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The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-
triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our 
understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland 
through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level 
relationships between chromatin–DNA–RNA–protein states, identify lineage-specific DNA methylation of transcription 
factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen 
and progesterone receptor–positive and –negative cell populations, extensive target validation, and drug testing lead to 
discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary 
cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human 
breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study 
provides fundamental insight into mammary lineage and stem cell biology.
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Introduction
The mammary gland is a defining feature of mammals. Its study 
has provided new knowledge on organogenesis, differentia-
tion programs, control of cell fate, and the molecular interplay 
that enables proliferation of tissue-specific progenitor cells 
(Hennighausen and Robinson, 2005). Elucidating the events 
that go awry in breast cancer formation requires a deep under-
standing of the normal adult breast. Recent discoveries of inher-
ited single-nucleotide polymorphisms (Nguyen et al., 2015; 
Michailidou et al., 2017) that increase cancer risk will also ben-
efit from information contextualizing their impact on the mam-
mary epithelium.

The mammary epithelial hierarchy has two main lineages, 
basal and luminal, each of which contain progenitor cells. The 
luminal compartment comprises estrogen and progesterone 
receptor–positive (ER+PR+) and ER−PR− cells. Lineage-tracing 
studies have demonstrated that under physiological conditions, 
basal, ER+PR+ luminal, and ER−PR− luminal cells are each main-
tained by their own unipotent stem cells (Van Keymeulen et al., 
2011, 2017; van Amerongen et al., 2012). A small number of mam-
mary epithelial cells have been shown to reconstitute complete 

mammary structures when transplanted in vivo and have thus 
been termed mammary stem cells (Shackleton et al., 2006; Stingl 
et al., 2006; Eirew et al., 2008). However, whether bipotent adult 
stem cells contribute to the mammary epithelium in a physiolog-
ical setting is controversial. Although some lineage-tracing stud-
ies have provided in situ evidence of bipotent stem cell activity 
(Rios et al., 2014; Wang et al., 2015), a subsequent statistics-based 
study has suggested that these results may result from a lack of 
labeling specificity (Wuidart et al., 2016), with questions remain-
ing regarding both approaches (Rios et al., 2016).

Evidence suggests that stem and progenitor cells under-
lie cancer development and are cells of origin in aggressive 
breast cancer subtypes. Luminal progenitors are expanded in 
BRCA1 mutation carriers and linked to basal-like breast cancers, 
whereas stem- and progenitor-enriched basal cells are associated 
with claudin-low breast cancers (Lim et al., 2009; Molyneux et 
al., 2010; Shehata et al., 2012). Cancer risk has also been cor-
related to the number of stem cell divisions inherent to tissue 
homeostasis (Tomasetti et al., 2017); this concept is relevant to 
the breast, which undergoes extensive tissue remodeling during 

© 2018 Casey et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https:// creativecommons .org/ licenses/ by/ 4 .0/ ).

1Princess Margaret Cancer Centre, Toronto, ON, Canada; 2Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; 3The 
Donnelly Centre, University of Toronto, Toronto, ON, Canada; 4Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada; 5Nuffield Department 
of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK; 6Department of Medical Biophysics, University of Toronto, Toronto, ON, 
Canada; 7Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; 8Department of Laboratory Medicine and Pathobiology, 
University of Toronto, ON, Canada.

*A. Sinha, R. Singhania, and J. Livingstone contributed equally to this paper; Correspondence to Rama Khokha: rama.khokha@ uhnresearch .ca. 

on June 21, 2018jcb.rupress.org Downloaded from 
http://doi.org/10.1083/jcb.201804042Published Online: 19 June, 2018 | Supp Info: 

http://crossmark.crossref.org/dialog/?doi=10.1083/jcb.201804042&domain=pdf
http://orcid.org/0000-0002-8424-3768
http://orcid.org/0000-0001-8745-5224
http://orcid.org/0000-0003-0185-8861
http://orcid.org/0000-0003-3525-5540
http://orcid.org/0000-0002-6028-1524
https://creativecommons.org/licenses/by/4.0/
mailto:
http://jcb.rupress.org/
http://doi.org/10.1083/jcb.201804042


Casey et al. 
Identifying adult mammary stem cell vulnerabilities

Journal of Cell Biology
https://doi.org/10.1083/jcb.201804042

2

the female lifespan in response to hormones. Molecular interven-
tions centered on targeting stem and progenitor cells thus offer 
promising strategies for breast cancer chemoprevention.

Mammary stem and progenitor cells typically show undetect-
able expression of ER and PR yet expand during the progester-
one-high phase of the reproductive cycle and pregnancy to drive 
sex hormone–induced mammopoiesis. Effects of circulating pro-
gesterone on ER−PR− stem and progenitor cells are mediated via 
paracrine factors secreted by ER+PR+ luminal cells (Asselin-Labat 
et al., 2010; Joshi et al., 2010, 2015a; Shiah et al., 2015). Multiple 
lines of evidence support that progesterone exposure elevates 
breast cancer risk. In mice, mammary tumorigenesis is lower after 
PR deletion or treatment with a PR antagonist (Lydon et al., 1999; 
Sigl et al., 2016). Early menarche or late menopause is a known 
risk factor in breast cancer (Kelsey et al., 1993), and oophorectomy 
is protective in high-risk women (Kauff et al., 2002; Eisen et al., 
2005; Kotsopoulos et al., 2016). Population studies show that breast 
cancer risk is higher for women on hormone replacement therapy 
formulations containing progestins (Chlebowski et al., 2015; Joshi 
et al., 2015b,c), and high serum progesterone and RAN KL correlate 
with increased risk in postmenopausal women without genetic 
predisposition (Kiechl et al., 2017). Conversely, progestins exert 
antiproliferative effects on ER+PR+ breast cancer cells (Mohammed 
et al., 2015). Because ER−PR− and ER+PR+ mammary cells exhibit 
divergent responses to progesterone, it is critical to understand 
the molecular circuitry underlying sex hormone responsiveness.

To date, profiling of primary mammary subsets has focused 
on transcriptome and/or epigenome analyses (Kendrick et al., 
2008; Lim et al., 2010; Maruyama et al., 2011; Gascard et al., 
2015; Pellacani et al., 2016), with few studies done in controlled 
hormone states (Pal et al., 2013; Dos Santos et al., 2015; Shiah et 
al., 2015). Yet studies have not defined the open chromatin land-
scapes or proteomes of the basal and luminal lineages, nor have 
they integrated successive levels of gene regulation. Here, we 
constructed chromatin–DNA–RNA–protein mammary molec-
ular portraits, which include newly generated and matched 
methylome, assay for transposase-accessible chromatin using 
sequencing (ATAC-seq), and proteome data. Proteomics was 
then extended to three cell subsets from contrasting progester-
one states: ER−PR− basal, ER−PR− luminal progenitor, and ER+PR+ 
luminal cells. This global mammary resource exposes statistical 
relationships across four successive levels of regulation, yielding 
new insights into the DNA and chromatin states of key transcrip-
tion factor binding sites (TFBSs) and highlighting distinct expres-
sion patterns of lineage-restricted versus total genes. Finally, 
mammary portraits uncover new pathways controlling stem and 
progenitor cell function and drugs that exert cytostatic effects to 
limit sex hormone–driven adult stem and progenitor expansion 
and mammopoiesis. Drugs also impede human breast cell clono-
genicity in specimens from normal and high-risk women.

Results
Union of basal and luminal mammary epigenomes, 
transcriptomes, and proteomes
We set out to comprehend the two mammary lineages, which 
are each enriched for distinct stem and progenitor cells, by 

quantifying global relationships between basal and luminal cell 
epigenomes, transcriptomes, and proteomes in adult mice. To 
normalize sex hormone exposure, mice were ovariectomized 
and treated with 17β-estradiol and progesterone (designated EP); 
primary basal (CD24lo-medCD49fhi) and luminal (CD24hiCD49flo) 
cells were FACS-purified. We performed reduced representation 
bisulfite sequencing (RRBS) and ATAC-seq to identify DNA meth-
ylation and open chromatin regions, respectively (Meissner et 
al., 2005; Buenrostro et al., 2013). For transcriptomes, we lev-
eraged our published RNA abundance data (Shiah et al., 2015). 
For proteomes, we performed ultra-high pressure liquid chro-
matography/mass spectrometry (UPLC-MS) and identified 
4,213 proteins.

Global integration of data revealed a positive relationship of 
open chromatin regions with both RNA and protein abundance 
(Fig. 1, A–C). Specifically, genes with higher abundance in basal 
or luminal cells associated more with ATAC-seq peaks detected in 
that, versus the other, cell type (e.g., for RNA basal, 662/880 or 
75%; for luminal, 589/822 or 72%). Minimal relationship existed 
between DNA hypomethylation and RNA or protein abundance 
(e.g., for RNA basal, 304/515 or 59%; for luminal, 221/413 or 54%); 
DNA methylation at promoter regions again showed no relation-
ship with RNA abundance (Fig. S1 A). Genomic regions enrich-
ment of annotations tool (GRE AT) was used to explore func-
tional significance of lineage restricted open chromatin regions 
(McLean et al., 2010), as shown in Fig. S1 B and Table S1. ErbB-2 
class receptor binding was enriched in basal cells (q = 0.004), 
and numerous pathways critical to cell differentiation, survival 
and breast cancer were enriched in luminal including c-KIT, NOT 
CH, and GH receptor signaling (Fig. S1 B and Table S1). Next, we 
classified genes based on their chromatin–DNA–RNA–protein 
relationships, quantifying the frequency and probability of spe-
cific states (Fig. 1 D and Table S2 for log-odds ratios and p-values). 
One-third of genes identified in all four datasets did not differ 
between basal and luminal cells (1,147/3,424) and mostly repre-
sented common cellular processes (Fig. S1 C). Open chromatin 
regions statistically associated with increased RNA abundance 
in both mammary lineages (p-values: basal = 1.51 × 10−9, luminal 
= 1.45 × 10−7; Table S2). In basal cells, open chromatin also asso-
ciated with increased protein abundance (P = 4.52 × 10−7; Table 
S2); luminal cell relationships were more complex, with ATAC-
seq peaks linked to both increased (P = 5.63 × 10−6; Table S2) and 
decreased (P = 0.022; Table S2) protein abundance.

It has been shown that RNA abundances only weakly correlate 
with protein levels (Kislinger et al., 2006; Cox et al., 2009; Rugg-
Gunn et al., 2012). We observed a positive association between 
increased RNA and protein abundance (p-values: basal = 1.86 × 
10−48; luminal = 1.36 × 10−31; Table S2). RNA–protein correlations 
were higher for more abundant proteins (Spearman’s ρ = 0.49), 
although correlation at the global level was weak (Spearman’s 
ρ = 0.34; Fig. 1, E and F). Overall, 35% of genes changed at the 
RNA or protein level across mammary lineages (basal 356/3,424; 
luminal 835/3,424); of these, only 3% displayed the conventional 
pattern of more open chromatin and increased RNA and pro-
tein (basal 38/3,424; luminal 76/3,424). We next interrogated a 
22-basal-luminal marker gene signature for their ATAC-seq, DNA 
methylation, RNA, and protein status (Fig. 1 G). Here, increased 
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Figure 1. Integrated proteomic, transcriptomic and epigenomic profiling of basal and luminal mammary cells. (A) Schematic depicts analyses performed 
on EP-treated basal and luminal cells. Biological replicates: ATAC-seq, RRBS, and UPLC-MS, n = 2; microarray, n = 4. (B) Tables show numbers of genes associated 
with protein or RNA up-regulation, DNA hypo- or hypermethylation, and lineage-restricted ATAC-seq peaks, in basal (B) and luminal (L) cells. (C) Volcano plots 
show log2(fold change RNA abundance) across mammary cell compartments; color coding shows genes associated with ATAC-seq peaks or DNA hypomethyl-
ation specific to basal/luminal cells. (D) Heatmap depicts genes classified based on their relationship states between open chromatin, DNA hypomethylation 
(h-Me), RNA, and protein abundances. Bar plot shows the number of genes in each state on a log10 scale. (E) Graph shows log2(fold change) of RNA versus 
protein abundance of all genes found in both microarray and UPLC-MS datasets. (F) Graph shows Spearman’s correlation (ρ) of log2(fold change) in RNA versus 
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lineage restricted open chromatin associated with higher gene 
expression (20/22; 91%); most genes were not DNA methylated 
(16/22; 73%); and 21/22 exhibited concordant RNA and protein 
abundance. Altogether, although tightly controlled marker genes 
exhibit open chromatin and concordant RNA/protein expression, 
most others fall outside of this conventional regulation pattern. 
This integrative computational analysis provides insight into 
relationships between chromatin structure and translational/
posttranslational control.

