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Abstract. Clinical research and practice in the 21st century is poised to be 
transformed by analysis of computable electronic medical records and population-
level genome-scale patient profiles. Genomic data captures genetic and 
environmental state, providing information about heterogeneity in disease and 
treatment outcome, but genomic-based clinical risk scores are limited. Achieving the 
goal of routine precision medicine that takes advantage of this rich genomics data 
will require computational methods that support heterogeneous data, have 
excellent predictive performance, and ideally, provide biologically-interpretable 
results. Traditional machine-learning approaches excel at performance, but often 
have limited interpretability. Patient similarity networks are an emerging paradigm 
for precision medicine, in which patients are clustered or classified based on their 
similarities in various features, including genomic profiles. This strategy is 
analogous to standard medical diagnosis, has excellent performance, is 
interpretable, and can preserve patient privacy. We review new methods based on 
patient similarity networks, including Similarity Network Fusion for patient 
clustering and netDx for patient classification. While these methods are already 
useful, much work is required to improve their scalability for contemporary genetic 
cohorts, optimize parameters, and incorporate a wide range of genomics and clinical 
data. The coming five years will provide an opportunity to assess the utility of 
network-based algorithms for precision medicine. 

Introduction 
Subdividing patients into subgroups homogeneous with respect to biology, disease 
progression and response to treatment enables “precision medicine”1. Although it is 
a new term, precision medicine is simply traditional medicine that considers more 
abundant and detailed patient data. It is the idea that an individual patient’s clinical 
outcome – disease risk, prognosis, and treatment response – is determined by their 
genetic, genomic, physiological and clinical profile, that corresponds with a known 
diagnosis. An early example is the use of improved phenotyping in 1971 to 
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recognize that autism spectrum disorder was a different disease than 
schizophrenia2. Achieving the goal of “getting the right treatment to the right 
person” for a particular clinical outcome thus requires using all available relevant 
data to identify all possible diagnoses and their disease trajectories, so that 
appropriate therapy can be recommended. 
 
There are many ways to predict risk for a particular disease (Table 1), though a tool 
commonly used to achieve this goal is a risk calculator: a mathematical model that 
converts measures of a set of risk factors into a quantitative estimate that guides 
clinical monitoring, diagnosis and treatment (Figure 1; Box 1). One of the best-
validated risk calculators is the US-based Atherosclerotic Cardiovascular Disease 
(ASCVD) calculator, which calculates 10-year risk of developing heart disease or 
stroke for men and women of Caucasian white or African American ancestry aged 
between 40 and 79 years. Recommended by the American College of Cardiology, this 
predictor considers 13 pieces of information including a patient’s gender, age, blood 
lipid levels (3 numbers), blood pressure (2 numbers) and basic medical information 
(e.g. history of diabetes). When used with a clinical assessment, the predictor 
provides a basis for suggesting lifestyle modifications and initiating clinical 
interventions. It additionally serves as an objective indicator to both patient and 
clinician as to the risk of a cardiovascular disease event. The ASCVD is the result of 
five decades of model development, with its roots in the Framingham Heart Study of 
the 1950’s3,4. Despite extensive validation, the model continues to be a work in 
progress, being updated to accurately estimate risk for other ethnicities common in 
the US today5 and to populations in other countries (e.g. the UK6-8). Developing a 
risk model mature enough for clinical decision-making involves several stages, 
including rounds of internal and external validation and eventually, a clinical trial or 
the recommended use by a professional body (Fig 1B; e.g. for breast cancer9). 
 
