Connectivity Map and NicheNet-curated transcriptomics data. Cell 

lines are on each column, with NicheNet-curated transcriptomes indicated with *, and those from 

time series experiments where only magnitude of gene expression change was recorded with a 

**. Genes (in rows) were included if they were significantly differentially expressed (at 10% 

FDR) in at least two Connectivity Map cell line assays or the maximum possible number of 

overlapping NicheNet-curated cell line assays. Genes whose expression was inferred in 

Connectivity Map are indicated with ^. Genes whose expression was not reported in a given 

experiment are indicated with a red x instead of a dot. Dot colour indicates difference in gene 

expression upon ligand treatment, measured as Connectivity Map Z-score and log2 fold-change 

from NicheNet-curated transcriptomes. Dot size indicates false discovery rate-corrected 

significance. If a gene were consistently differentially expressed in response to ligand treatment, 

an unbroken horizontal line of circles of the same colour would appear on this plot. 
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Figure 3-14. Gene expression changes in response to IFNG differ between cell types. 

A matrix plot showing mean change in gene expression per cell line upon IFNG treatment for 

selected genes from both Connectivity Map and NicheNet-curated transcriptomics data. Cell 

lines are on each column, with NicheNet-curated transcriptomes indicated with *, and those from 

time series experiments where only magnitude of gene expression change was recorded with a 
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**. Genes (in rows) were included if they were significantly differentially expressed (at 10% 

FDR) in at least two Connectivity Map cell lines or the maximum possible number of 

overlapping NicheNet-curated cell lines. Genes whose expression was inferred in Connectivity 

Map are indicated with ^. Genes whose expression was not reported in an experiment are 

indicated with a red x. Dot colour indicates difference in gene expression upon ligand treatment, 

measured as Connectivity Map Z-score and log2 fold-change from NicheNet-curated 

transcriptomes. Dot size indicates false discovery rate-corrected significance. 

3.2.6 Difference in ligand response is predicted by dissimilarity of cell type 
transcriptomes 

There are many potential mechanisms facilitating heterogenous responses between cell types to 

the same ligand treatment.  Agonist and antagonist cofactors, both extracellular and present at the 

cell membrane, may be modulating receptor activation.  Availability of components of the 

downstream intracellular signaling cascades, especially transcription factors, may allow cells to 

tune response to ligand treatment.  Finally, chromatin state may dictate what genes are available 

to be expressed.  The status of at least some of these factors affecting transcriptional response to 

a ligand may be encoded in the receiving cell’s transcriptome.  To test this hypothesis, the 

transcriptomes of cell types being treated with the same ligand were compared.  If the 

transcriptome contains information guiding the cell’s response to ligand stimulus, cells with 

similar transcriptomes should respond more similarly to treatment with the same ligand.  By 

comparing pairwise correlation of untreated cell transcriptomes with pairwise correlation of 

those cells’ change in gene expression in response to the same ligand, we can see evidence that 

this is true (Figure 3-15).  There was a strong correlation between transcriptome similarity and 

similarity of ligand response (Pearson correlation coefficient of 0.79) with good distribution of 

tested ligands across the range of comparisons.  Thus, the transcriptome of the receptor-

expressing cell contains information that can help predict its transcriptional response to a ligand.  
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Figure 3-15. Correlation between cell transcriptome similarity and response to ligand stimulus. 

Spearman rank correlations of untreated transcriptomes from pairs of cell lines (x-axis) were 

compared to Spearman rank correlations of changes in gene expression upon treatment of those 

cell line pairs with the same ligand (y-axis).  The identity line is shown dotted for reference.  

There is a Pearson correlation coefficient (PCC) of 0.79 between untreated transcriptome 

correlation and correlation of log fold-change upon treatment. 

3.3 Discussion 

If the various cell types of a tissue analyzed by single-cell RNAseq are communicating through 

ligand-receptor interactions, one may expect to see evidence of these ligand-mediated signaling 

events in the receiving cell’s transcriptome. In this study, two independent and complementary 

transcriptome assay databases measuring gene expression change in response to ligand 

perturbation were used to investigate this hypothesis. Within each cell type tested, change in 
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gene expression in response to each ligand was often consistent and predictable, as evidenced by 

nearly half of the ligands in the Connectivity Map data causing significant differential expression 

of more genes than expected by chance. However, ligand response across cell types was 

generally inconsistent and unpredictable. These results have important implications for cell-cell 

interaction prediction from scRNAseq data, which cannot rely on generalizable, characteristic, 

and easily predictable ligand response signatures to identify receptors that are actively signaling 

to effect downstream transcriptional changes. Instead, only cell type-specific ligand response 

signatures will be useful. Unfortunately, this cellular context dependent ligand response 

information is not available for most cell types. 

We also found that certain genes are activated by many tested ligands, as evidenced by the 

vertical lines of significant differential expression in Figure 3-3. That independent experimental 

perturbations can have similar transcriptional effects has been noted before, most notably by 

Crow et al., who built a prior probability of differential expression for all genes with 80% 

accuracy across a wide variety of transcriptomic datasets (Crow et al., 2019). While one might 

attempt to mitigate the apparent redundancy in transcriptional response to ligand perturbation by 

making more coarse-grained predictions by ligand family, Crow et al. suggests that by virtue of 

either the way transcriptomic data is collected, or biological redundancy in transcriptional 

response to stimuli, that may not be sufficient to ensure uniqueness of ligand signaling 

signatures. 

Cell-cell communication inference is a popular method for understanding tissue function from 

scRNAseq data. The modern methods outlined in Table 3-1 use the receiving cell’s 

transcriptome to support their ligand-receptor predictions. To define the expected transcriptional 

response to receptor stimulus, they use canonical pathways to link receptors to transcription 

factors and then gene regulatory networks to link those transcriptional factors to their target 

genes. These GRNs are either sourced from databases or inferred from the input scRNAseq data. 