Key TFBSs are differentially methylated in basal 
versus luminal cells
Overall, less DNA methylation exists in the basal compartment, 
with more differentially methylated cytosines (DMCs) hypometh-
ylated in basal (5,168) versus luminal (4,095) cells. Methylomes 
clustered separately (Fig. 2 A) with DMCs more likely to occur 
at introns or intergenic sites and in shelf, shore, or open-sea 
regions (Fig.  2  B). Because our multimodal data suggests that 
DNA methylation does not regulate proximal gene expression, we 
reasoned it may influence cell state by controlling transcription 
factor binding. TFBS analysis revealed several motifs hypometh-
ylated in basal versus luminal cells, with many also enriched in 
lineage-restricted functional open chromatin (Figs. 2 C and S1 
D). These included TFBSs for key transcription factors such as 
FOXA1, ELF5, GATA3, and TP63, which are essential regulators of 
mammary morphogenesis, cell fate, differentiation, and lineage 
identity. Other TFBSs associated with DNA hypomethylation and 
open chromatin regions belonged to TP53 and EGR1 in basal and 
FOXA2, SPI1, and FOXP1 in luminal cells.

We used our expression data to interrogate RNA and protein 
abundance of protein-coding genes proximal to hypomethylated 
TFBSs and open chromatin regions (≤250 bp, lineage-restricted 
or shared; Fig. 2 D and Tables S3 and S4). Most proximal genes 
did not exhibit significant changes in their RNA abundance 
(basal 42/61, 69%; luminal 37/57, 65%; Tables S3 and S4). This 
may signify the inherent complexity of epigenetic control over 
gene expression or that hypomethylated TFBSs are located in 
enhancer regions. In analogous human breast epithelial subsets, 
these same TFBSs associate with cell type–specific enhancers 
shown via H3K4me1, H3K4me3, and H3K27ac chromatin immu-
noprecipitation sequencing (ChIP-seq; Pellacani et al., 2016), 
with methylome analysis highlighting a strong overlap between 
hypomethylated genome regions and enhancer chromatin states 
(Gascard et al., 2015).

For the proximal genes that did change with hypomethylation, 
most significant differences in RNA were reflected at the protein 
level. One exception was FAM46B, with a clear discordance in 
RNA/protein abundance (Fig. 2 D and Table S3). For instance, 16 
of 19 genes in basal cells had elevated expression (Fig. 2 D and 
Table S3) and represented known (Tln1; Deugnier et al., 2002) or 
novel (e.g., Gstm1 and Atp1a1) basal cell features. In luminal cells, 
altered genes both increased (11/20; 55%) and decreased (9/20; 

45%; Fig. 2 D and Table S4) in expression. Among the up-regu-
lated luminal genes are Prex1, Abca3, and Cdk6: Prex1 is overex-
pressed in ER+ and HER2+ breast cancers (Marotti et al., 2017), 
whereas Abca3 and Cdk6 are higher in normal human luminal 
cells (Lucas et al., 2004; Schimanski et al., 2010); Abca3 is an ERα 
target gene; its loss is an adverse risk factor for breast cancer 
recurrence and promotes acquisition of mesenchymal-like char-
acteristics in lung epithelial cells (Lin et al., 2004; Kaltenborn et 
al., 2012). Deletion of the CDK4/6 inhibitor p18INK4C stimulates 
luminal progenitor expansion and mammary tumor formation 
in mice (Pei et al., 2009).

Interestingly, genes tended to be located near ≥2 hypometh-
ylated TFBSs in both mammary lineages (basal 44/61 or 72%; 
luminal 45/59 or 76%; Tables S3 and S4). To probe effects of dif-
ferent hypomethylation events on gene expression, we calculated 
the mean RNA fold-change associated with each TFBS (Fig. 2 E). 
In basal cells, most TFBSs associated with increased RNA abun-
dance (Fig.  2  E). In luminal cells, motifs belonging to NR2C2, 
NFE2L2, and BACH2 associated with strong increases in RNA, 
whereas FOXA1, FOXP1, and NFIB associated with decreased RNA 
(Fig. 2 E). These integrated analytics of primary mammary cells 
challenge the classic view that DNA methylation, whether in pro-
moter regions or otherwise, regulates nearest gene expression. 
Rather, our findings suggest a major role for DNA methylation is 
controlling TFBS accessibility on the genome.

Defining the protein landscapes of mammary cell lineages
We next interrogated mammary cell proteomes that exhibited 
separate clustering and hallmark characteristics of the basal 
(KRT5, KRT14, CD29, TP63) and luminal (KRT8, KRT18, EPC AM, 
GATA3) compartments (Fig. 3 A and Table S5). Some proteins 
were detected in only one lineage, resulting in absolute log2(fold 
change) >15 (Fig. 3 A and Table S5). Comparison of basal versus 
luminal proteomes revealed 745 differentially expressed proteins 
(Fig. 3 B; P < 0.05, fold change ≥2). More proteins were up-reg-
ulated in luminal cells (573 vs. 172) likely because of greater 
heterogeneity within this compartment. Intriguingly, gene set 
enrichment analysis (GSEA) demonstrated that luminal up-reg-
ulated proteins lacked enrichment for any biological terms, 
whereas those up-regulated in basal cells were enriched for 
139 different functions or pathways (false discovery rate [FDR] 
≤0.05; Table S6) that clustered into 13 groups (Fig. 3 C), reflecting 
novel or known features of basal/myoepithelial cells (Deugnier 
et al., 2002). Further to enabling chromatin–DNA–RNA–protein 
comparisons and providing a biological baseline for future que-
ries, our mammary proteomes show the feasibility of perform-
ing label-free MS-based shotgun proteomics on small numbers 
of FACS-sorted, primary cells (∼100,000 cells).

Mammary cell proteomes and their hormone responsiveness
We next set out to define proteomes of stem- and progeni-
tor-enriched mammary populations. For this, equal numbers 

protein abundance. Genes were divided into quantiles (Q1–Q4) based on their peptide counts (biological replicates: UPLC-MS, n = 2; microarray, n = 4). (G) 
Heatmaps show z-scores of protein and RNA abundance of known marker proteins in basal and luminal subsets. Color coding indicates gene hypomethylation, 
and bar chart shows the relative proportion of total ATAC-seq peaks detected in basal or luminal cells.
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Figure 2. TFBSs are hypomethylated in basal and luminal cells. (A) RRBS of basal and luminal cells from EP-treated mice (biological replicates, n = 2). 
Heatmap shows unsupervised hierarchical clustering and β-values of luminal and basal subsets. (B) Dot maps show likelihood of DNA hypomethylation (h-Me) 
occurring at specific gene locations or in different types of methylation regions. (C) Dot maps show log2(enrichment over background) and q-values for TFBS that 
are hypomethylated and/or enriched in open chromatin regions in basal or luminal cells. Tables show HOM ER motif logos. (D) Volcano plots show differences 
in RNA abundance for genes located near h-Me TFBS and open chromatin, in basal and luminal cells. Heatmaps show RNA and protein abundance of proximal 
genes identified in both transcriptomic and proteomic datasets; asterisks mark genes with significant differences in RNA abundance across mammary lineages. 
(E) Bar charts show mean log2(fold change) in RNA abundance for all genes proximal to the indicated h-Me TFBS, in basal or luminal cells.
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Figure 3. Progesterone stimulates expansion of basal and luminal progenitor cells. (A) UPLC-MS of basal and luminal cells from EP-treated mice (bio-
logical replicates, n = 2). Volcano plot shows differential protein expression in mammary cell compartments. Proteins detected in only one compartment are 
shown in blue (luminal) or red (basal); proteins detected in both lineages and altered across compartments are shown in black (fold-change ≥2, P ≤ 0.05). Venn 
diagram depicts number of identified proteins per cell compartment. Heatmap shows unsupervised hierarchical clustering and z-scores of protein abundance 
across basal and luminal subsets. Bar chart shows log2(fold change) in luminal and basal marker protein abundance. (B) Venn diagram depicts number of 
proteins differentially expressed across the basal and luminal mammary lineages (≥2-fold change, P < 0.05). (C) Enrichment map summarizes results of GSEA 
pathway analysis for proteins up-regulated in basal compared with luminal cells (FDR ≤0.05). Up-regulated pathways include regulation of insulin-like growth 
factor (IGF) activity by insulin-like growth factor binding protein (IGF BP). Nodes represent biological pathways that were automatically annotated and organized 
into themes using Cytoscape; biological themes are labeled and depicted via gray ellipses. (D) Left: Flow cytometry analysis of luminal (CD24+CD49flo) and 
basal (CD24−CD49fhi) primary mammary cells, purified from three pairs of glands (second, third, and fourth) of E- or EP-treated mice. Right: The luminal subset 
further subdivided using the CD49b and SCA-1 cell-surface markers (Shehata et al., 2012). (E) Bar chart shows absolute number of basal and luminal cells from 
E- or EP-treated mice; biological replicates, n = 3; error bars represent SD. (F) Photographs of representative CD49b+SCA-1- luminal CFC plate from E- versus 
EP-treated mice. (G) Bar charts show absolute number of CFC within the different luminal or basal subsets, in E- or EP-treated mice (n = 3, error bars represent 
SD). (E and G) Statistical significance was calculated using two-tailed t test (basal CFC; *, P < 0.05) or two-way ANO VA and Sidak’s multiple comparisons test 
(mammary epithelial cells, luminal CFC). Multiple comparisons testing was performed with a 0.05 significance level and 95% confidence interval. Statistically 
significant differences are indicated by asterisks, which denote size of significance levels. **, P ≤ 0.01; ****, P < 0.0001.



Casey et al. 
Identifying adult mammary stem cell vulnerabilities

Journal of Cell Biology
https://doi.org/10.1083/jcb.201804042

7

of FACS-purified ER−PR− basal, ER−PR− luminal progenitor, and 
ER+PR+ luminal cells were pooled from ovariectomized mice 
treated with 17β-estradiol alone (E) or 17β-estradiol and proges-
terone (EP). These treatments mimic contrasting phases of the 
natural estrous cycle where addition of progesterone induces 
robust stem and progenitor expansion and changes at the tran-
scriptomic level over estrogen alone (Shiah et al., 2015). Flow 
cytometry and matched colony-forming capacity (CFC) assays 
confirmed that EP increased absolute numbers of basal and lumi-
nal cells (Fig. 3, D and E) as well as progenitors (Fig. 3, F and G). As 
expected, most luminal progenitors resided in the CD49b+Sca-1− 
population (Fig. 3 G; Shehata et al., 2012).