Methodologically, risk models are developed using supervised learning algorithms 
(Box 2, “Key Concepts”). Patient data is encoded as “input features” (e.g. age, gender, 
genotypes at individual SNPs, metabolite quantities, gene expression levels). A 
learning or model-fitting algorithm is used to learn a function that accurately maps 
the features to a predicted outcome. To train the model, patient samples are 
partitioned into two groups: a training set and a test set. The training set provides 
examples to the model of what profiles look like for each of the possible outcomes 
and enables the model to learn predictive patterns. The independent test set is used 
to measure the classification performance of the model. Feature selection is used to 
identify the smallest set of the most predictive variables, which can help understand 
how the prediction is being made and can speed up prediction. A common concern 
in model-building is overfitting, when the model learns weights based on the 
particular bias in the training sample and does not generalize to the wider 
population. Cross-validation is used to estimate model generalizability; here, a 
portion of the training sample is held out from the learning process and is used to 
evaluate fitting error on the held out test set, and this is repeated many times. There 
are several measures for evaluating a model’s performance: these include the 
balance between the specificity and sensitivity of the model (area under the 
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Receiver Operator Characteristic curve or AUROC; area under the Precision-Recall 
curve or AUPR); accuracy; F1 score; and Matthews correlation coefficient. Learning 
methods commonly used in risk models include logistic regression for categorical 
outcomes (e.g. risk stratification)10-12 and Cox proportional hazards models for 
censored data or event-based models (e.g. 10-year risk of developing a 
disease)10,13,14. Evaluating multiple methods to find the best one is an important part 
of model development because it is known that no method is best for all data sets. 
The ideal clinical risk model is accurate, generalizable, provides a prediction in a 
reasonable time frame for clinical decision-making and, we argue, interpretable so 
that it can be understood by a clinician. 
 
Many risk models are in clinical use, such as for diabetes12 and prostate cancer11 
(Box 1). Data mining of electronic health records from health care systems is 
spurring the development of newer models. A notable example is a calculator for 
neonatal sepsis risk, based on data from ~200,000 infants15. While genomics data is 
now widely available, most risk predictors that do consider genetic information only 
use it in a general form using family history. The problem with this is that people 
often do not inherit a risk factor from a parent. As information about a patient 
continues to grow exponentially due to advances in genomics, medical imaging and 
other measurement technologies, there is an opportunity to develop accurate 
predictive risk models for many more diseases and to develop these more quickly, 
but this requires the development of new analytic methodology that can keep pace 
with the scale and complexity of the data (Figure 2A). 

Integrating genomics into clinical risk models 

The predictive value of genomics is driving the generation of multi-omic data 
and the use of genomics in clinical diagnostics 
The past two decades of genomics research has demonstrated the value of genomics 
data in understanding cellular processes in disease and witnessed the use of ‘omic 
data in clinical risk prediction models (Figure 2B). The first wave of predictive 
utility for genomics data was demonstrated at the genetic level by linkage studies 
and then genome-wide association studies16; this research has identified which 
diseases have a few big risk-effect variants (3X risk increase for each APOe4 allele in 
Alzheimer’s disease17,18; 6.7X risk increase for BRCA1/2 mutations in breast cancer; 
6-17X for HLAII alleles in familial type 1 diabetes19) and which diseases have 
smaller, polygenic contributions (1.10-1.20 for schizophrenia20, coronary artery 
disease21, and bipolar disorder22,23). The use of exome sequencing technology 
quadrupled the rate of identification of rare disease-causing genes in two years24, 
which enables early diagnosis. The profiling of other ‘omics layers is providing a 
more complete picture of the relative contribution of different genomic layers to 
disease risk. Gene-expression based breast cancer risk prediction is a notable 
example of a genomics-based assay that is in routine clinical use14,25. In another 
example, an ‘omic profiling of ependymoma, a common childhood brain tumour, 
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found no evidence of recurrent somatic mutations; instead, two disease subtypes 
with different clinical characteristics were distinguished by distinct mRNA 
expression levels and DNA methylation signatures in CpG islands26. More recently, 
data from The Cancer Genome Atlas project has been used to investigate the relative 
value of different genomic datatypes in predicting cancer survival for individual 
tumour types, with good success27. 
 
With the utility of genomics clearly proven, data collection continues to increase 
(Figure 2B). Several consortia now exist for genomic profiling at population-scale. 
Public-sector initiatives in the US include the veteran-focused Million Veterans 
Program28 and the US National Institute of Health’s “All of Us” targeted to the 
general US population; both initiatives have the specific goal of accelerating 
precision medicine. The UK BioBank is a similar initiative supported by multiple 
government and not-for-profit agencies in the UK29. Private-sector projects include 
the AstraZeneca bid to sequence two million genomes to identify rare genetic 
variants that affect drug response30, and the repository of the direct-to-consumer 
genetic testing service, 23andMe Inc., which are now being used for focused 
GWAS31,32. Crowd-sourcing initiatives such as PatientsLikeMe 
(http://patientslikeme.come) and patient-led foundations, such as Dragon Masters 