Unfortunately, current pathway databases do not consider cell type context in their networks 

(Larsen et al., 2019), meaning that methods using database derived GRNs implicitly assume that 

ligand response signatures are consistent between cell types. While inferring the GRN from the 

input scRNAseq data presumably ensures cell type specificity, even state-of-the-art methods 

struggle to perform this task accurately (Holland et al., 2020; Pratapa et al., 2020; Kang et al., 

2021). Thus, the prediction of cell type specific ligand-response signatures is an unsolved 
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problem that must be addressed before these cell-cell interaction inference methods can deliver 

their promised improvement in prediction specificity. 

Though this work highlights concerns with current methods, it also suggests paths forward.  As 

seen in Figure 3-15, a cell’s transcriptome correlates with its response to ligand stimulus.  This 

indicates that cell type specific ligand-response signatures may be inferred from a multilayer 

network model that includes cell type specificity. Simply weighting nodes in the signal 

transduction network by their expression in the cells of interest may be sufficient to improve the 

specificity of that layer of the network.  The rise of single cell multiome assays that combine 

transcriptome with gene accessibility (scATACseq) information may improve cell type specific 

GRN inference (Bravo González-Blas et al., 2022; Kamimoto et al., 2023). Finally, the strong 

correlation between transcriptome similarity and ligand response similarity suggests that if 

experimentally derived ligand response signatures are available for a cell type similar to the cells 

being studied, applying that those signatures to support cell-cell interaction predictions is 

reasonable. 

Ultimately, current cell-cell interaction predictions can provide a non-specific list of potential 

ligand-receptor pairs as a hypothesis generation exercise, but study authors must test these 

predictions to both identify true sources of cell-cell signaling and provide the sort of ground-truth 

data necessary for further improvement of these predictions. 

3.4 Materials & Methods 

3.4.1 Data & code availability 

All analysis was performed in the R statistical programming language (R Core Team, 2018), 

with all code available at https://github.com/BaderLab/Brendan_CCInxPred. Connectivity Map 

data is deposited in NCBI GEO with accession GSE92742 (Subramanian et al., 2017). NicheNet-

curated data is from the ‘expression_settings.rds’ file deposited in Zenodo as record 3260758 

(Browaeys et al., 2019). 

3.4.2 Connectivity Map differentially expressed gene expression analysis 

Connectivity Map calculates robust Z-scores for gene i of the nth sample on the plate as: 
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𝑧𝑖,𝑛 =  
𝑥𝑖,𝑛 −  median(𝑥𝑖)

1.4826 ∙ MAD(𝑥𝑖)
 

where xi is the normalized gene expression of gene i across all samples on the plate, and MAD is 

the median absolute deviation (Subramanian et al., 2017). These scores, representing normalized 

changes in gene expression upon ligand treatment, were averaged across all samples treated with 

the same ligand, same ligand in the same cell line, or from the same technical replicate set. False 

Discovery Rate (FDR)-corrected p-values were calculated from averaged Z-scores using the 

Gaussian distribution. A background distribution of FDR-corrected p-values was generated by 

averaging each gene’s Z-scores across a random set of samples of equivalent size. This 

background distribution was used to calculate the probability of seeing as many differentially 

expressed genes by chance for each set of samples. The R scripts to perform these calculations 

and generate Figure 3-3 and Figure 3-5 are ‘lig295_DE_FDR.R’ and 

‘DEoverlap_FDR_forPaper.Rmd’ in the GitHub repository cited above. 

3.4.3 Connectivity Map sample correlations 

Spearman correlation coefficients were calculated for all pairs of samples from the same cell 

line, treated with the same ligand, same ligand in the same cell line, or from the same technical 

replicate set. Differences in the distributions of pairwise correlation coefficients were tested 

using the Wilcoxon rank-sum test (Wilcoxon, 1945). The R scripts to perform these calculations 

and generate Figure 3-4 are ‘Zcorr.R’ and ‘Zcorr_forPaper.Rmd’ in the GitHub repository cited 

above. 

3.4.4 Connectivity Map random forest modelling 

Random forest models were trained for each ligand using ranger to classify samples as either 

treated with the ligand or not (Wright and Ziegler, 2017). Training sets were balanced by 

randomly selecting an equivalent number of samples treated with other ligands to represent the 

negative case for each ligand. “Control” models were trained on samples from all cell lines, 

while “test” models for each cell line were trained on all lines except the cell line in question. 

The models were tested on all withheld data. The R scripts to perform these calculations are 

generate Figure 3-7 are `200813_newVall_probs_lvl4.R` and ‘RFresults_forPaper.Rmd’ in the 

GitHub repository cited above. 
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Random forest models were also trained on the same datasets as above to identify which of the 

16 ligands each sample was treated with. The R scripts to perform these calculations and 

generate Figure 3-8 are ‘200524_lvl5_mixall_leave1out.R’ and ‘LigPred_extrapolate.Rmd’ in 

the GitHub repository cited above. 

3.4.5 Connectivity Map receptor availability analysis 

Average of quantile-normalized gene expression values of cognate receptors for each ligand in 

each cell line were correlated with accuracy of binary classification by the relevant random forest 

model. Cognate receptors for each ligand were identified from the ligand-receptor database used 

by CCInx (Ximerakis et al., 2019). The R script to perform these calculations and generate 

Figure 3-9 is `RecExpr.Rmd’ in the GitHub repository cited above. 