In total, proteomes identified 4,672 proteins that clustered 
first within cell fractions and then hormone states (Fig.  4, A 
and B; and Table S7). We observed a strong overlap between the 
well-known luminal progenitor markers ITGA2/CD49b, ITGB3/
CD61 and c-KIT (Fig. 4 C, arrowheads) only after progesterone 
inclusion. Specifically, sex hormones induced a marked decline 
in ITGB3/CD61 that was not mirrored by either ITGA2/CD49b or 
c-KIT. This was independently verified by flow cytometry, which 
showed no difference between CD49b+Sca-1− or c-KIT+ luminal 
progenitor numbers after EP treatment, but significantly fewer 
ITGB3/CD61+ luminal cells (Fig. S2 A). These data indicate that 
progesterone-driven loss of luminal progenitors is limited to 
the ITGB3/CD61+ subset and care should be taken when using 
this marker as an indicator of overall luminal progenitor activ-
ity, especially in the context of sex hormones. ALDH enzymatic 
activity also marks luminal progenitor cells and is detected via 
commercially available kits; however, the specific ALDH iso-
forms responsible for this remain unclear. We found pronounced 
ALDH heterogeneity across mammary cell compartments, with 
ALDH1a3, ALDH5a1, ALDH6a1, ALDH16a1, and ALDH18a1 being 
higher in luminal progenitors, yet many other isoforms exhibit 
selectivity for basal or ER+PR+ luminal cells (Fig. 4 C). Proteomics 
thus afforded new insight into mammary marker proteins.

We combined discovery proteomics with GSEA and enrich-
ment map analyses to illustrate protein changes driven by pro-
gesterone in each mammary subpopulation (Fig.  4, D and E; 
Fig. S2, B and C; and Tables S8 and S9). More pathways were 
up-regulated in ER−PR− luminal progenitors than in either of 
the other two cell compartments (Fig. 4, D and E; and Table S8). 
Despite marked differences existing across mammary lineages, 
we noted high overlap of progesterone-stimulated pathways in 
ER−PR− luminal progenitor and basal cells; these were associ-
ated with nuclear changes, cell replication, and cell metabolism 
(Fig.  4  E). Progesterone drove terms linked to epigenetic pro-
cesses primarily in ER−PR−− luminal progenitor cells, with S-ade-
nosylmethionine (SAMe)–dependent methyltransferase activity 
also up-regulated in the basal compartment (Fig. 4 E). Protein 
abundances associated with SAMe-dependent methyltransfer-
ase activity are shown in Fig. S2 B. SAMe is the primary methyl 
donor for methyltransferase enzymes and is thus intrinsic to 
chromatin remodeling and epigenetic modifications (Loenen, 
2006). Fewer pathways were up-regulated by progesterone in 
ER+PR+ luminal cells (Fig.  4  E). Strikingly, a large number of 
pathways are down-regulated by EP in basal cells (Fig. S2 C and 
Table S9). Altogether, proteomics uncovered new focal points and 

distinctions in mammary cell molecular makeup, highlighting 
epigenetics as a putative mechanism for dictating lineage iden-
tity and hormone response.

Progesterone up-regulates epigenetic master regulators in the 
mammary epithelium
ER−PR− mammary cell populations exhibit a mitogenic response 
to progesterone and contain likely cells of origin for aggressive 
breast cancers. We leveraged the concept that epigenetic path-
ways underscore adult stem and progenitor cell expansion to 
identify vulnerabilities of these primitive cell types. Epigenetic 
targets are a highly active area of drug discovery, as evident by 
the recent development of many high-quality and specific chem-
ical probes (Huston et al., 2015). We rationalized that drugs, if 
matched to key epigenetic regulatory proteins within the basal or 
luminal compartments, can serve as a means to create cytostatic 
effects and deplete stem- and progenitor-enriched populations.

First, we performed an in-depth assessment of short-listed 
epigenetic proteins in the adult mammary gland via single-cell 
intracellular flow cytometry and in situ analyses. Our gating 
strategy with lineage marker controls is shown in Fig. S3 A. Con-
sistent with our proteomics findings, intracellular flow cytom-
etry revealed a luminal-basal disparity in some, but not all, 
epigenetic master-regulators. Specifically, EZH2, HDAC1, and 
G9a/EHMT2, but not HDAC2 and CRE BBP, were significantly 
elevated in EP luminal compared with EP basal cells (Figs. 5 A 
and S3 B). Higher expression of epigenetic modifiers in luminal 
cells was hormone dependent, and only HDAC1 showed a signifi-
cant luminal-basal difference in E-treated mice (Fig. 5 A). Several 
proteins (EZH2, HDAC1, HDAC2, CRE BBP, and G9a/EHMT2) were 
increased by progesterone in both compartments (Figs. 5 A and 
S3 B). Among these, only EZH2 was previously shown to increase 
in the mammary gland with sex hormones (Pal et al., 2013). 
Therefore, progesterone broadly up-regulates components of the 
epigenetic machinery across the two mammary lineages.

Immunofluorescence (IF) spatially confirmed the aforemen-
tioned differences in protein expression, exposed the heteroge-
neous nature of many epigenetic proteins, and demonstrated 
that SETD7 but not GLP/EHMT1 is elevated in luminal cells (Fig. 5, 
B and C; and Fig. S3, B and C). It also revealed differential expres-
sion of DNMT enzymes across lineages; DNMT1 and DNMT3b are 
higher in luminal cells and DNMT3a in basal (Fig. 5 C). Microar-
ray data showed similar expression patterns for most genes at 
the RNA level, with Dnmt1 and Dnmt3a displaying significant 
differences (Fig. 5 D). Heterogeneous expression of epigenetic 
proteins in the luminal compartment corroborates mammary 
proteomics that shows enrichment of EZH2, HDAC2, CRE BBP, 
DNMT1, and DNMT3a in ER−PR− progenitors over ER+PR+ cells 
after EP treatment (Fig. 5 E). DNMT1 largely acts on hemimeth-
ylated CpGs during S-phase of the cell cycle, and this DNA meth-
yltransferase displayed high overlap with proliferation marker 
Ki67 (Fig. 5 C). We also ascertained the status of mutually exclu-
sive H3K27me3 (repressive) and H3K27ac (activating) chromatin 
marks, which are regulated by our target proteins. Both marks 
tended to be higher in the luminal compartment, with H3K27me3 
exhibiting heterogeneous expression similar to EZH2 and being 
up-regulated by progesterone (Fig. 5, A and B; and Fig. S3 B). This 
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Figure 4. Defining the protein composition and hormone responsiveness of mammary epithelial subsets. (A) UPLC-MS of ER−PR− basal, ER−PR− 
luminal progenitor, and ER+PR+ luminal cells from E- and EP-treated mice (biological replicates, n = 2). Heatmap shows unsupervised hierarchical clustering 
and z-scores of protein expression across samples. (B) Venn diagrams depict number of proteins identified in ER−PR− basal, ER−PR− luminal progenitor, 
or ER+PR+ luminal cells after E or EP treatment. (C) Heatmap shows unsupervised hierarchical clustering and marker protein expression across cell 
compartments and hormone states. Arrowheads denote ITGA2/CD49b, c-KIT, and ITGB3/CD61 luminal progenitor marker proteins. (D) Tables summarize 
GSEA results, detailing the numbers and types of gene sets enriched for proteins up- or down-regulated by progesterone in each mammary subpopulation 
(FDR ≤0.05). (E) Enrichment map visualizes results of GSEA for proteins up-regulated in EP compared with E proteomes. Nodes represent biological 
pathways that were automatically annotated and organized into themes using Cytoscape; biological themes are labeled and depicted via gray ellipses. 
Colors of nodes show which cell types were enriched for specific pathways (FDR ≤0.05), with multicolored nodes depicting pathways up-regulated by 
progesterone in two or more subpopulations: ER−PR− basal (red), ER−PR− luminal progenitor (light blue), and ER+PR+ luminal (darker blue) cells. Node size 
is proportional to the number of associated genes.
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systematic validation confirmed that specific epigenetic marks 
and regulators are increased by progesterone exposure.

Epigenetic drugs effectively target basal and luminal mouse 
progenitor cells
We next asked whether epigenetic proteins are required for 
mammary progenitor function using Food and Drug Admin-
istration (FDA)–approved drugs or highly potent and selective 
chemical probes. We matched 12 drugs to rationalized epigenetic 
targets and examined their effects on FACS-purified basal and 
luminal cells in 2D clonogenic assays (Fig. 6 and Fig. S4, A and 
B). Each drug was individually titrated and used at low, phys-
iologically relevant concentrations according to the literature 

or Structural Genomics Consortium (SGC) guidelines. Of these 
12 compounds, seven had no effect, one increased basal CFC, 
and four robustly interfered with basal and/or luminal CFC 
(summarized in Fig. 6 D). Drugs and targets effective against 
mammary progenitors are: UNC1999 → EZH1 and 2; trichosta-
tin A (TSA) → HDAC class I and II; DAC → DNMT1, 3a, 3b; and 
JQ1 → BRD2, 3, 4, and T (Fig. 6, B and C). These top four drugs 
are all FDA approved, are in phase I/II clinical trials, or have 
counterparts at similar stages of drug development. UNC1999, 
TSA, and JQ1 preferentially abrogated luminal over basal CFC 
(Fig. 6, B and C), with both JQ1 and TSA still reducing the size 
and number of basal colonies at nanomolar concentrations 
(Figs. 6 C and S4 A).

Figure 5. Lineage specificity and hormone responsiveness of epigenetic master regulators. (A) Intracellular flow cytometry of epigenetic targets in 
mammary epithelial cells. Example histograms show intensity staining for proteins compared with isotype Fc controls (black) in basal (red) and luminal (blue) 
cells on a log scale. Bar charts show adjusted MFI for each mammary population. Number of biological replicates is shown in brackets under graphs. Error 
bars represent SEM. Statistical significance was calculated using two-way ANO VA and Tukey’s multiple comparisons test performed with a 0.05 significance 
level and 95% confidence interval. Statistically significant differences are indicated by asterisks, which denote size of significance levels. (B and C) IF staining 
of mammary ductal structures in EP-treated mice: DAPI (blue), Ki67 (magenta), basal lineage marker KRT14 (red), and indicated epigenetic marks or proteins 
(green). Luminal/basal border is depicted by a dotted white line. Bars, 20 µm. (D) Bar chart shows log2(fold change RNA abundance) for epigenetic proteins in 
EP-treated basal and luminal cells, determined by microarray (biological replicates, n = 4); asterisk denotes significantly altered genes (q < 0.05). (E) Bar charts 
show maximum normalized protein abundance of epigenetic proteins in ER−PR− luminal progenitor and ER+PR+ luminal cells, taken from E- and EP-treated 
mice as determined by UPLC-MS (biological replicates, n = 2). *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P < 0.0001.
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Epigenetic drugs prevent progenitor cell expansion and 
mammopoiesis via cytostatic effect
Genetic studies have shown that conditional loss of Dnmt1 or Ezh2 
compromises pubertal mammary gland development, resulting in 
truncated structures that possess fewer stem and progenitor cells 
(Michalak et al., 2013; Pal et al., 2013; Pathania et al., 2015). The 
importance of these and other epigenetic regulators in controlling 
adult stem cell pools has yet to be determined. We tested top epi-
genetic drugs in vivo to measure effects against stem- and progen-
itor-driven mammopoiesis in adult mice. We adapted our model 
to shorten the duration of sex hormone administration while pre-
serving mammary cell expansion (Fig. 7 A). Each drug was given 
to mice for 1 wk along with progesterone, followed by mammary 
whole mounts, flow cytometry, and progenitor cell enumeration. 
Drugs tested were DAC, JQ1, and suberoylanilide hydroxamic acid 
(SAHA), the latter being an FDA-approved substitute for TSA (Fig. 7, 
B–D; and Fig. S4, C–E). Both DAC and JQ1 imparted dose-dependent 
inhibition of ER−PR− basal and luminal progenitor expansion with 
a corresponding depletion in total mammary CFCs (Fig. 7, B and C; 
and Fig. S4 C). Mammopoiesis, as evident by side branching and 
alveoli formation, was also suppressed in drug-treated mice (Figs. 
7 D and S4 D); these structures model the sites of breast cancer 

initiation in the human breast (Cardiff and Wellings, 1999). The 
HDAC inhibitor SAHA also prevented mammary epithelial expan-
sion in response to progesterone, albeit at a higher concentration 
(Fig. S4 E). DAC exerted a cumulative effective on mammary pro-
genitor inhibition, and administration of a low concentration over 
2 or 4 wk significantly repressed mammary progenitor cell num-
bers (Fig. S4 F). Multicolor IF showed reduced DNMT1 and Ki67 
positivity after 1 wk of DAC treatment (Figs. 7 E and S5 A).