(https://www.dragonmasterfoundation.org/) are another growing source of 
genetic and patient data. Initiatives are also going deeper, generating multiple 
genomics data types for particular diseases. The Cancer Genome Atlas (TCGA) 
profiled 33 tumour types on 11,000 patients with up to six different genomic data 
types profiled for a given tumour type (http://cancergenome.nih.gov/abouttcga), 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)33 collects genetics and 
brain imaging data, STARNET34 collects genetic and gene expression data for 
cardiovascular risk, and the Lundbeck study collects genetic data to study treatment 
response in major depression; see Box 1 for more information. 
 
Continued investment in data collection is driving the technology, infrastructure, 
reduced costs and logistics necessary to achieve a future in which clinical decision-
making routinely incorporates genomic data. Historically, improvements in the 
depth of patient data have led to a substantial improvement in patient care and new 
large-scale phenotype data are already leading to more precise care. For example, 
breast cancer is now treated by subtype (e.g. ER+, HER2+, triple negative) using 
targeted drugs that outperform the older one-size-fits-all therapies35. 

Most genomic risk models are currently genetic, with limited use of other 
‘omics data types 
With its established model of heritability and increasing cost-effectiveness, genetic 
data is understandably the single most common genomic data source used in 
contemporary clinical prediction models (Figure 2B). Associated mutations can 
have a wide range of effect sizes and this influences the number of genetic variables 
included in a risk model. For instance, BRCA1/2 mutations predict an up to 80% 
lifetime risk of breast cancer, and clinical models use this and a variety of other 
information types to predict risk13. At the other end of the spectrum are highly 
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polygenic disorders, where hundreds of common variants contribute small effects to 
disease risk; these include cardiovascular disease, schizophrenia and bipolar 
disorder22,23,34,36,37. A polygenic risk score is typically used to model these weak 
contributions, where an individual’s genetic risk is the sum of all the risk alleles 
carried by that individual, weighted by the significance of the corresponding allele 
in a GWAS study23,38-40. Another strategy is to extend this idea to include all genomic 
SNPs regardless of their marginal disease association, as an overall estimate of 
genetic contribution to the phenotype41-43. Unsurprisingly, the predictive value of 
genome-wide SNP data is greater in diseases with more polygenic architecture. 
Celiac disease, characterized by autoimmune reactivity to ingested gluten, has 
multiple interacting genetic contributors both within and outside the HLA region of 
the genome44. In this scenario, models that included half a million SNPs and 
considered inter-SNP correlations outperformed those that relied on a genetic risk 
score limited to significant SNPs from GWAS studies43,45,46. Increasing the number of 
SNPs has increased predictive power in celiac disease (e.g. from AUC of 0.82 with 
HLA-based GWAS hits to 0.90 when considering all SNPs in the genome43,45,46). 
Additional types of genomics data have also been successfully used. For example, 
multiple commercial diagnostic tests of breast cancer are available that use gene 
expression (Mammaprint, Oncotype DX, ProSigna) or protein expression by 
immunohistochemistry (MammoStrat, IHC4)14,25,47-53. The Oncotype DX test uses the 
expression of 21 genes to calculate the risk of recurrence and chemotherapy 
response in ER+, node-negative breast cancers48 and can identify a greater than 
fourfold difference in recurrence risk between low and high risk score groups9,14. 

Clinical models must be interpretable 
While excellent predictive power is ultimately the goal, model interpretability is 
valuable for multiple reasons. First, understanding the mechanism for how specific 
variables relate to outcome is useful to gain confidence in the generalizability of the 
method, especially with smaller data sets that cannot support high confidence 
statistical predictions using “black box” methods. Second, a transparent model can 
help us understand the causal molecules or processes underlying a clinical condition 
that can then be targeted for rational treatment design. Popular machine learning 
methods provide different levels of out-of-the-box interpretability. Support vector 
machines provide individual feature weights as output; interpretation of these 
weights, especially when decision boundaries are nonlinear, requires additional 
domain-specific method development (e.g. in neuroimaging54,55). Random forests 
are considered more interpretable than SVMs because they provide an explicit 
decision tree of successive choices used in classification. More recently, popular 
software libraries of machine-learning methods have been extended to expose the 
rules used by the algorithms to learn decision boundaries (sklearn in Python and 
inTrees in R). But in general, machine learning methods are typically non-trivial to 
interpret mechanistically. 
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Patient similarity networks as a framework for clinical prediction 
The patient similarity network paradigm is a recently developed analytical 
framework that addresses a number of challenges in data analytics and is naturally 
interpretable. 