3.4.6 NicheNet database correlation and differential expression analysis 

Spearman correlation coefficients between log-scaled fold-change values of gene expression 

difference between treated and untreated samples were calculated for all pairs of samples treated 

with the same ligand or treated with the same ligand in the same cell type. Differences in the 

distributions of pairwise correlation coefficients were tested using the Wilcoxon rank-sum test. 

Differentially expressed genes in each sample were determined using multiple fold-change and 

FDR thresholds. To determine the statistical significance of overlap between differentially 

expressed gene lists from samples treated with the same ligand or treated with the same ligand in 

the same cell type, the null probability of overlap was calculated by permuting sample labels. 

Differences in the distributions of overlap probabilities were tested using the Wilcoxon rank-sum 

test. 

The R scripts to perform these calculations and generate Figure 3-11 are ‘NicheNet_calc.R’ and 

`NicheNet_forPaper.Rmd’ in the GitHub repository cited above. The R script to generate Figure 

3-12, Figure 3-13, and Figure 3-14 is ‘NicheNet.Rmd’ in the GitHub repository cited above.  

Figure 3-15 code can be found in ‘220607_NicheNet_predictions.Rmd’. 
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 Conclusion 

This thesis provides a framework for building models of intercellular signaling in tissue from 

high-throughput single-cell transcriptomic data using current best practices.  I outline the 

analysis workflow required to cluster single-cell sequencing libraries into cell type 

transcriptomes, describe scClustViz, the software tool I built to facilitate the annotation of these 

clusters, and summarize the many tools available, including my CCInx software, for predicting 

ligand-receptor interaction networks from cell type transcriptomes.  Finally, I highlight a major 

barrier to improving ligand-receptor inference methods and suggest a path forward. 

4.1 Impact, caveats, and future of scClustViz 

The software tool scClustViz was one of the first tools available to generate interactive reports of 

scRNAseq results, facilitating interpretation of clustering results for study authors. It has 

empowered my collaborations studying the neural stem cell niche in the developing mouse brain 

(Yuzwa et al., 2017; Borrett et al., 2020, 2022), generating the human liver cell atlas and 

assessing liver cells grown in vitro (MacParland et al., 2018; Gage et al., 2020), characterizing 

retinal stem cells (Coles et al., 2021), and identifying senescence as a pathology in traumatic 

brain injury (Schwab et al., 2022).  Perhaps more importantly, it allows the data from published 

studies to be accessed and interpreted without the need for R coding skills through its 

functionality as a web-based portal (e.g., http://shiny.baderlab.org/).   

The scClustViz paper was also the first to highlight the bias introduced in differential expression 

magnitude calculations due to the use of pseudocounts during normalization.  A recent paper has 

highlighted the impact of this bias on data interpretation in the context of SARS-Cov-2 

(Booeshaghi and Pachter, 2021).   

Finally, scClustViz uses a novel method for determining the appropriate number of clusters, 

motivated by the expectation that distinct cell types should have statistically significant 

differences in gene expression when compared to their most similar clusters.  Unfortunately 

clusters are defined by differences in gene expression, so testing differences in gene expression 

on the same data results in uncontrolled false positives.  This “double-dipping” error is 

widespread in scRNAseq analysis, and a few methods have been proposed to allow for statistical 

testing of differential gene expression between clusters while appropriately controlling the false 

http://shiny.baderlab.org/
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positive rate.  They rely on the concept of selective inference, the notion that to obtain a valid 

test of the null hypothesis between groups defined by the data being tested, one must condition 

on the aspect of the data that defines the groups (Lee et al., 2016).  The first is the truncated-

normal or TN test, where a subset of the data is clustered and a hyperplane defining cluster 

separation is learned, and then the differential expression test is performed on the remainder of 

the data labeled using the hyperplane with the null model being a pair of normal distributions 

truncated by the hyperplane (Zhang et al., 2019a).  This requires that the clusters be 

approximately linearly separable in multidimensional space.  Alternative models have been 

developed specifically for hierarchical clustering (Gao et al., 2022) and K-means clustering 

(Chen and Witten, 2022). 

The scClustViz interface allows the user to define their own groups for differential expression 

testing, a feature commonly requested to test differences in expression in an individual cell type 

between case and control.  This feature then performs a Wilcoxon rank-sum test between the 

user-defined groups, which treats each cell as a sample.  This results in “pseudoreplication bias”, 

another statistical error widespread in the scRNAseq community (Zimmerman et al., 2021).  The 

solution to this seems relatively simple: properly account for sample number by either 

aggregating cells from each tested specimen into “pseudobulk” transcriptomes and treat each of 

these as a sample (Squair et al., 2021; Murphy and Skene, 2022), or account for the source 

specimen of each cell explicitly in the statistical model, whether a two-part hurdle model 

(Zimmerman et al., 2021, 2022) or Poisson multilevel model (Svensson, 2019b).  Unfortunately, 

these solutions all require knowledge of which cells came from which specimen.  Unless single-

cell cDNA libraries are generated from each specimen separately (confounding technical 

variability with biological variability), or the specimens are sufficiently genetically distinct to 

deconvolute their origin in silico, it is impossible to know which cell came from which 

specimen.  An alternative experimental approach is to use cell hashing, a technique to label cells 

prior to pooling for library generation using barcoded oligos unique to each sample, but this 

technique has proven difficult to implement in many sequencing facilities.  A recent preprint 

may have the solution (Lee and Han, 2023).  They argue that the loss of type I error control 

(false positive rate) is not due to pseudoreplication but rather distributional misspecification, 

specifically that the true distribution may be multimodal due to cell type heterogeneity.  They 

show that using a robust standard error (also known as the sandwich estimator) in a generalized 
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linear model to address this distributional misspecification appropriately controls type I error, 

and more importantly for the post hoc analysis of existing datasets, does not require explicit 

modeling of donor specimen. 