1-wk treatment with DAC or JQ1 did not alter the frequency 
of mammary dead cells (Fig.  7  F). Further, absolute numbers 
of dead cells were lower, likely because drug-treated mice con-
tained fewer total mammary epithelial and stromal cells (Fig. S5 
B). DAC also had no effect on early- or late-apoptotic cells after 
4 wk (Figs. 7 G and S5 C). We thus conclude that DAC and JQ1 
do not kill mammary cells, but rather prevent ER−PR− basal and 
luminal progenitor populations from responding to biological 
mitogenic triggers.

Epigenetic drugs affect mammary stem cell 
frequency and cell cycle
Limiting dilution assays (LDAs) are used to measure stem cell 
frequency in multiple tissues, including the mammary gland 

Figure 6. Epigenetic targeting exposes mouse mammary progenitor cell vulnerabilities. (A) Workflow schematic for epigenetic drug testing. (B) Bar 
charts show number of basal and luminal colonies formed with vehicle control or the indicated concentrations of epigenomic inhibitors. Number of biological 
replicates per drug treatment is shown in brackets. Error bars represent SEM. Statistical significance was calculated using two-way ANO VA and Dunnett’s 
multiple comparisons test performed with a 0.05 significance level and 95% confidence interval. Statistically significant differences are indicated by asterisks, 
which denote size of significance levels. ****, P < 0.0001. (C) Photographs of representative luminal (L) and basal (B) colony assay plates. (D) Summary of 
compounds tested and their targets and effects against mammary progenitor function.
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(Hu and Smyth, 2009). We performed LDAs to enumerate mam-
mary repopulating units (MRUs) in mice treated with top epi-
genetics drugs or vehicle controls for 4 wk, plus progesterone 
(Fig. 8, A–D; workflow schematic Fig. S5 D). JQ1 treatment (50 
mg/kg, five weekly doses) significantly reduced the frequency 
and absolute number of MRUs, demonstrating its depletion of 
the adult mammary stem cell pool (Fig. 8, A and B). On the other 
hand, DAC treatment (0.25 mg/kg DAC, five weekly doses; 0.5 
mg/kg DAC, three weekly doses) had no significant effect on MRU 

frequency or absolute number (Fig. 8, C and D). PRO CRhi basal 
cells also remained unaffected in DAC-treated mice (Fig. 8 E); 
these are reportedly enriched for bipotent mammary stem cells 
(Wang et al., 2015). Thus, both JQ1 and DAC significantly inhibit 
mammary cell clonogenicity, whereas JQ1 also depletes bipotent, 
mammary stem cells.

The hypomethylating agent DAC is FDA approved for myel-
odysplastic syndrome and has been subject to hundreds of 
phase I–IV clinical trials. We rationalized that DAC treatment 

Figure 7. DAC and JQ1 prevent adult progeni-
tor cell expansion and mammopoiesis in vivo. 
(A) Workflow schematic for in vivo drug testing. 
(B and C) Flow cytometry analysis of luminal 
(CD24+CD49flo) and basal (CD24−CD49fhi) mam-
mary subsets. Primary mammary cells were puri-
fied from the two inguinal glands of mice treated 
for 1 wk with vehicle, JQ1 (gray background), or 
DAC (clear background), + progesterone. Left: 
Bar charts show absolute number of ER−PR− 
basal, ER−PR− luminal progenitor, and ER+PR+ 
luminal cells, which were further purified using 
the CD49b and SCA-1 cell-surface markers. Right: 
Bar charts show absolute number of CFC. Error 
bars for all bar charts represent SEM. Statistical 
significance was calculated using one-way (abso-
lute CFC) or two-way (absolute ER−PR− basal, 
ER−PR− luminal progenitor, and ER+PR+ luminal) 
ANO VA followed by Dunnett’s multiple compar-
isons test. All multiple comparisons testing was 
performed with a 0.05 significance level and 
95% confidence interval; statistically significant 
differences are indicated by asterisks, which 
denote size of significance levels. In B, biologi-
cal replicates: n ≥ 7 left stacked bar charts, n ≥ 4 
right CFC bar chart; in C, biological replicates: n 
≥ 4. (D) Representative whole mounts from mice 
treated with vehicle or indicated epigenetic drug. 
Bars, 1 mm. (E) IF staining of mammary ductal 
structures: DAPI (blue), basal lineage marker 
KRT14 (red), and DNMT1 (green). Luminal/basal 
border is depicted by a white dotted line. Bars, 
20 µm. (F) Bar charts show relative frequency 
of primary mammary dead cells purified from 
the two inguinal glands of mice treated for 1 wk 
with JQ1 (gray background) or DAC, + progester-
one. Dead cells were determined via propidium 
iodide staining; biological replicates: n ≥7 (JQ1) 
or n ≥4 (DAC). Statistical significance was tested 
for using one-way ANO VA followed by Dunnett’s 
multiple comparisons test; no comparisons were 
found to be statistically significant. (G) Bar charts 
show relative frequency of early- and late-apop-
totic mammary cells after treatment with 0.5 mg/
kg DAC, three weekly doses for 4 wk, determined 
via annexin V and propidium iodide staining. Bio-
logical replicates, n = 5. Statistical significance 
was tested using two-way ANO VA followed by 
Sidak’s multiple comparison test; no compari-
sons were found to be statistically significant. *, 
P ≤ 0.05; **, P ≤ 0.01.
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may impose a cytostatic effect on the mammary gland, thereby 
blocking sex hormone–triggered epithelial cell expansion. 
Supporting this, DAC treatment depleted mammary epi-
thelial/progenitor cells only in the presence of  exogenous 
progesterone (Fig.  8  F). We also asked whether prolonged 
DAC administration could limit natural stem and progenitor 
expansions occurring in response to hormonal fluctuations 
of the reproductive cycle. This dynamic cellular turnover in 
the adult mammary gland is linked to breast cancer risk. Mice 
were treated with DAC for 26 wk (0.5 mg/kg, three weekly 
doses). Fig. 8 G shows that prolonged DAC treatment reduced 
the absolute number of ER−PR− luminal progenitor cells, mam-
mary CFC, and PRO CRhi basal cells.

We next determined how epigenetic drugs exert a cyto-
static effect on mammary progenitor cells. We took advantage 
of the Fucci2 reporter mouse in which cells express mCher-
ry-hCdt1 during G1 and mVenus-hGem during S/G2/M (Abe 
et al., 2013). This transgenic system allows precise quantifi-
cation of cell cycle phases (modeled in Fig.  8  H), which we 
applied to clonogenic assays. Fig. 8 I shows that all four of our 
top epigenetic drugs, identified via multimodal mammary 
cell profiling, significantly increased the proportion of cells 
in G1 and decreased cells in G2, S, and M. Consistent with our 
previous observations (Fig. 6, B and C), the effect of UNC1999 
and TSA on cell cycle progression was greater in luminal ver-
sus basal colonies (Fig. 8 I). Overall, epigenetic drugs prevent 
mammopoiesis and limit stem and progenitor expansion via 
stalling of mammary cells in G1.

Epigenetic targeting of normal and high-risk human breast 
progenitor cells
An important step in ultimate clinical translation is to test whether 
drugs prove effective against human breast cells. We examined 
our shortlisted candidates using clinical specimens derived from 
normal and high-risk women. We obtained patient material from 
women undergoing reduction mammoplasty (BRCA wild-type) or 
prophylactic mastectomy (high-risk, BRCA1 or BRCA2 mutant). 
First, we measured the relative proportions of breast cell subpop-
ulations—basal, luminal, luminal progenitor, and stromal—in 
tissues from each subject. (Fig. 9 A). The corresponding FACS pro-
files and progenitor enumeration reflected heterogeneity between 
women and the expected preponderance of luminal progenitors 
in BRCA1 mutation carriers (Fig. 9, B and C; Lim et al., 2009). Sec-
ond, CFC for each patient specimen was enumerated with vehicle 
or epigenetic drugs. Colonies from normal women were signifi-
cantly reduced by only one of the four inhibitors shortlisted from 
our mouse studies: UNC1999 (Fig. 9, D and E). In contrast, BRCA1 
mutant cells were highly sensitive to epigenetic inhibition, with 
significant reduction of CFC by all four drugs, whereas BRCA2 
mutant cells were less affected and susceptible only to the DNMT 
inhibitor DAC. It is noteworthy that primary cells from BRCA1 
mutation carriers show sensitivity to several epigenetic drugs, and 
that DAC proved effective against specimens from both BRCA1/2 
high-risk groups. These data demonstrate that progenitor cell 
dependence on specific epigenetic proteins is conserved between 
mice and humans and highlight the potential of epigenetic therapy 
to target pertinent cell compartments in the human breast.

DAC delays mammary tumor formation in mice with 
conditional loss of Trp53
Next, we tested whether DAC could prevent breast cancer for-
mation. We selected a Trp53-driven model because mutations 
in TP53 occur frequently in breast cancer, are more common in 
BRCA1 or BRCA2 mutation carriers, and associate with aggressive 
tumors and adverse prognosis (Koboldt et al., 2012; Stunnenberg 
et al., 2016). In mice, loss of Trp53 drives mammary tumorigen-
esis and results in cancers comprising a spectrum of molecular 
subtypes (Herschkowitz et al., 2012). Notably, deletion of Trp53 
in the mouse mammary epithelium also causes expansion of 
both luminal and basal stem and progenitor cells (Jackson et al., 
2015). We used mice that have conditional deletion of Trp53 in 
both mammary epithelial layers, via cytokeratin 5 (K5) promot-
er-driven Cre (K5Cre;Trp53F/F). Treatment of 8-wk-old, adult 
K5Cre;Trp53F/F mice with 0.5 mg/kg DAC, three times weekly, 
led to a marked delay in tumor initiation (P = 0.0079; Fig. 10, 
A–C). We observed multiple spontaneous mammary tumors in 
these mice, with a median onset of 172 d. The median number of 
tumors observed in K5Cre;Trp53F/F mice at end point was four. 
Further, age-matched, DAC-treated mice consistently had fewer 
palpable tumors throughout their lifespan. The only metasta-
sis-bearing mouse was observed in the vehicle-treated group, in 
which metastases were found in the bone, lungs, and liver.

Discussion
To generate fundamental information on the mammary epithe-
lial lineages, we built a multimodal resource capable of querying 
genes at four separate levels of regulation. Another key objective 
was to model low- versus high-progesterone states and identify 
protein changes associated with stem and progenitor expansion 
and increased breast cancer risk. An important unknown is how 
the epigenome, transcriptome, and proteome landscapes work 
together to govern mammary cells. Two-way comparisons confirm 
a positive association between open chromatin, RNA, and/or protein 
abundance. Yet higher-order classification of genes based on their 
chromatin–DNA–RNA–protein relationship states reveal that most 
genes fall outside conventional patterns expected from the central 
dogma of molecular biology. For instance, we identified copious cell 
type–specific differences in open chromatin that did not amount 
to changes in RNA or protein. Further, DNA hypomethylation did 
not associate with higher gene expression, and a weak positive 
correlation between RNA and protein changes indicated substan-
tial translational and posttranslational control. Of the 35% of genes 
exhibiting changes in RNA or protein abundance across basal and 
luminal cells, only 3% displayed the pattern of more open chromatin 
as well as increased RNA and protein abundance. Collectively, these 
findings highlight the intricate nature of cellular control over breast 
cell lineages and the value of a resource that enables researchers to 
query genes at successive levels of regulation.