The patient similarity network paradigm 
In a patient similarity network, each node is an individual patient and an edge 
between two patients corresponds to pairwise similarity for a given feature. In this 
paradigm, each input patient data feature (e.g. age, sex, mutation status) is 
represented as a network of pairwise patient similarities (Figure 3). Each feature is 
represented as a different “view” of patient similarity that can be integrated with all 
the other views to identify patient subgroups or predict outcome. As a simple 
example of the concept, we can represent smoking frequency as a patient similarity 
network (Figure 3). Patients (nodes) who are frequent smokers would be tightly 
connected to each other and ‘never smokers’ would separately be tightly connected. 
This network is highly predictive of lung cancer status, as lung cancer cases would 
be enriched in the ‘smoker’ network region, while healthy controls would be 
enriched in the ‘never smoker’ region. If a new patient is a ‘never smoker’, they 
would be more similar to healthy controls and a classifier would predict them as 
such. 

Advantages of Patient Similarity Networks 
The patient similarity network (PSN) framework enables classifiers that are 
accurate, generalizable, able to integrate heterogeneous data, and naturally handle 
missing information. This paradigm also provides excellent model interpretability 
and additionally, may be better suited to protect patient privacy than most 
established machine learning methods. 
 
The PSN paradigm is novel; at the time of this writing, only two methods have used 
this framework for patient clustering56,57 and only one, netDx, for supervised 
classification58. When compared to other clustering and classification approaches, 
these methods can demonstrate superior performance (see details in the following 
sections). As a clustering algorithm, Similarity Network Fusion (SNF) has been used 
to identify clinically homogeneous patient subgroups in multiple cancers by 
integrating gene expression, miRNA and DNA methylation data. Using a different 
approach, PSNs were used to discover new subtypes of type 2 diabetes, each with 
distinctive genetic enrichments and clinical features56,57. Supervised applications 
have also been able to accurately predict patient survival given genomic data from 
various cancers. 
 
PSNs naturally handle heterogeneous data, as any data type can be converted into a 
similarity network by defining a similarity measure. Once converted, all data is 
represented in the same manner, as a network that can be directly input into 
analysis methods. Missing data is also naturally handled, as a patient missing in one 
network may be in another and could still be used. Further, patient similarity 
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measures, like Pearson correlation, are robust even if part of the input data vectors 
are missing. 
 
Representing patients by similarity is conceptually intuitive because it can convert 
the data into network views where the decision boundary can be visually evident. 
As a clinical research tool, it is conceptually analogous to clinical diagnosis, which 
often involves a physician relating a patient to a mental database of similar patients 
they have seen. Feature engineering can help further improve interpretability. For 
instance, creating features at the level of biological pathways helps identify cellular 
processes that may be causal mechanisms for a given patient subgroup phenotype. 
 
Algorithms that take patient similarity networks as input have the added advantage 
that the data have been transformed from the raw values and thus sensitive raw 
data need not be directly used. As the research community increasingly pools its 
patient cohorts to increase sample sizes for clinical discovery, protocols and 
technologies for maintaining patient privacy have been in parallel development 
(https://beacon-network.org, encryption59). Sharing PSNs enables clustering and 
classification applications without the need to share sensitive raw patient data. 

Patient similarity networks for clustering 
Clustering or class discovery is an important precursor to supervised learning 
algorithms. Class discovery can help identify patient labels or subtypes based on 
homogenous molecular signatures. A classifier could then be built for each of the 
subtypes, or multi-task learning could be used to build a single multi-way 
classifier60. Two PSN-based clustering methods have been reported to date. The first 
identified subgroups of type 2 diabetes patients using 73 clinical variables obtained 
from electronic medical records of ~11,000 patients56. Networks were generated 
using singular value decomposition and cosine similarity, the latter being a popular 
similarity metric in text mining applications. Using medical records and genotype 
data on the same individuals, the authors demonstrated that identified patient 
clusters were enriched for different comorbidities and biological pathways. In 
Similarity Network Fusion (SNF), a patient similarity network is generated from 
each input data type; for continuous-valued measures, similarity is based on 
Euclidean distance followed by exponential scaling57. The set of networks is then 
fused by iteratively boosting – or increasing – the weights of edges that are 
concordant among different layers, and dampening – or decreasing – the weights of 
those that are only present in some but not all layers. Spectral clustering is then 
applied to “cut” the final network into highly-interconnected clusters. 
 