While scClustViz was one of the first graphical user interfaces designed for the interpretation of 

single-cell RNAseq data, it is no longer unique.  Well supported tools such as the open-source 

CELLxGENE software from the Chan Zuckerberg Initiative have been developed to fill this role.  

Thus I have no future plans for the development of scClustViz, though I will continue to support 

its users through GitHub. 

4.2 Specificity of transcriptional signatures affects the future of 
intercellular network inference 

Cell-cell interaction prediction from transcriptomics traditionally assumes that if a ligand is 

expressed in one cell and its cognate receptor is expressed in another, they will interact.  This 

assumption leads to very poor specificity in predictions, as many factors affecting ligand-

receptor interaction are overlooked.  To improve the specificity of their predictions, the next 

generation of ligand-receptor interaction inference methods score their predictions using 

evidence from the receptor-expressing cell’s transcriptome.  As transcriptional signatures of 

ligand response are generally not known, they must be inferred from other available data.  These 

methods link published intracellular signaling networks and downstream gene regulatory 

networks (GRNs) with their predicted intercellular signaling network to infer the expected 

transcriptional response to predicted ligand stimulation.  This assumes that these published 

networks are consistent between cell types.  In Chapter 3 I show that this fundamental 

assumption of the next generation of ligand-receptor inference methods is invalid.  

Transcriptional response to ligand perturbation is not consistent across cell types.  However, I 

also show that the transcriptome does at least partially explain the differences in transcriptional 

response to ligand stimulus between cell types.  Thus, if these next-gen methods can refine their 

multilayer networks to be cell type specific, they should better infer transcriptional responses to 

their predicted ligands. 

Most of these next-gen methods have been benchmarked in a recent study (Figure 1-12b, (Liu et 

al., 2022)).  Benchmarking was based on the expected spatial distribution of cell types and their 

interactions.  The evaluation metric assigned ligand-receptor interactions as short- or long-range 
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based on distribution of expressed genes in the spatial transcriptomics datasets used for testing.  

They then evaluated ligand-receptor interaction predictions for their ability to predict short-range 

interactions between proximal cell types and long-range interactions between distant cell types.  

If some of these next-gen methods perform better in benchmarking, it may be thanks to cell type 

specific refinements of their multilayer networks.  The top performing method in this study with 

an average rank of 2.4 across the various test sets was CellChat v1 (Jin et al., 2021).  This 

method scores predicted interactions by weighting expression of ligand, receptor, and functional 

cofactors, but does not use the receiving cell’s transcriptome to improve specificity.  NicheNet 

(Browaeys et al., 2020) is the top-scoring next-gen method with an average rank of 4.4.  To 

refine its multilayer network, the network was trained on a curated set of published ligand 

perturbation experiments.  This may have improved the accuracy of their ligand response 

inference in the cell types present in their training data, but does not make their network specific 

to the cell types a user’s data may contain.  scMLnet (Cheng et al., 2021) had an average rank of 

6.4, and prunes their GRN by requiring significant positive correlation between transcription 

factors and predicted target genes.  This may result in cell type specific GRNs, as it does use 

expression data specific to the cells of interest.  Domino (Cherry et al., 2021) had an average 

score of 11.2, and uses SCENIC (Aibar et al., 2017) to learn cell type specific GRNs.  Finally 

CellCall (Zhang et al., 2021a) had an average rank of 13.8, and uses curated TF-target gene 

networks with no refinement.  From this benchmark, it doesn’t seem like next-gen methods 

perform particularly well, with or without cell type specific networks.  Unfortunately, none of 

these next-gen methods were included in a complementary benchmarking study (Dimitrov et al., 

2022), but the two studies have contradictory findings when using spatial association as the 

evaluation metric (Figure 1-12b).  This casts doubt on this metric’s value in benchmarking these 

methods. 

Evaluating ligand-receptor interaction predictions is a challenge, as there is very little 

transcriptomic data available where the interactions are known.  But next-gen methods rely on 

inferring transcriptomic signatures of ligand perturbation to improve their ligand-receptor 

interaction predictions, so they can be evaluated based on their perturbation response predictions.  

This is an easier task, as the resources used in Chapter 3 can serve as test datasets.  Predicting 

gene expression is also a more mature field of research, and knowledge from both the machine 

learning communities (Li et al., 2019; Avsec et al., 2021) and genetic regulation communities 
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(Huynh-Thu et al., 2010; Ding et al., 2018).  I suspect that methods such as CellChat v2 (Hao et 

al., 2021) and Domino (Cherry et al., 2021) that make an effort to predict cell type specific gene 

regulatory networks may perform best at predicting ligand perturbation signatures.  However, 

predicting GRNs from transcriptomic data is challenging, with benchmarking studies generally 

noting that all methods struggle (Holland et al., 2020; Pratapa et al., 2020; Kang et al., 2021).  

Single-cell chromatin accessibility assays (scATACseq) improve GRN inference by including 

epigenetic information (Kamimoto et al., 2023).  While most users of intercellular interaction 

inference methods don’t have access to multimodal data, it may be possible to use published 

scATACseq data from their assayed cell types in conjunction with their scRNAseq data. 

Predicting transcriptional response to intercellular signaling is not without its own complications, 

most notably the combinatorial nature of signal processing.  Unlike in traditional transcriptomic 

assays of ligand perturbation, in vivo a cell is exposed to multiple ligands at the same time.  

Together these signals may cause a different response than if presented to a cell individually.  