Sex hormone exposure elevates breast cancer risk, with 
progesterone driving cyclical mammopoiesis events coupled 
to mammary stem and progenitor cell expansion (Joshi et al., 
2010, 2015a). Proteomes for primary mammary subpopula-
tions can now be mined to interrogate mitogenic effects of 
progesterone on ER−PR− basal and luminal progenitor subsets, 
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Figure 8. Effects of epigenetic drugs on adult stem cell expansion and mammary cell cycle. (A and C) Comparison of LDA take rates of total mammary 
cells purified from donor mice treated with vehicle or the indicated epigenetic inhibitors, + progesterone. Take rate is defined as a positive outgrowth. 
Cells were subsequently purified from the two inguinal glands for CFC assay. MRU frequencies for LDA experiments were calculated using ELDA software 
and a 95% confidence interval (Hu and Smyth, 2009). (B and D) Bar charts show absolute number of MRU and mammary CFC from the same total cell 
populations; all error bars represent SEM. Statistical significance was calculated using unpaired t test (*, P ≤ 0.05; **, P ≤ 0.01). (A and B) Donor mice were 
treated with progesterone + either vehicle or JQ1 (50 mg/kg, five weekly doses; gray background). Biological replicates: vehicle, n = 4; JQ1, n = 6. (C and 
D) Donor mice were treated with progesterone + either vehicle or DAC (0.25 mg/kg, five weekly doses; 0.5 mg/kg, three weekly doses; clear background). 
Biological replicates, n = 6. (E) Bar chart shows absolute number of PRO CRhi basal cells in mice treated with vehicle or DAC for 4 wk (0.5 mg/kg, three weekly 
doses); biological replicates, n = 5, error bars represent SEM. (F) Mice were treated with vehicle or 1 mg/kg DAC for 5 d + either sesame oil or progesterone. 
Biological replicates, n = 4; cells were purified from the two inguinal glands. Left: Bar chart shows absolute number of total mammary CFC. Right: Bar 
chart shows absolute number of ER-PR- basal, ER−PR− luminal progenitor, and ER+PR+ luminal cells. Error bars represent SEM. Statistical significance was 
calculated using one-way ANO VA (absolute CFC) or two-way ANO VA (absolute ER−PR− basal, ER−PR− luminal progenitor, and ER+PR+ luminal) followed by 
Tukey’s multiple comparisons test. (G) Mice were treated with vehicle or DAC for 26 wk (0.5 mg/kg, three weekly doses); biological replicates, n = 3. Bar 
charts shows absolute number of total mammary CFC (left), PRO CRhi basal cells (middle), and ER-PR- basal, ER-PR- luminal progenitor, and ER+PR+ luminal 
cells (right). Cells were purified from the two inguinal mammary glands; all error bars represent SEM. Statistical significance was calculated using unpaired 
t test (absolute CFC or PRO CRhi basal cells) or two-way ANO VA followed by Sidak’s multiple comparisons test. (H) Schematic of the Fucci2 reporter mouse 
transgenic system. (I) Basal or ER−PR− luminal progenitor cells were FACS-sorted, plated in 2D clonogenic assays, and treated with vehicle or epigenetic 
drugs: 3 µM UNC1999, 50 nM TSA, 50 nM DAC, or 75 nM JQ1. Drugs were added on day 0 or 4 of a colony-forming assay, with bar charts showing the 
proportion of cells in different phases of the cell cycle at day 7, determined by flow cytometry. Biological replicates, n = 3; all error bars represent SEM. 
Statistical significance was calculated using two-way ANO VA followed by Dunnett’s multiple comparisons test. For all panels, all multiple comparisons 
testing was performed with a 0.05 significance level and 95% confidence interval. Statistically significant differences are indicated by asterisks, which 
denote P < 0.05. *, P ≤ 0.05; **, P ≤ 0.01.
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direct effects of  progesterone on ER+PR+ luminal cells, and 
discover proteins responsible for functional changes in stem 
and progenitor activity. Visual composites of  progesterone 
responses illustrate that more pathways are up-regulated in 
luminal progenitors, whereas a dramatic number of pathways 
are down-regulated in the basal compartment. Consistent 
with a mitogenic response, many pathways specific to ER−PR− 
cells project nuclear changes associated with cell replication, 
DNA integrity, and epigenetic processes. Using discovery pro-
teomics, we expose stem and progenitor cell vulnerabilities 
to highly specific and potent epigenetic drugs. Finally, we 
demonstrate feasibility of in-depth proteomics on ∼100,000 
FACS-purified, primary cells which can be applied to rare cell 
fractions from other tissues.

Currently, there are no standard-of-care preventive inter-
ventions for women at high risk of breast cancer. Although it 
is becoming increasingly clear that stem and progenitor cells 
underlie cancer development (Visvader, 2011), strategies to target 
these cells for chemoprevention are lacking. We uncover lineage 
distinctions in epigenetic master regulators and demonstrate 
these proteins to be both hormonally regulated and required for 
progenitor function. Our results show that specific epigenetic 
drugs limit expansion of adult breast stem and progenitor cells in 
vivo, preventing mammopoiesis and depleting absolute numbers 
of these precursor cells. Additionally, treatment of mice with 
DAC and JQ1 did not cause detectable toxicity, but rather affected 
the cell cycle to exert a cytostatic effect on mammary cells, pre-
venting them from responding to mitogenic stimuli.

Figure 9. Epigenetic targeting of normal and high-risk human breast progenitor cells. (A) Workflow schematic. (B) Example flow cytometry 
plots of dissociated breast cells from normal and high-risk BRCA1 or BRCA2 mutation carrying patients. Plots show basal (EpCAM-/lowCD49f+), luminal 
progenitor (EpCAM+CD49f+), and luminal (EpCAM+CD49f−) cells. (C) Left: Bar chart shows relative proportions of human basal (red), luminal progenitor 
(light blue), and luminal (darker blue) cells in samples from individual women, assayed by flow cytometry. Middle: Bar chart shows numbers and types 
of unsorted, total colonies formed from the same patient samples. Right: Bar chart shows percentage of colonies that are luminal, basal, or bipotent in 
different patient groups (biological replicates, n = 4–6). For bar chart on the right, error bars represent SEM, and statistical significance was calculated 
using two-way ANO VA and Tukey’s multiple comparisons test. (D) Bar chart shows number of colonies formed from normal and BRCA1 and BRCA2 
mutation carrying patient specimens, treated with vehicle or the indicated concentrations of epigenetic inhibitors. Biological replicates, n = 4–6; error 
bars represent SEM. Statistical significance was calculated using two-way ANO VA and Dunnett’s multiple comparisons test. All multiple comparisons 
tests were performed with a 0.05 significance level and 95% confidence interval. Statistically significant differences are indicated by asterisks, which 
denote size of significance levels. (E) Photographs of representative colony assay plates. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P < 0.0001.
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Through mammary molecular portraits described herein, we 
build new capacity to identify promising avenues for chemopre-
vention (modeled in Fig. 10 D). We show that targeting epigene-
tic proteins inhibits clonogenicity of primary breast cells from 
women who carry BRCA1 or BRCA2 mutations. In particular, 
DAC is an FDA-approved compound used to treat myelodysplas-
tic syndrome, making window-of-opportunity trials a realistic 
possibility. Prolonged treatment of mice with DAC over 26 wk 
countered cyclical expansions of stem and progenitor cells, 
which occur during natural reproductive cycles and are linked to 
breast cancer risk. DAC also delayed mammary tumor latency in 
conditional Trp53 knockout mice. BET bromodomain inhibitors 
such as JQ1 are active against triple-negative breast cancer cell 
lines and xenografts (Shu et al., 2016); these aggressive cancers 
have poor prognosis and no targeted therapies and account for a 
high proportion of cancers arising in BRCA1 mutation carriers. 
Our finding that JQ1 is effective against adult mammary stem and 
progenitor cells opens the possibility for their use in targeting 
cells of origin in this disease.

Materials and methods
Mice
Husbandry
All experiments were performed according to guidelines from the 
Canadian Council for Animal Care and under protocols approved 

by the Animal Care Committee of the Princess Margaret Cancer 
Centre (Toronto, ON, Canada). Transgenic female K5-Cre;Trp-
53F/F mice were bred in an FVB/C57BL6 background, and Fucci2 
reporter mice were bred in a C57BL6 background. Virgin female 
FVB wild-type mice were purchased from either the Jackson Lab-
oratory or Charles River. All experiments in wild-type mice were 
performed with FVB mice aged 8–12 wk. These mice had a mean 
weight of 22 g and were healthy and immune competent. Mice 
were housed in a modified barrier, specific pathogen–free facility 
in sealed negative ventilation cages (Allentown) with groups of 
two to five mice per cage, at 22°C–24°C and a 12-h light/12-h dark 
cycle with ad libitum food and water.

Primary cell sample preparation
Where indicated, mice were bilaterally ovariectomized and 
allowed to recover for 7 d. Mice were then subcutaneously 
implanted with slow-release hormone pellets, 0.14 mg 17β- 
estradiol (E) or 0.14 mg 17β-estradiol + 14 mg progesterone (EP; 
Innovative Research of America), and left for an additional 14 d.

In vivo dosing for mammopoiesis assays
For in vivo drug treatments, non-ovariectomized mice were ran-
domly assigned to experimental groups. Mice then underwent 
daily subcutaneous injections with the indicated concentrations 
of DAC, SAHA, and JQ1 or the relevant vehicle controls for 1–4 
wk as indicated in figure legends and workflow schematics. For 

Figure 10. DAC delays mammary tumor formation. (A) Workflow schematic; red dots designate breast tumors at end point. (B) Graph shows time to first, 
spontaneous breast tumor formation in K5-Cre;Trp53F/F mice treated with vehicle or 0.5 mg/kg DAC three times weekly, from 8 wk of age onward. Error bars 
represent SEM. Statistical significance was calculated using unpaired, two-tailed t test. (C) Graph shows mean number of palpable tumors in K5-Cre;Trp53F/F 
mice treated with vehicle or DAC, plotted against age in days; shading shows local regression (Loess)-fitted smooth curve. Number of biological replicates for 
PBS- and DAC-treated mice, n = 16 and 11, respectively. (D) Model depicting how mammary molecular portraits can be used to garner new insight into the basal 
and luminal epithelial lineages, identify adult stem and progenitor vulnerabilities, and discover drug targets for breast cancer chemoprevention.
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dosing regimens lasting 2 or 4 wk, drugs were administered for 
five consecutive days followed by a 2-d break from injections. For 
the last 4–5 d of all drug treatments, mice were coinjected with 
100 µl sesame oil containing 1 mg progesterone.

LDAs
Calculation of MRU frequencies by LDAs was performed as 
described previously (Joshi et al., 2010). Donor mice were treated 
with the indicated epigenetic inhibitor or vehicle control plus 
progesterone, as described above. Single-cell suspensions of 
total mammary cells from donor mice were resuspended in 10 µl 
Matrigel and DMEM/F12 (1:1) plus 5% Trypan blue (Sigma). The 
indicated cell numbers were injected into cleared, contralateral 
fourth inguinal fat pads of 21- or 22-d-old recipient FVB female 
mice. After 6 wk, mice were subcutaneously injected with 1 mg 
progesterone, daily for 7 d, to test side-branching and alveolo-
genesis capabilities of outgrowths. Mammary glands were then 
dissected, and whole-mount analysis was performed. Fat pads 
were scored as positive or negative depending on the presence 
or absence of ductal outgrowths.

Patient samples
All human tissue was acquired with patient consent and institu-
tional research ethics board approval. Reduction mammoplasty 
and prophylactic mastectomy specimens were transferred from 
the operating room on ice within 24 h of surgery. Tissue was dis-
sociated into organoids and cryopreserved as described previ-
ously (Labarge et al., 2013). In brief, tissue was manually minced 
and incubated in DMEM/F12 1:1 medium with 15 mM Hepes plus 
2% BSA, 1% penicillin-streptomycin, 5 µg/ml insulin, 300 U/ml 
collagenase (C9891; Sigma), and 100 U/ml hyaluronidase (H3506; 
Sigma) with gentle shaking at 37°C, overnight or for 16 h. Tissue 
organoids were harvested by washing with warm DMEM and 
spinning at 80 g for 30 s.