SNF performance was benchmarked against naïve integrative clustering – namely, 
data concatenation – and a method based on joint latent variable models. Patient 
subgroups were identified in five tumours by integrating mRNA expression, DNA 
methylation and miRNA expression57,61. SNF significantly outperformed the other 
approaches in identifying clinically-distinct clusters in all cases, and demonstrated 
consistent fast algorithm run times regardless of the number of genes included in 
the input data57. Since its development, SNF has been used in various applications, 
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including subtyping medulloblastoma patients from DNA methylation and gene 
expression, and clustering pancreatic ductal adenocarcinoma tumours from RNA, 
DNA methylation and miRNA expression62,63. 

netDx: Patient classification by similarity networks 
We recently developed netDx, a supervised machine learning method for patient 
classification, based on the patient similarity network paradigm (submitted)58. The 
workflow starts with the definition of a classification problem, such as “predict 
patients that respond to a drug”. A cohort of patients containing positive and 
negative examples for the classification problem (i.e. cases and controls), and 
associated patient-level data is required as input. Each available data feature (e.g. 
patient age, gene expression profile) is converted into a patient similarity network. 
The resulting patient similarity networks are directly used as input for netDx. In the 
feature selection and training phase, netDx uses a machine learning algorithm to 
identify which input networks best characterize each patient category (e.g. cases vs. 
controls), and builds an optimal predictor from these features. Samples are 
partitioned into a training set, which is used to score input networks based on their 
discriminative power, and a test set, which is used to validate the predictor created 
on the training set. This step identifies a set of selected features (networks) per 
patient class, that best capture the similarity for that class. Standard cross-
validation methods (e.g. 10-fold) are used to estimate generalization performance 
across different subsets of training and test samples. The final phase is predictor 
validation. A ‘blind test’ set, held out before the feature selection and training phase 
(i.e. not used in predictor training), is used to test the predictor. This process is 
repeated many times with different cohort splits to increase the strength of the 
generalization estimate and to optimize the feature selection. The optimized 
predictor (i.e. using selected networks) is used to score and rank each patient for 
each of the classes. The patient is then assigned to the class with the highest 
similarity score. netDx output includes a list of all networks and their prediction 
value, various predictor performance measures, and an overall patient similarity 
network integrating all feature-selected networks, which can be visualized and 
interpreted. 
 
netDx relies on the GeneMANIA classifier originally developed for gene function 
prediction, which demonstrated excellent accuracy, generalization and ability to 
integrate heterogeneous data in this task. For example, GeneMANIA outperformed 
previous models in predicting mouse gene function by integrating gene expression, 
protein sequence data, protein interactions, phenotypes, conservation, and disease 
annotation64,65. netDx adapts the GeneMANIA algorithm to classify patients instead 
of genes. GeneMANIA scores each input network based on how well it can classify an 
input set of patients known to be in the same class (the query; e.g. all patients non-
responsive to a medication). The ideal network for classification would perfectly 
connect all input patients to each other in a clique and would not connect to any 
other patients outside of the input list. This network would support perfect 
classification, since any artificially held out patient would perfectly connect only to 
other patients in the same class. GeneMANIA will weight such a network highly (i.e. 
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1.0). On the other hand, a network that does not connect any of the input patients to 
each other is not useful for classification. GeneMANIA will assign a low weight to 
such a network (i.e. 0.0). Almost all real networks are expected to be between these 
two extremes and get scored accordingly. Weighting is accomplished by 
representing the input networks as a single matrix of patient edges,  and by applying 
ridge regression to this single matrix65. Once all input networks are weighted based 
on their informativeness for classification of input patients, a linear combination of 
networks is used to create a composite network. Label propagation is used to score 
all non-input patients based on similarity to the input patients. Label propagation 
uses the edge weights in the composite network, and assigns node discriminant 
values by solving a sparse linear system with a global minimum. In netDx, the 
process is repeated for each known patient class (e.g. cases and controls), and 
patients are assigned to the class that they are closest to.  
 