The multilayer networks built by next-gen ligand-receptor interaction inference methods actually 

have an advantage in this context, as they already model all potential interactions.  It remains to 

be seen whether they can appropriately handle combinatorial responses.  There is a dataset 

available to test this, thanks to a recent study of combinatorial signaling amongst the bone 

morphogenic protein (BMP) ligand family (Klumpe et al., 2022).  With combinatorial logic 

modeled in their multilayer networks and the addition of cell type specific gene regulatory 

networks, next-gen ligand-receptor inference methods could be a major improvement in the field. 

4.3 Single-cell transcriptomics beyond cell types 

High-throughput single-cell RNA sequencing was first used to systematically identify the cell 

types present in a tissue, which raised the question of how to define a cell type.  If cell types are 

defined by the gene products they express, is scRNAseq sufficiently sensitive to distinguish 

them? My work includes many examples where scRNAseq data identified rare cells and 

distinguished similar cell types.  In our first scRNAseq study of the developing forebrain, we 

identified the rare and transient Cajal-Retzius cells by their expression of the patterning cue 

Reelin, and were able to categorize nascent neurons into their cortical layers by their 

transcriptomes (Yuzwa et al., 2017).   
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The collection of many transcriptomes in a single assay has renewed interest in the concept of 

cells as points in transcriptional space, as exemplified in the common tSNE and UMAP 

projections to visualize scRNAseq data in two dimensions. Rather than defining cell types as 

discrete categories, they may be regions of transcriptomic space, with individual cells able to 

transition through the region depending on their state.  I explore this concept in our study relating 

embryonic and adult neural stem cells (Figure 1-13), where we identified cell fate and activation 

axes in transcriptional space and showed that adult NSCs derived from glutamatergic embryonic 

radial precursors adopt an GABAergic embryonic-like state when activated (Borrett et al., 2020). 

What drives cells to make these purposeful moves through transcriptional space to acquire 

various cell states? Does the comprehensive definition of a cell type include its anatomical 

position and functional role? These related questions will define the future of single-cell research 

as we move beyond annotating cell types to placing them in their functional context in a tissue, a 

goal shared by major research consortia including the Human Cell Atlas and the Multiscale 

Human (Regev et al., 2018; CIFAR, 2023).  To realize this goal, we need to add two major 

pieces of information beyond cell type.  This thesis has already argued the need to identify 

communication between cell types and their environment and outlined the state of this field. The 

other addition would be to place cells in their spatial context. Adding spatial information not 

only has the potential to improve cell-cell interaction prediction but may also help understand the 

function of both individual cells and their role in a tissue.  Spatial transcriptomic technologies 

like the 10x Genomics Visium (Ståhl et al., 2016), which captures whole transcriptomes at nearly 

single-cell resolution, and seqFISH (Eng et al., 2019), which can probe for increasingly large 

subsets of the transcriptome at subcellular resolution, are facilitating this next step towards 

molecular models of tissue function. 
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Appendices 

Appendix A. A comprehensive listing of novel methods and resources for cell-cell interaction prediction from transcriptomic data. 

Methods that rely on additional spatial context are omitted.  Relevant historical non-transcriptomic efforts have been included. 

 Paper Ligand-Receptor Source Inference Method 

1.  Bioinformatic identification of potential autocrine signaling 

loops in cancers from gene expression profiles (Graeber and 

Eisenberg, 2001) 

Curated from literature to 

create DLRP. 

Correlation of ligand & cognate receptor expression from 

microarray data to infer autocrine signaling. 

2.  Dynamic interaction networks in a hierarchically organized 

tissue (Kirouac et al., 2010) 

Curated mostly from COPE 

(Ibelgaufts, 1997) 

Ligand & receptor expression above threshold in microarray 

experiments of purified cell types. 

3.  Intercellular network structure and regulatory motifs in the 

human hematopoietic system (Qiao et al., 2014) 

GO terms & manual curation 

for ligands, receptors. iRefWeb 

(Turner et al., 2010) for 

interactions. 

Ligand & receptor expression above threshold in microarray 

experiments of purified cell types and deconvolved bulk 

RNAseq. 

4.  Transcriptome analysis of individual stromal cell populations 

identifies stroma-tumor crosstalk in mouse lung cancer model 

(Choi et al., 2015) 

DLRP (Graeber and Eisenberg, 

2001); HPRD (Keshava Prasad 

et al., 2009); KEGG (Kanehisa 

et al., 2016) 

Ligand & receptor expression above threshold in bulk 

RNAseq experiments of purified cell types. 

5.  A draft network of ligand–receptor-mediated multicellular 

signalling in human (Ramilowski et al., 2015) 

Ligand-Receptor pairs from this paper are extensively 

referenced, referred to as the FANTOM5 database here. 

IUPHAR (Harding et al., 

2022); HPMR (Ben-Shlomo et 

al., 2003); DLRP; curation for 

ligands, receptors. 

STRING (Szklarczyk et al., 

2015); HPRD; curation for 

interactions. 

Ligand & receptor expression above threshold in CAGE 

analysis of purified cell types (FANTOM5 dataset). 

6.  Proneurogenic ligands defined by modeling developing cortex 

growth factor communication networks (Yuzwa et al., 2016) 

GO terms & manual curation 

for ligands, receptors. iRefWeb 

for interactions. 

Ligand & receptor expression above threshold in microarray 

experiments of purified cell types and deconvolved bulk. 

Cell surface proteomics for validation of receptor expression. 

7.  Social network architecture of human immune cells unveiled by 

quantitative proteomics (Rieckmann et al., 2017) 

Secretome from experiments + 

STRING. 