Tissue was from normal women with no known genetic his-
tory: n = 5; ages 27, 37, 38, 38, and 52 yr; high-risk women with 
germline BRCA1 mutations: n = 6; ages 26, 27, 31, 48, and 52 yr, 
and unknown; and high-risk women with germline BRCA2 muta-
tions: n = 4; ages 39, 41, 43, and 47 yr.

Primary cell colony-forming assay
Mouse CFC assay
All murine 2D colony-forming assays were performed using 
female FVB wild-type mice. In brief, total dissociated mam-
mary cells or FACS-purified basal and luminal cells were seeded 
together with irradiated NIH 3T3 cells. Cells were allowed to 
adhere, and either vehicle control (0.1% DMSO) or the indicated 
concentrations of epigenomic inhibitor were added. Cells were 
cultured for 7 d at 5% oxygen to allow basal colony growth in 
either Epicult-B mouse medium (Stem Cell Technologies) supple-
mented with 5% FBS, 10 ng/ml EGF, 20 ng/ml basic FGF, 4 µg/ml 
heparin, and 5 µM ROCK inhibitor (Millipore) or DMEM/F12 (1:1) 
supplemented with 10% FBS, 5 µg/ml insulin (Thermo Fisher Sci-
entific), 10 ng/ml EGF, 10 ng/ml cholera toxin, 1.8 × 104 M adenine 
(Sigma), 0.5 µg/ml hydrocortisone, and 10 µM ROCK inhibitor 
(Millipore). Growth factors and hydrocortisone were obtained 
from Stem Cell Technologies.

Human CFC assay
Breast colony-forming assays were performed with patient sam-
ples as described previously (Eirew et al., 2010). Total dissoci-
ated breast cells were seeded with irradiated NIH 3T3 cells onto 
collagen-coated plates (04902; Stem Cell Technologies). Cells 
were cultured at 5% oxygen in Epicult-B human medium (Stem 
Cell Technologies) for 14 d. Cells were seeded for 24 h in medium 
containing 5% FBS. Medium was then changed to serum-free 
medium, and drugs or vehicle controls (0.1% DMSO) were added.

Epigenetic drugs and chemical probes
Drug testing in vitro
Unless otherwise stated, epigenetic inhibitors or chemical probes 
were obtained from the SGC, an open-access organization with 
information related to their compounds available online. Links 
for compounds used in this study can be found in Table 1. For 
in vitro studies, UNC1999 (EZH1 and 2), SGC CBP30 (EP300 and 
CRE BBP), JQ1 (BRD2, 3, 4 and T), A-366 (GLP/EHMT1 and G9a/
EHMT2), GSK LSD1 (KDM1A/LSD1), PFI-2 (SETD7), PFI-3 (SMA 
RCA2 and SMA RCA4), OICR-414 (WDR5), TSA (HDAC class I and 
II; Sigma), and decitabine (DAC; DNMT1, 3a and 3b; Sigma) were 
dissolved in DMSO. Vehicle or drugs were added such that the 
final concentration of DMSO did not exceed 0.1% (vol/vol).

Drug testing in mice
DAC (Sigma) was dissolved in PBS; JQ1, in 5% (vol/vol) DMSO in 
10% (wt/vol) hydroxypropyl-β-cyclodextrin (Sigma); and Vori-
nostat (SAHA; Cayman Chemicals), in DMSO.

Mammary cell preparation and FACS
Mouse mammary single-cell suspensions
For murine cells, mammary glands were manually minced with 
scissors or scalpels for 2 min, then enzymatically dissociated 
using 750 U/ml collagenase and 250 U/ml hyaluronidase (Stem 
Cell Technologies) diluted in DMEM/F12 (1:1). Samples were vor-
texed after 1 and 1.5 h. Single-cell suspension preparation and 
cell sorting was performed as described previously (Joshi et al., 
2010). In brief, red blood cell lysis was performed using ammo-
nium chloride solution (Stem Cell Technologies). Cells were trit-
urated in trypsin-EDTA (0.25%; Stem Cell Technologies) that had 
been prewarmed to 37°C, using a P1000 pipette for 2 min. Cells 
were then washed in HBSS without calcium or magnesium, plus 
2% FBS, and centrifuged. Cells were similarly triturated in dis-
pase 5 U/ml diluted in HBBS (Stem Cell Technologies) plus 50 
µg/ml DNase I for 2 min, washed in HBBS + 2% FBS, and filtered 
using a 40-µM cell strainer.

Mouse mammary FACS staining
For FACS, staining antibodies were rat anti-mouse TER119 
(clone TER-119; eBioscience); rat anti-mouse CD31 (PEC AM-1, 
clone 390; eBioscience); rat anti-mouse CD45 (clone 30-F11; 
eBioscience); rat anti-mouse CD24 (clone M1/69; eBioscience); 
rat anti-mouse CD326 or EpCAM (clone G8.8; BioLegend); rat 
anti-human/mouse CD49f (Clone GoH3; BioLegend); Armenian 
hamster anti-CD49b (Clone HMα2; BioLegend); and rat anti–
SCA-1 (clone D7; BioLegend). Mammary cell subpopulations 
were defined as basal, Ter119−CD31−CD45−CD24lo-medCD49fhi; 
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luminal, Ter119−CD31−CD45− CD24hiCD49flo; luminal progenitor, 
Ter119−CD31−CD45−CD24hiCD49floCD49b+Sca-1−; and ERα+PR+ 
luminal cells, Ter119−CD31−CD45− CD24hiCD49floCD49b− Sca-1−/+ 
and Ter119−CD31−CD45− CD24hiCD49floCD49b+Sca-1+. For flow 
cytometry analysis, dead and apoptotic cell frequencies were 
determined after doublet exclusion, using propidium iodide (10 
µg/ml) and the annexin V apoptosis detection kit eFluor 450 
(Invitrogen) according to the manufacturer’s instructions.

Human breast single-cell suspensions
Human breast tissue organoids were thawed and dissociated 
into single-cell suspensions as reported previously (Eirew et 
al., 2010). In brief, organoids were triturated in trypsin-EDTA 
(0.25%; Stem Cell Technologies) followed by dispase 5 U/ml and 
50 µg/ml DNase I as described above for mouse samples, but for 5 
min each. Cells were then washed in HBBS + 2% FBS and filtered 
using a 40-µM cell strainer.

Human breast FACS staining
Human breast cells were stained using the following antibod-
ies: mouse anti-human CD45 (Clone HI30; BioLegend); mouse 
anti-human CD31 (Clone WM59; BioLegend); mouse anti-hu-
man EpCAM (Clone 9C4; BioLegend); and rat anti-human/mouse 
CD49f (Clone GoH3; BioLegend).

Mammary cell intracellular flow cytometry
For intracellular flow cytometry analyses, single-cell suspensions 
of mouse mammary cells were stained with cell-surface markers 
described above. Cells were then washed and labeled with either 
LIVE/DEAD Fixable Far Red stain (Thermo Fisher Scientific) or 
Zombie UV Fixable Viability kit (BioLegend) according to manu-
facturer instructions. Cells were then fixed in 4% PFA dissolved 
in PBS, for 10 min at room temperature, washed, and permeabi-
lized in 0.1% Triton X-100 for 5 min at room temperature. Cells 
were next incubated with the indicated Fc isotype control or 
intracellular primary antibody for 30 min at 4°C, washed twice 
in HBSS, and incubated for a further 30 min at 4°C with goat 
anti–rabbit IgG (H+L) secondary antibody conjugated to Alexa 
Fluor 488 (Thermo Fisher Scientific). All flow cytometry analysis 
was performed using a BD Biosciences Fortessa. Adjusted median 

fluorescent intensity (MFI) for each intracellular staining of each 
mammary population is defined as MFI(protein of interest) − 
MFI(Fc control).

Only antibodies with a stronger signal than their concen-
tration-matched Fc isotype control were used for intracellular 
flow cytometry: rabbit anti-H3K27me3 (Clone C36B11; Cell Sig-
naling); rabbit anti-EZH2 (Clone D2C9; Cell Signaling); rabbit 
anti-EHMT2 (Clone C6H3; Cell Signaling); rabbit anti-HDAC1 
(ab53091; Abcam); rabbit anti-HDAC2 (Clone Y461; Abcam); rab-
bit anti-CRE BBP (Clone D6C5; Cell Signaling); rabbit anti-cyto-
keratin 5 (K5; Clone EP1601Y; Abcam); and rabbit anti-K8 (LS-
B12422; LifeSpan BioSciences). For controls, rabbit polyclonal IgG 
isotype control (Abcam) and rabbit mAb IgG isotype control (Cell 
Signaling) were used.

Mammary tumor latency
K5-Cre;Trp53F/F mice were injected subcutaneously with PBS or 
0.5 mg/kg DAC three times weekly, from 8 wk of age onward. 
Mice were also weighed and checked for tumors via physical 
examination and palpation. A low frequency of mice treated with 
DAC (20%, 3/15) developed eye infections and were treated with 
enrofloxacin (Baytril, 25 mg/kg) and erythromycin eye ointment 
(Pendopharm); this side effect is consistent with known immu-
nosuppressive properties of DAC and was not observed in any 
wild-type mice, indicating it is specific to the K5-Cre;Trp53F/F 
strain. A low frequency of K5-Cre;Trp53F/F mice, in both vehi-
cle and drug-treated groups, also developed skin or oral invasive 
squamous cell carcinomas, indicating that Trp53 expression is 
lost in other epithelial tissues.

MS
Counts for mammary cell subpopulations isolated for UPLC-MS 
ranged from 66,000 to 240,000 cells. For initial UPLC-MS of 
basal versus luminal subsets, cells were FACS-purified from 
single EP-treated mice. For UPLC-MS of basal, ERα−PR− luminal 
progenitor, and ERα+PR+ luminal cells (E vs. EP), equal numbers 
of cells were pooled from multiple mice. After FACS purification, 
cells were washed in ice-cold PBS and pelleted. Cell pellets were 
resuspended in 50% (vol/vol) 2,2,2-trifluoroethanol in PBS and 

Table 1. SGC chemical probes: Links to selectivity, cell-based assay, and crystal structure information

Drug Target SGC link

UNC1999 EZH1 and 2 https:// www .thesgc .org/ chemical -probes/ UNC1999

JQ1 BRD2, 3, 4 and T https:// www .thesgc .org/ chemical -probes/ JQ1

A-366 G9a and GLP https:// www .thesgc .org/ chemical -probes/ A -366

GSK LSD1 LSD1 https:// www .thesgc .org/ chemical -probes/ GSK -LSD1

PFI-2 SETD7 https:// www .thesgc .org/ chemical -probes/ PFI -2

PFI-3 SMA RCA2, 4 and PB1 https:// www .thesgc .org/ chemical -probes/ PFI -3

OICR-9429 WDR5 https:// www .thesgc .org/ chemical -probes/ OICR -9429

GSK2801 BAZ2A and 2B https:// www .thesgc .org/ chemical -probes/ GSK2801

A-196 SUV420H1 and H2 https:// www .thesgc .org/ chemical -probes/ A -196

BAY598 SMYD2 https:// www .thesgc .org/ chemical -probes/ BAY -598

https://www.thesgc.org/chemical-probes/UNC1999
https://www.thesgc.org/chemical-probes/JQ1
https://www.thesgc.org/chemical-probes/A-366
https://www.thesgc.org/chemical-probes/GSK-LSD1
https://www.thesgc.org/chemical-probes/PFI-2
https://www.thesgc.org/chemical-probes/PFI-3
https://www.thesgc.org/chemical-probes/OICR-9429
https://www.thesgc.org/chemical-probes/GSK2801
https://www.thesgc.org/chemical-probes/A-196
https://www.thesgc.org/chemical-probes/BAY-598
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disrupted into cellular lysates sequentially by repeated probe 
sonication, followed by six freeze-thaw cycles. Proteins in cel-
lular lysate were denatured by incubation at 60°C for 2 h, and 
oxidized cysteines were reduced using 5 mm dithiothreitol for 30 
min at 60°C and alkylated through reaction with 25 mM iodoacet-
amide for 30 min at room temperature in the dark. Each sample 
was diluted five times using 100 mM ammonium bicarbonate, pH 
8.0. Proteins in lysates were digested into peptides by addition 
of 5 µg of MS-grade trypsin (Promega). The digestion was per-
formed overnight at 37°C and subsequently desalted using OMIX 
C18 pipette tips (Agilent). Peptides were semidried through 
vacuum centrifugation and resuspended in water with 0.1% 
formic acid. Subsequently, all samples were analyzed using an 
Easy-LC1000 (Thermo Fisher Scientific) coupled to a QExactive 
tandem mass spectrometer (Thermo Fisher Scientific). Peptides 
were separated on a ES803 (Thermo Fisher Scientific) nano-flow 
column heated to 50°C using a 4-h reverse-phase gradient.