Compared to other machine-learning methods used for classification, netDx 
demonstrates consistently excellent performance. Using a benchmark data set for 
predicting binary cancer survival in four tumours, netDx was compared to a panel of 
eight popular machine-learning methods, such as support vector machines and 
random forests. This prediction task required the integration of up to six data types 
including clinical data, mRNA expression, miRNA expression, DNA methylation, 
somatic copy number aberrations and proteomic profiles58. On average, netDx 
significantly outperforms other approaches for three of four tumours, and is at par 
for the fourth tumour; moreover, its top model outperforms all other models for two 
of the tumours. Therefore, as a machine-learning algorithm, the PSN-based netDx 
can perform as well as or better than standard machine-learning approaches. 

In a feature not readily available in other machine-learning methods, netDx can also 
be used to provide mechanistic insight by grouping gene-level features into 
pathway-level features. When predicting breast cancer subtype from gene 
expression, netDx correctly feature selects pathways related to DNA damage repair 
and cell cycle progression. In contrast, when predicting case/control status in 
asthma, feature-selected themes reflect cellular processes involved in 
inflammation58. These different themes highlight netDx’s ability to identify cellular 
processes that reflect the particular biology of the condition under study. Grouping 
variables at the pathway level provides two major advantages. Feature selected 
pathways provide mechanistic insight into differences between classified patient 
groups. Second, pathways help address sparse data. For instance, somatic mutations 
may not provide enough information to compute patient similarity (e.g. patients 
may not have mutations in common). Merging these into pathways increases the 
chances that patients will have mutated pathways in common and thus can be 
related in terms of similarity. 

Case study: Predicting tumour subtype in ependymoma with netDx 
To illustrate the use of patient similarity network based classification, we use netDx 
to classify patients as belonging to one of two ependymoma subtypes. Ependymoma 
is the third most common type of pediatric brain tumour, with nearly half the cases 
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being incurable. Witt et al. identified two types of tumours originating in the 
posterior fossa of the brain (Group A and Group B), each subtype showing different 
demographic, clinical, and molecular profiles. We obtained normalized microarray 
gene expression data from Witt et al.66 (total of 96 samples; 53 of Group A and 43 of 
Group B), and used regression to correct for batch effects. We first ran netDx with a 
single input network based on all genes, using pairwise Pearson correlation as a 
similarity metric. Lasso regression was used within the cross-validation loop to 
prefilter genes. Cross validation (10 train/test splits x 10-fold CV) was used to 
calculate predictor performance. This predictor achieved an AUROC of 0.90 
(SEM=0.02), AUPR of 0.82 (SEM=0.02) and accuracy of 81% (SEM=0.02).  
 
While the single-network design is simple and a good first-pass to estimate the 
signal in a given datatype, it does not provide mechanistic insight into what the 
predictor has learnt. We therefore implemented a pathway-based design, where all 
genes were grouped into 2,118 networks, one per pathway. Cross-validation and 
similarity were computed as before. Pathway definitions were aggregated from 
HumanCyc67 IOB’s NetPath68, Reactome69,70, NCI Curated Pathways71, mSigDB72, and 
Panther73 
(http://download.baderlab.org/EM_Genesets/February_01_2018/Human/symbol/
Human_AllPathways_February_01_2018_symbol.gmt)74. The overall score for a 
feature was defined as the highest score it consistently obtained in >=70% of the 
trials. This resulted in comparable class separation than that with the single 
network, with an average AUROC of 0.92 (SEM=0.02), AUPR of 0.84 (SEM=0.02) and 
accuracy of 80% (SEM=3%). Top-scoring pathways predictive of Group A tumours 
were related to processes involved in interactions of the cell membrane with the 
extra-cellular matrix (Figure 4). These include terms related to the basement 
membrane, integrins, laminins and chondroitin sulfate proteoglycans (Figure 4B). 
These themes are consistent with those identified in the original paper describing 
the two tumour subtypes66. Figure 4C shows the integrated patient similarity 
network that results from combining the top-scoring networks and shows the clear 
separation between the two clusters. This example illustrates the utility of netDx as 
a classification tool and as a tool for generating mechanistic hypotheses for 
precision medicine. 