Proteomics from purified cell types. 
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8.  Single-cell transcriptomics of the human placenta: inferring the 

cell communication network of the maternal-fetal interface 

(Pavličev et al., 2017) 

DLRP; IUPHAR Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

9.  Extracting Intercellular Signaling Network of Cancer Tissues 

using Ligand-Receptor Expression Patterns from Whole-tumor 

and Single-cell Transcriptomes (Zhou et al., 2017) 

FANTOM5 Coexpression of ligand & receptor in TCGA samples. 

Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

10.  Multilineage communication regulates human liver bud 

development from pluripotency (Camp et al., 2017) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

11.  Single-Cell Transcriptional Profiling Reveals Cellular Diversity 

and Intercommunication in the Mouse Heart (Skelly et al., 2018) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

12.  Lung Single-Cell Signaling Interaction Map Reveals Basophil 

Role in Macrophage Imprinting (Cohen et al., 2018) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

13.  Analysis of Single-Cell RNA-Seq Identifies Cell-Cell 

Communication Associated with Tumor Characteristics (Kumar 

et al., 2018) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Scored by expression. 

14.  Single cell molecular alterations reveal target cells and pathways 

of concussive brain injury (Arneson et al., 2018) 

UniProt “secreted” peptides as 

ligands. 

Interaction score calculated by summing correlations 

between ligand and all genes (across cell types). Significance 

determined by permutation testing. 

15.  Single-cell transcriptomic profiling of the aging mouse brain 

(Ximerakis et al., 2019) 

GO, Uniprot, HPA (Uhlén et 

al., 2015) for ligands, 

receptors. iRefIndex (Razick et 

al., 2008), Pathway Commons 

(Cerami et al., 2011), 

BioGRID(Chatr-Aryamontri et 

al., 2017) for interactions. 

(Isserlin et al., 2020) 

Ligand & receptor nodes scored by differential expression 

magnitude between conditions. Edges ranked by summed 

node scores scaled per cell type.  Avoids arbitrary 

thresholding. 

16.  Optimal-Transport Analysis of Single-Cell Gene Expression 

Identifies Developmental Trajectories in Reprogramming 

(Schiebinger et al., 2019) 

GO terms for ligands, 

receptors. Protein-protein 

interaction databases for links. 

Curated. 

Ligand & receptor interaction scored by positive 

coexpression in single-cell RNAseq experiments. 

17.  Landscape of Intercellular Crosstalk in Healthy and NASH Liver 

Revealed by Single-Cell Secretome Gene Analysis (Xiong et al., 

2019) 

SPD (Chen et al., 2005) Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 



121 

 

18.  iTALK: an R Package to Characterize and Illustrate Intercellular 

Communication (Wang et al., 2019b) 

DLRP ; IUPHAR; FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

19.  Dissecting intratumoral myeloid cell plasticity by single cell 

RNA-seq (Song et al., 2019) 

IUPHAR; FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

20.  Single-Cell Transcriptomics Analyses of Neural Stem Cell 

Heterogeneity and Contextual Plasticity in a Zebrafish Brain 

Model of Amyloid Toxicity (Cosacak et al., 2019) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

21.  Adventitial Cell Atlas of wt (Wild Type) and ApoE 

(Apolipoprotein E)-Deficient Mice Defined by Single-Cell RNA 

Sequencing (Gu et al., 2019) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

22.  Systematic expression analysis of ligand-receptor pairs reveals 

important cell-to-cell interactions inside glioma (Yuan et al., 

2019) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Filtered for ligand-receptor pairs 

coexpressed in corresponding TCGA samples. 

23.  Single cell analysis of the developing mouse kidney provides 

deeper insight into marker gene expression and ligand-receptor 

crosstalk (Combes et al., 2019) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Networked weighted by gene 

expression, statistical model to find highly expressed 

interactions. 

24.  Single-cell expression profiling reveals dynamic flux of cardiac 

stromal, vascular and immune cells in health and injury (Farbehi 

et al., 2019) 

FANTOM5 Ligand & receptor expression weighted by DE in cluster vs 

all cells. Cell-cell interactions are summed ligand-receptor 

edge weights, significance testing by permutation of ligand-

receptor edges. 

25.  Intra- and Inter-cellular Rewiring of the Human Colon during 

Ulcerative Colitis (Smillie et al., 2019) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Statistical model of cell-cell 

communication from number of ligand-receptor interactions 

per cell type pair. 

26.  Single-cell reconstruction of the early maternal-fetal interface in 

humans (Vento-Tormo et al., 2018); CellPhoneDB: inferring 

cell-cell communication from combined expression of multi-

subunit ligand-receptor complexes (Efremova et al., 2020) 

IUPHAR; IMEx (Orchard et 

al., 2012); InnateDB (Breuer et 

al., 2013). 

Statistical model prioritizes ligand-receptor enrichment in 

pair of cell types relative to all cell pairs. Models complexes 

explicitly. 

27.  Cell lineage and communication network inference via 

optimization for single-cell transcriptomics (Wang et al., 2019a) 

Curated selected pathways Multilayer model of ligand-receptor, receptor-pathway, and 

gene regulatory networks. Probability of interaction is a 

function of ligand, receptor, and pathway gene expression. 
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28.  Single-cell immune landscape of human atherosclerotic plaques 

(Fernandez et al., 2019) 

FANTOM5 Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Scored by expression. 

29.  Uncovering hypergraphs of cell-cell interaction from single cell 

RNA-sequencing data (Tsuyuzaki et al., 2019) 

Organism-specific DBs using 

UniProt, HPRD; STRING 

Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Modeled as a hypergraph, with cell 

types as nodes and L-R interactions are hyperedges, which 

allows for one/many-to-many interactions. 

30.  PyMINEr finds gene and autocrine-paracrine networks from 

human islet scRNA-seq (Tyler et al., 2019) 

Extracellular domain or 

secreted GO terms; STRING 

Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. 