Proteome bioinformatics
The obtained raw files were searched using MaxQuant (v.1.4.1.2) 
and a mouse UniProt sequences FAS TA database (v.19-07-2012; 
number of sequences, 16,548). Carbamidomethylation of cyste-
ines was defined as a static modification and oxidation of methi-
onine as a variable modification. All searches were performed 
with 1% peptide spectral match and protein FDRs. Protein groups 
identified with at least two peptides were carried forward for 
additional analysis. When present for all samples, label-free 
quantification (LFQ) values produced from the MaxLFQ algo-
rithm in MaxQuant were used as a measure of protein abundance 
(Cox et al., 2014). For proteins missing an LFQ value for one or 
more samples, LFQ intensities were replaced with median-ad-
justed intensity-based absolute quantification (iBAQ) values 
(Wojtowicz et al., 2016). Values were averaged for any technical 
replicates (indicated in Table S7 by “rep”). For proteins/subpop-
ulations in which both LFQ and iBAQ values were missing, 0 val-
ues were replaced with 1. Normalized protein abundances were 
calculated by dividing each value for a protein by the maximum 
value observed in any sample.

Correlations between log2(RNA fold change) and log2(protein 
fold change) were calculated in the R statistical environment 
(v.3.1.0) with the cor function using the Spearman method. All 
Venn diagrams were made using VennDIS and depict proteins 
identified in distinct mammary cell compartments or up- and 
down-regulated by EP treatment (≥2-fold change, P < 0.05; 
Ignatchenko et al., 2015). Heatmaps were generated using Pear-
son correlation and unsupervised divisive hierarchical clustering 
and depict z-score–normalized protein expression across mam-
mary subsets; for total proteome heatmaps, data were log2-con-
verted. All z-scores were calculated in the R statistical environ-
ment (v.3.1.0) and represent (x − mean)/SD. Volcano plot x-axis 
shows log2(protein fold change), and y-axis, log10(adjusted p-val-
ues); p-values were calculated using unpaired t test.

Pathway analysis for proteomic datasets was performed using 
GSEA (Subramanian et al., 2005). For protein groups identified 
by UPLC-MS, only one protein per group was included. Pathways 
were excluded that contained fewer than 15 or more than 500 
genes. For background genes, the total list of proteins identified 

in mammary proteomes was used. GSEA results were summa-
rized using the Enrichment Map app (v.3.0) in Cytoscape (v.3.5.1). 
Each circle (node) represents a biological term, with node size 
being proportional to the number of associated genes. Nodes 
were organized into themes (larger, labeled circles) using the 
AutoAnnotate app, and theme names were manually edited 
(Shannon et al., 2003; Merico et al., 2010; Cerami et al., 2011; 
Kucera et al., 2016).

Methylome analysis and bioinformatics
Libraries for RRBS were prepared as described previously (Gu 
et al., 2011), using 25,000 luminal and basal cells FACS-purified 
from individual EP-treated mice. RRBS data were analyzed with 
the package Bismark, whose output was further processed by 
methylKit to get the DMCs (Krueger and Andrews, 2011; Akalin 
et al., 2012). When comparing basal and luminal cells, DMCs were 
defined as having a delta-β of 0.15 and an adjusted p-value of 
<0.01. Heatmap depicts β-values and was generated based on 
15% DMCs that had the highest variance across all four samples. 
Heatmaps were made using Euclidean distance and unsuper-
vised average hierarchical clustering.

Transcription factor motif analysis was performed using 
the findMotifsGenome tool of HOM ER v.4.7 (Heinz et al., 2010). 
Details regarding motifs and related transcription factors 
hypomethylated in luminal versus basal cells can be found in 
Tables 2 and 3. Enrichment scores for TFBS analyses were cal-
culated as the log2 ratio of percentage target sequences, with the 
motif divided by percentage of background sequences with the 
motif. Genes proximal to hypomethylated TFBSs were annotated 
using the annotatePeaks tool of the HOM ER package. Input for 
the function consisted of mouse genome (mm9) coordinates of 
the 300 bp around each hypomethylated DMC, which served as 
peaks, and a list of hypomethylated TFBS motifs to find. Anno-
tated genes were then filtered to include only protein-coding 
genes, localized within 250 bp of ATAC-seq peaks (shared or lin-
eage-restricted) and present in microarray data.

To calculate likelihood of methylation, DMCs hypomethylated 
in basal (or luminal) cells were overlapped with genic (promoters, 
exon, intron, and intergenic) or CGI-related (CGIs, shelfs, shores, 
and open-sea) features to get the “observed” number of overlaps. 
These DMCs were then randomly shuffled across the background 
set of CpGs (those present in all samples) 1,000 times and over-
lapped with features again to get the “expected” number of over-
laps. These observed and permutation-based overlaps were used 
to compute p-values for enrichment/depletion using the R func-
tion pnorm, with the parameters mean and SD set to the mean 
and standard deviation, respectively, of the permutation-based 
values, and lower.tail set to “false” if the observed number of 
overlaps is higher than the mean of the expected overlaps; param-
eter log is set to “true” to return the natural log of the p-value, 
and then the actual p-value is calculated as the exponent of the 
returned value; R is unable to compute this if the returned value 
is less than −745, in which case the p-value is simply denoted as 
“e^(natural log of the p-value).” The fold change for likelihood 
of hypomethylation was calculated as observed overlaps divided 
by the mean of expected overlaps. If this value is less than 1, fold 
change is transformed to be its negative reciprocal. Positive fold 
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change indicates enrichment of the feature, and negative fold 
change indicates depletion of the feature.

ATAC-seq analysis and bioinformatics
Libraries were prepared using the NeBNext buffer and 
appropriate ATAC-seq libraries adaptors (Illumina; Buenrostro 
et al., 2013). The library was size-selected using DNA-on-a-
ChIP technology. Reads were filtered for quality and trimming 
using FAS TX Toolkit 0.0.13.1. Filtered reads were aligned to 
the mouse genome (mm10) using BWA (Li and Durbin, 2009). 
Duplicate reads were marked and removed using Picard (https:// 
github .com/ broadinstitute/ picard). Peaks were called using 
MACS2.0 (https:// github .com/ taoliu/ MACS/ ; Zhang et al., 
2008). Transcription factor motif analysis was performed using 
HOM ER v.4.7 on ATAC-seq peaks found only in basal or luminal 
cells (Heinz et al., 2010). Details regarding motifs and related 
transcription factors enriched in open chromatin found only 
in luminal or basal cells can be found in Tables 2 and 3. GRE AT 
pathway analysis was performed on lineage-restricted ATAC-
seq peaks, using total ATAC-seq peaks detected across both 
mammary lineages as background. Associated genomic regions 

were interrogated based on the two nearest genes with 50-kb 
maximum extension.

Microarray analysis and bioinformatics
Microarray data were preprocessed as described previously 
(Shiah et al., 2015). In brief, raw intensities were background-cor-
rected using normexp with offset 50. Loess and scale normaliza-
tion was applied within and between arrays, respectively. Uni-
variate linear modeling was conducted to identify genes with 
significant differential mRNA abundance levels between basal 
and luminal cells after EP treatment using the BioConductor 
package limma (v.3.26.9; Smith, 2005) in the R statistical envi-
ronment (v.3.2.5). All model-based t tests were corrected using 
empirical Bayes moderation to reduce standard error (Smyth, 
2004). FDR adjustments were applied to all p-values for multiple 
testing corrections (Storey and Tibshirani, 2003).

Integrated analysis
For tabular comparisons, criteria for genes altered across basal 
and luminal cells were defined as follows: protein up-regulation 
(≥2-fold change, P < 0.05), mRNA up-regulation (q < 0.05), and 

Table 2. Luminal cells: Identified HOM ER motifs and corresponding transcription factor names

HOM ER motif Name h-Me ATAC-seq

FOXA1(Forkhead)/MCF7-FOXA1-ChIP-Seq FOXA1 Yes Yes

ETS1(ETS)/Jurkat-ETS1-ChIP-Seq ETS1 Yes No

Jun-AP1(bZIP)/K562-cJun-ChIP-Seq JUN Yes No

AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512) FOS Yes No

Ets1-distal(ETS)/CD4+-PolII-ChIP-Seq ETS1-distal Yes No

ERG(ETS)/VCaP-ERG-ChIP-Seq ERG Yes No

Foxa2(Forkhead)/Liver-Foxa2-ChIP-Seq FOXA2 Yes Yes

NF1(CTF)/LNC AP-NF1-ChIP-Seq NFIB Yes Yes

Foxo1(Forkhead)/RAW-Foxo1-ChIP-Seq FOXO1 Yes No

ELF5(ETS)/T47D-ELF5-ChIP-Seq(GSE30407) ELF5 Yes Yes

NF1: FOXA1/ LNC AP -FOXA1 -ChIP -Seq(GSE27824) NF1: FOXA1 Yes Yes

PU.1-IRF(ETS: IRF)/Bcell-PU.1-ChIP-Seq(GSE21512) SPI1-IRF Yes No

PU.1(ETS)/ThioMac-PU.1-ChIP-Seq(GSE21512) SPI1 Yes Yes

Bach2(bZIP)/OCILy7-Bach2-ChIP-Seq(GSE44420) BACH2 Yes No

FOXP1(Forkhead)/H9-FOXP1-ChIP-Seq(GSE31006) FOXP1 Yes Yes

NF1-halfsite(CTF)/LNCaP-NF1-ChIP-Seq NF1-halfsite Yes No

Fox: Ebox(Forkhead: HLH)/ Panc1 -Foxa2 -ChIP -Seq(GSE47459) FOX: EBOX Yes No

AP2gamma(AP2)/MCF7-TFAP2c-ChIP-Seq TFAP2C Yes No

Bach1(bZIP)/K562-Bach1-ChIP-Seq(GSE31477) BACH1 Yes No

MyoD(HLH)/Myotube-MyoD-ChIP-Seq MYOD1 Yes No

MYB(HTH)/ERM YB-Myb-ChIPSeq(GSE22095) MYB Yes No

Nrf2(bZIP)/Lymphoblast-Nrf2-ChIP-Seq(GSE37589) NFE2L2 Yes No

Pbx3(Homeobox)/GM12878-PBX3-ChIP-Seq PBX3 Yes No

AP-2alpha(AP2)/Hela-AP2alpha-ChIP-Seq TFAP2A Yes No

TR4(NR/DR1)/Hela-TR4-ChIP-Seq NR2C2 Yes No

GATA-IR3(Zf)/iTreg-Gata3-ChIP-Seq(GSE20898) GATA3 Yes Yes

https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://github.com/taoliu/MACS/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30407
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27824
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44420
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31006
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47459
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31477
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22095
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37589
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20898
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lineage-restricted ATAC-seq peaks (detected in only one of the 
two cell types). Hyper- and hypomethylated DMCs were defined 
as described above (delta-β of 0.15 and adjusted P < 0.01). ATAC-
seq peaks and DMCs were annotated to a gene if their coordinates 
were within a region of 2,500 bp upstream of the gene start and 
end position. For DMCs, promoter methylation refers to coordi-
nates upstream of TSS, and genic methylation refers to coordi-
nates inside the gene body.

For integrated heatmap and barplot, genes with overlapping 
data for all types of molecular analyses (n = 3,424) were assigned a 
relationship state. Each relationship state contains ternary infor-
mation (up in basal, up in luminal or neutral) for open chromatin, 
DNA methylation, RNA abundance, and protein abundance. For 
open chromatin, genes were classified as increased if the number 
of ATAC-seq peaks was greater in one cell type versus another. 
Peak counts were determined by looking within the genomic 
coordinates of each gene and 2,500 bp upstream to include the 
promoter region. For DNA methylation, genes were increased if 
there were more hypomethylated DMCs in one cell type versus 
another. RNA and protein were increased if there was a greater 
than twofold difference between one cell type versus another. In 
all cases, neutral refers to no difference being observed between 
cell types. Using these binary features, a multinomial logistic 
regression was fitted to each data type, with the reference level 
being the neutral in all data types. All visualizations were gen-
erated in the R statistical environment (v.3.1.3 or higher) using 

the lattice (v.0.20-31), latticeExtra (v.0.6-26), and BPG (v.5.3.4) 
packages. For pathway analysis of gene classes with specific rela-
tionship states, the g:Profiler web server was used (Reimand et 
al., 2016), and total overlapping genes (n = 3,424) were used as a 
reference background. Pathways were excluded that contained 
fewer than three or more than 500 genes or had a query/term 
intersection of fewer than two genes.

IF analyses
For IF staining of paraffin-embedded tissue sections, tissue was 
fixed overnight at 4°C in 4% PFA dissolved in PBS, incubated for 
a further 24 h at 4°C in 70% ethanol, embedded in paraffin, and 
sectioned. Tissue sections were deparaffinized in xylene and 
gradually rehydrated in descending ethanol concentrations. 
Sections were then treated in Reveal (pH 6.0; Biocare Medi-
cal) or Borg (pH 9.5; Biocare Medical) Decloaker RTU antigen 
retrieval solution for 30 min at 121°C and 10 s at 90°C using a 
pressure cooker. Tissue was blocked for 1 h at room temperature 
(20% goat serum, 4% BSA) and incubated with primary antibod-
ies overnight at 4°C. Sections were then washed three times in 
PBS, incubated with secondary antibodies for 1 h at room tem-
perature, washed two times in PBS and once in distilled water, 
and mounted using ProLong Gold Antifade (Thermo Fisher Sci-
entific). Staining of frozen mammary tissue sections was per-
formed as described previously (Van Keymeulen et al., 2011). All 
IF images are 3D composites generated from z-stacks taken on 

Table 3. Basal cells: Identified HOM ER motifs and corresponding transcription factor names

HOM ER motif Name h-Me ATAC-seq

p63(p53)/Keratinocyte-p63-ChIP-Seq TP63 Yes Yes

p53(p53)/Saos-p53-ChIP-Seq TP53 Yes Yes

NF1-halfsite(CTF)/LNCaP-NF1-ChIP-Seq NF1-halfsite Yes No

TEAD4(TEA)/Tropoblast-Tead4-ChIP-Seq(GSE37350) TEAD4 Yes No

Pax8(Paired/Homeobox)/Rat-Pax8-ChIP-Seq PAX8 Yes No

Tcf4(HMG)/Hct116-Tcf4-ChIP-Seq TCF4 Yes No

AR-halfsite(NR)/LNCaP-AR-ChIP-Seq(GSE27824) AR-halfsite Yes No

X-box(HTH)/NPC-H3K4me1-ChIP-Seq X-BOX(HTH) Yes No

TCFL2(HMG)/K562-TCF7L2-ChIP-Seq(GSE29196) TCF7L2 Yes No

NF1(CTF)/LNC AP-NF1-ChIP-Seq NFIB Yes No

Ap4(HLH)/AML-Tfap4-ChIP-Seq(GSE45738) TFAP4 Yes No

Rfx5(HTH)/GM12878-Rfx5-ChIP-Seq(GSE31477) RFX5 Yes No

Egr2/Thymocytes-Egr2-ChIP-Seq(GSE34254) EGR2 Yes Yes

NFAT(RHD)/Jurkat-NFA TC1-ChIP-Seq NFA TC1 Yes No

EGR(Zf)/K562-EGR1-ChIP-Seq EGR1 Yes Yes

TEAD(TEA)/Fibroblast-PU.1-ChIP-Seq TEAD Yes No

Atoh1(bHLH)/Cerebellum-Atoh1-ChIP-Seq ATOH1 Yes No

NFkB-p65(RHD)/GM12787-p65-ChIP-Seq RELA Yes No

PPA RE(NR/DR1)/3T3L1-Pparg-ChIP-Seq PPA RG Yes No

Tcf3(HMG)/mES-Tcf3-ChIP-Seq TCF3 Yes No

AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512) FOS No Yes

Jun-AP1(bZIP)/K562-cJun-ChIP-Seq JUN No Yes

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37350
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27824
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29196
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45738
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31477
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34254
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
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a Zeiss LSM700 confocal microscope using a Plan-Apochromat 
40×/1.4-NA oil immersion objective lens. Photos were collected 
at room temperature, using the following fluorochromes: Alexa 
Fluor 488 (Thermo Fisher Scientific); indocarbocyanine, Cy3 
(Jackson ImmunoResearch); and Alexa Fluor 488 (Thermo Fisher 
Scientific). Images were collected using the LSM Zen 2012 acqui-
sition software and are representative of three or more biological 
replicates. ImageJ (National Institutes of Health) was used for 3D 
reconstitutions.

Antibodies used for IF staining were the same as those 
listed for intracellular flow cytometry. Additional antibodies 
used include rabbit anti-DNMT1 (Clone H-300; Santa Cruz); 
rabbit anti-DNMT3a (ab2850; Abcam); rabbit anti-DNMT3b 
(ab122932; Abcam); mouse anti-ENMT1 (GLP; clone B0422; R&D 
Systems); rabbit anti-SET7/SET9 (SETD7; 2813; Cell Signaling); 
chicken anti-K14 (clone Poly9060; BioLegend); and rat anti-Ki67 
(clone SolA15; eBioscience). For IF staining, anti-H3K27me3, 
anti-EZH2, anti-EHMT2, anti-CRE BBP, anti-DNMT3a, anti-DN-
MT3b, and anti-SET7/SET9 were used on frozen sections. Anti-
DNMT1, anti-HDAC1, anti-HDAC2, and anti-EHMT1 were used 
on paraffin sections. Anti-K14 and anti-Ki67 were used in both 
staining protocols.

Whole-mount staining
For whole-mount staining, mammary fat pads were removed, 
spread onto glass slides, and allowed to adhere at room tempera-
ture. Tissue was fixed in Carnoy’s solution (60% ethanol, 30% 
chloroform, and 10% acetic acid) overnight. Tissue was hydrated 
with 75%, 50%, and 25% ethanol for 15 min, washed in distilled 
water, and stained in carmine alum solution (0.2% carmine and 
0.5% aluminum potassium sulfate) overnight. Tissue was dehy-
drated with 70%, 95%, and 100% ethanol for 15 min, cleared 
in xylene, and mounted using Permount. For side-branching 
measurements of stained whole mounts, primary, second-
ary, and tertiary side branches were quantified using a Merz 
Counting Reticle.

Quantification and statistical analysis
Details pertaining to the statistical analysis of global proteome, 
transcriptome, and epigenome data can be found in the rele-
vant Methods sections detailing bioinformatics analyses. For 
in vivo LDAs, MRU frequencies for LDA experiments were cal-
culated using ELDA software and a 95% confidence interval 
(Hu and Smyth, 2009). Colony sizes were automatically mea-
sured using ImageJ.

For all other experiments, details pertaining to statistical test-
ing methods, biological n numbers, and error bars can be found 
in the relevant figure legends. Unless otherwise indicated, all sta-
tistical analyses described below were performed using Graph-
Pad Prism software. For FACS profiling of defined mammary 
subsets and progenitor enumeration in E- versus EP-treated 
mice, statistical significance was calculated using two-tailed t 
test or two-way ANO VA and Sidak’s multiple comparisons test. 
For intracellular flow cytometry analysis, statistical significance 
was calculated using two-tailed t test or two-way ANO VA and 
Tukey’s multiple comparisons test. For in vitro mouse clonogenic 
assays, statistical significance for all drug testing comparisons 

was calculated using two-way ANO VA and Dunnett’s multiple 
comparisons test. For in vitro human clonogenic assays, statisti-
cal significance for all drug testing comparisons was calculated 
using two-way ANO VA and Dunnett’s multiple comparisons test. 
Statistical significance for comparison of human breast colony 
types in wild-type, BRCA1, and BRCA2 patients was calculated 
using two-way ANO VA and Tukey’s multiple comparisons test.

For short-term in vivo drug treatments and mammopoiesis 
assays, statistical significance was calculated using one-way 
(absolute CFC, dead cell frequencies) or two-way (absolute ER−

PR− basal, ER−PR− luminal progenitor, ER+PR+ luminal) ANO VA 
followed by Dunnett’s multiple comparisons test. For early- and 
late-stage apoptotic cell analyses, statistical significance was 
calculated using two-way ANO VA followed by Sidak’s multiple 
comparison test. For short-term DAC treatment with and without 
progesterone, statistical significance was calculated using one-
way (absolute CFC) or two-way (absolute ER−PR− basal, ER−PR− 
luminal progenitor, ER+PR+ luminal) ANO VA followed by Tukey’s 
multiple comparisons test. For prolonged in vivo DAC treatment 
over 26 wk, statistical significance was calculated using unpaired 
t test (absolute CFC or PRO CRhi basal cells) or two-way ANO VA 
followed by Sidak’s multiple comparisons test.

For in vivo LDAs, MRU frequencies for LDA experiments were 
calculated using ELDA software and a 95% confidence interval 
(Hu and Smyth, 2009). For associated data, statistical signifi-
cance was calculated using unpaired, two-tailed t test (absolute 
CFC, MRU, or PRO CRhi basal cells). For Fucci model cell cycle 
comparisons, statistical significance was calculated using two-
way ANO VA followed by Dunnett’s multiple comparisons test. For 
comparison on tumor initiation in K5-Cre;Trp53F/F mice treated 
with PBS versus DAC, statistical significance was calculated using 
unpaired, two-tailed t test.

For t tests, ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; 
and ****, P < 0.0001. All multiple comparisons testing, after 
one- or two-way ANO VAs, were performed with a 0.05 signifi-
cance level and 95% confidence interval. Statistically significant 
differences are indicated by asterisks, which denote size of sig-
nificance levels.

Data and software availability
The MS data associated with this manuscript have been submit-
ted to a public repository (the Mass Spectrometry Interactive 
Virtual Environment; http:// massive .ucsd .edu). These data are 
associated with the identifier MSV000079330 at FTP download 
site: ftp:// MSV000079330@ massive .ucsd .edu. The microarray 
data discussed in this study are published (Shiah et al., 2015) 
and available at National Center for Biotechnology Informa-
tion (NCBI) Gene Expression Omnibus (Edgar et al., 2002) 
under accession no. GSE59558. The methylome and ATAC-seq 
data discussed in this publication have been deposited in NCBI 
Gene Expression Omnibus and are accessible through acces-
sion no. GSE80181.

Online supplemental material
Figs. S1 and S2 provide additional information and greater con-
text regarding the epigenomes, transcriptomes, and proteomes 
of primary mammary epithelial cells. Figs. S3, S4, and S5 provide 

http://massive.ucsd.edu
GSE59558
GSE80181
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insight into differential expression of key epigenetic master reg-
ulators across mammary lineages and the response of adult basal 
and luminal progenitor cells to epigenetic drugs. Tables S1, S2, S3, 
and S4 provide extensive data regarding the epigenomes of basal 
and luminal mammary epithelial cells, as well as how primary 
epigenomes interact with matching transcriptomes and pro-
teomes. Tables S5 and S7 provide processed proteomics data for 
mammary epithelial cells, and Tables S6, S8, and S9 give details 
of GSEA pathway analysis exploring protein changes that occur 
across mammary lineages and in response to sex hormones.
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