31.  SingleCellSignalR: inference of intercellular networks from 

single-cell transcriptomics (Cabello-Aguilar et al., 2020) 

FANTOM5; Reactome (Jassal 

et al., 2020); manual curation 

Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Scored by normalized expression. 

32.  Single-cell transcriptome-based multilayer network biomarker 

for predicting prognosis and therapeutic response of gliomas 

(Zhang et al., 2020) 

DLRP ; HPRD; KEGG Multilayer model of ligand-receptor, receptor-pathway, and 

gene regulatory networks. Supported by prognostic power of 

EGFR signal in glioma.  No code published. 

33.  NicheNet: modeling intercellular communication by linking 

ligands to target genes (Browaeys et al., 2020) 

Many databases, mostly 

accessed through 

Harmonizome (Rouillard et al., 

2016) 

Multilayer model of ligand-receptor, receptor-pathway, and 

gene regulatory networks. Weights trained on collection of 

ligand-perturbation gene expression data. 

34.  Predicting cell-to-cell communication networks using NATMI 

(Hou et al., 2020) 

Updated FANTOM5 to 

connectomeDB2020 

Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Weighted by expression or specificity. 

35.  FunRes: resolving tissue-specific functional cell states based on a 

cell–cell communication network model (Jung et al., 2021) 

FANTOM5; OmniPath (Türei 

et al., 2016, 2021); Reactome; 

MetaCore (Clarivate) 

Multilayer model of ligand-receptor, receptor-pathway, and 

gene regulatory networks. Ligand-receptor interaction 

inferred by Markov chain from transcription factor 

expression. 

36.  Reconstruction of cell spatial organization from single-cell RNA 

sequencing data based on ligand-receptor mediated self-assembly 

(Ren et al., 2020) 

FANTOM5 & curated list of 

immune cytokines / 

chemokines. 

Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Scored by expression. 

37.  Pan-Cancer Analysis of Ligand–Receptor Cross-talk in the 

Tumor Microenvironment (Ghoshdastider et al., 2021) 

FANTOM5 & curated list of 

immune checkpoint L-R pairs. 

Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Direction of cell-cell signaling scored 

by relative expression of ligand/receptor between cell types. 

38.  Molecular topography of an entire nervous system (Taylor et al., 

2021) 

Curated list of C. elegans cell 

adhesion molecules 

Proposes network differential gene expression (nDGE), 

calculating bivariate genetic effects between groups of 

interacting cell pairs. 
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39.  CytoTalk: De novo construction of signal transduction networks 

using single-cell transcriptomic data (Hu et al., 2021) 

FANTOM5 Multilayer model of ligand-receptor and intracellular gene 

interaction networks. Prize-collecting Steiner forest 

algorithm identifies subnetwork with highest L-R correlation 

across cell types and intracellular cell type specificity. 

40.  Dissection of intercellular communication using the 

transcriptome-based framework ICELLNET (Noël et al., 2021) 

Manual curation of immune 

signaling L-R pairs. 

Scored by product of scaled ligand & receptor expression. 

41.  Inference and analysis of cell-cell communication using CellChat 

(Jin et al., 2021) 

KEGG, STRING & literature 

curation 

Ligand & receptor expression above threshold in single-cell 

RNAseq experiments after imputation by PPI network 

propagation. Scoring model based on law of mass action, 

includes agonist + antagonist cofactor expression.  Cell-cell 

edges scored by number of ligand-receptor edges over 

expected by permutation. 

42.  scConnect: a method for exploratory analysis of cell-cell 

communication based on single cell RNA sequencing data 

(Jakobsson et al., 2021) 

IUPHAR & manual 

association of non-peptide 

ligands with gene products 

required for synthesis 

Ligand & receptor expression above threshold in single-cell 

RNAseq experiments. Scored by expression. For non-peptide 

ligands, score is the geometric mean of synthesis genes. 

43.  CrossTalkeR: Analysis and Visualisation of Ligand Receptor 

Networks (Nagai et al., 2021) 

CellphoneDB (Efremova et al., 

2020) 

Summarizes CellPhoneDB output as a directed graph for the 

purpose of calculating network topology statistics. 

44.  CellTalkDB: a manually curated database of ligand–receptor 

interactions in humans and mice (Shao et al., 2021) 

STRING; text mining of GO 

terms, NCBI gene annotation, 

PubMed abstracts 

A ligand-receptor database meant to be used with existing 

cell-cell interaction algorithms. 

45.  Cellinker: a platform of ligand–receptor interactions for 

intercellular communication analysis (Zhang et al., 2021b) 

Literature curation; DLRP; 

HPRD; IUPHAR; 

CellphoneDB 

Interaction database includes endogenous small molecules 

annotated as inorganic, metabolite, natural product, peptide 

and synthetic organic. Interaction database categorizes cell-

cell interaction types. Statistical model prioritizes L-R 

interactions specific to cell type pairs. 

46.  CellCall: integrating paired ligand–receptor and transcription 

factor activities for cell–cell communication (Zhang et al., 

2021a) 

connectomeDB2020 (Hou et 

al., 2020); CellTalkDB (Shao 

et al., 2021); Cellinker (Zhang 

et al., 2021b); CellChat (Jin et 

al., 2021) 

Multilayer model of ligand-receptor, receptor-pathway, and 

gene regulatory networks. Scoring combines expression of 

L-R with expression of downstream regulon linked by 

KEGG and TF databases using enrichment statistics from 

GSEA (Subramanian et al., 2005). 
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47.  scAgeCom: a murine atlas of age-related changes in intercellular 

communication inferred with the package scDiffCom (Lagger et 

al., 2021) 

Curated from CellChat; 

CellPhoneDB; CellTalkDB; 

connectomeDB2020; 

ICELLNET; NicheNet; 

SingleCellSignalR 

Geometric mean of ligand & receptor expression above 

threshold, specific (using CellPhoneDB’s permutation test), 

and differential between conditions by permutation testing.  

Computationally expensive. 

48.  Inferring microenvironmental regulation of gene expression from 

single-cell RNA sequencing data using scMLnet with an 

application to COVID-19 (Cheng et al., 2021) 

Collected ligand-receptor and 

TF-target interactions from 

multiple databases 

Multlayer model of ligand-receptor, receptor-TF, and gene 

regulatory networks. L-R and R-TF graphs pruned of weakly 

expressed nodes. GRN refined by requiring significant 

positive correlations between TF and target gene expression. 

49.  Identification of Intercellular Signaling Changes Across 

Conditions and Their Influence on Intracellular Signaling 

Response From Multiple Single-Cell Datasets (Hao et al., 2021) 

CellChat Multlayer model of ligand-receptor (CellChat), receptor-TF 

(OmniPath), and gene regulatory networks. Cell type 

specific GRNs inferred by coexpression analysis using TF 

networks from DoRothEA (Garcia-Alonso et al., 2019) as a 

prior. 

50.  Computational reconstruction of the signalling networks 

surrounding implanted biomaterials from single-cell 

transcriptomics (Cherry et al., 2021) 

CellphoneDB for L-R 

interactions, SCENIC (Aibar et 

al., 2017) for GRN. 

Receptors positively correlated with TFs (excluding 

receptors that were TF targets by SCENIC GRN) were 

considered to be activating those TFs. Expression of cognate 

ligands used to identify sender cells. 

51.  Integrated intra- and intercellular signaling knowledge for 

multicellular omics analysis (Türei et al., 2021) 

Curation from 26 external 

databases. 

OmniPath now includes annotations for protein roles in 

intercellular signaling: surface/secreted ligand; receptor; 

ECM; adhesion; surface/secreted enzymes; transporter. 

52.  Deciphering cell–cell interactions and communication from gene 

expression (Armingol et al., 2021) 

Collected from many 

published ligand-receptor lists 

Indexed available ligand-receptor lists: 

https://github.com/LewisLabUCSD/Ligand-Receptor-Pairs 

53.  Inferring a spatial code of cell-cell interactions across a whole 

animal body (Armingol et al., 2022b) 

C. elegans orthologs mapped 

from FANTOM5 + manual 

curation 

Ligand & receptor expression above threshold. Cell-cell 

interaction scored by modified Bray-Curtis: number of cell 

pair-specific interacting ligands + receptors relative to total 

ligands + receptors expressed in pair. 

54.  Context-aware deconvolution of cell–cell communication with 

Tensor-cell2cell (Armingol et al., 2022a) 

CellChat Ligand & receptor mean expression per cell pair per sample 

into 4D matrix. Non-negative TCA (Friedlander and Hatz, 

2008) to associate contributions of ligand-receptor pairs with 

samples. 
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55.  Reconstructing co-dependent cellular crosstalk in lung 

adenocarcinoma using REMI (Yu et al., 2022) 

FANTOM5 Calculates partial correlations in graph of ligand-receptor 

interactions to improve specificity of conditionally-

dependent interaction prediction. 

56.  Computation and visualization of cell–cell signaling topologies 

in single-cell systems data using Connectome (Raredon et al., 

2022) 

FANTOM5 Ligand-receptor network edges weighted by expression or 

relative expression.  Edges pruned by specificity or 

differential expression of ligands/receptors. Will also 

calculate network topology statistics. 

57.  InterCellDB: A User‐Defined Database for Inferring Intercellular 

Networks (Jin et al., 2022) 

All human & mouse proteins 

in Ensembl & NCBI annotated 

by STRING for interactions, 

COMPARTMENTS (Binder et 

al., 2014) for locations, 

Uniprot and GO for functions. 

All protein-protein interactions considered, with optional 

filtering by function/location.  Edge weight is product of 

gene expression, significance determined by permutation 

testing.  Edges annotated with expected interaction effect 

from STRING.  Plotting includes location. 

58.  CINS: Cell Interaction Network inference from Single cell 

expression data (Yuan et al., 2022) 

NicheNet’s multiscale network 

to associate ligands with 

transcriptional response 

Learns a Bayesian network of cell type dependencies from 

changes in cell type proportions in case-control studies.  

Causal ligands from cell-cell edges are predicted by LASSO 

regression of ligands and response genes. 

59.  An individualized causal framework for learning intercellular 

communication networks that define microenvironments of 

individual tumors (Chen et al., 2022) 

Not reported Nested hierarchical Dirichlet process to identify context-

specific gene expression modules. Learn causal Bayesian 

network from cell type – gene expression module 

associations. No attempt to identify ligand-receptor pairs 

involved in interactions predicted by cell-cell network. 

60.  Cancer cells communicate with macrophages to prevent T cell 

activation during development of cell cycle therapy resistance 

(Griffiths et al., 2022) 

FANTOM5 Proposes TWISTER to consider cell type-niche interactions. 

Sums ligand expression proportional to relative prevalence 

of contributing cell types for each receiving cell type. 

61.  Comprehensive visualization of cell–cell interactions in single-

cell and spatial transcriptomics with NICHES (Raredon et al., 

2023) 

OmniPath, FANTOM5 Generates “cell-cell” and “niche” matrices interpretable 

using scRNAseq analysis workflows (ie. Seurat/Scater). 

Cell-cell matrix rows are ligand-receptor pairs, columns are 

individual cell pairs, value is product of ligand & receptor 

gene expression.  Niche matrix contains mean ligand 

expression in system for each receptor in each cell. 
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