The road ahead: Challenges and outlook for patient similarity 
network analytics in precision medicine 
Network-based approaches have only recently started being applied for precision 
medicine and many challenges must be solved for them to reach their full potential. 
First, analytical methods must be improved to: 1) handle large data sizes (e.g. 
thousands of genomes); 2) identify the most relevant features for prediction, 
including non-linear interactions between features; 3) automate ways to generally 
improve signal-to-noise ratio; 4) automate ways to characterize patient 
heterogeneity, like disease subtypes26,51,66,75; 5) make the best use of 
complementary genomics layers which may have complex relationships (e.g. gene 
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expression is modulated by genetic variants in a tissue-specific manner76); 6) 
improve performance by tuning parameters and hyperparameters (similar to the 
way in which Google’s AutoML aims to solve this for particular problem domains - 
https://cloud.google.com/automl/). Scalability for patient networks can be 
improved by keeping only the strongest similarities by sparsification or by applying 
dimensionality reduction, as performed by the Mashup algorithm77. Deep learning is 
also promising78, as recently demonstrated by the deep network fusion method79; 
this method performs classifications with neural networks, by using similarity 
networks as input. Both of these methods could be used in netDx. 
 
Another major challenge is to improve the use of prior knowledge. For example, for 
sparse genetic data, such as somatic mutations of CNVs, “smoothing” mutations over 
a network of known gene-gene interactions has improved patient clustering80. Given 
that 43% of disease-associated genetic variants are located in intergenic regions 
(88% lie in noncoding regions, which includes introns)81, incorporating non-coding 
and epigenetic information about gene regulation is important for a model seeking 
to explain clinical outcome. Pan-tissue atlases, such as the Roadmap Epigenomic 
Consortium and GTEx, as well as tissue-specific atlases such as the PsychENCODE 
project, are increasingly available to support this extension. New information about 
chromatin structure is also being mapped, such as topological associated domains 
(or TADs), characterized by high within-region chromatin looping, relative to 
interactions outside the region82,83, and enhancer-promoter loops that activate 
transcription. Given this information, genetic variants could be limited to those 
known or predicted to affect gene function84,85, such as via modulating gene 
expression. Use of this knowledge will increase the number of patients to whom a 
predictor is applicable, because some patients only have mutations in non-coding 
regions.  

Perspective: Towards the future clinical visit 
Based on these ideas, it is exciting to envision a doctor’s clinic of the future, similar 
to the one described by Friend and Ideker86, that uses network-based approaches 
for clinical decision-making (Figure 5). Such a system would initially be used by 
researchers to identify and validate successful predictors. A clinical researcher 
would identify patients to include in model training, and select which types of 
clinical and genomic data to include. Model training would run on centralized high 
performance computing systems, and results could then be interactively visualized 
in a web-based interface using Cytoscape.js87, similar to the gene function prediction 
tool at http://genemania.org. Following completion of a research study, similarity 
networks could be uploaded to a repository such as NDEx88 for sharing with the 
research community. Eventually, as the technology matures and as classifiers are 
validated, it would evolve to be useful to practicing physicians for use with their 
patients. This would require the development of additional reporting tools tailored 
for use in clinical decision-making. These would include a summary report card of 
overall confidence in the predictor as well as classification accuracy for a given 
patient, graphical summaries of relevant features used, and alerts about specific 
patient details that would affect result interpretation (e.g. ethnicity, lifestyle, genetic 
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variants). It would also include links to relevant medical literature associating 
specific features with the disorder, to provide the clinician with information on 
prior knowledge to aid in decision-making. It would also provide the history of 
success rate for specific treatment choices for this condition in the health system, 
which would improve with data collection over time. 
 
Algorithms like SNF and netDx advance several ideas to achieve this goal. They 
permit the integration of several genomic layers of patient data for patient 
subtyping or classification to directly answer specific clinical questions. From 
genomic data, netDx also can identify biological pathways whose alteration is 
predictive of patient outcome. This variation provides insight into mechanistic 
differences in patient subgroups that could be useful for rational treatment design. 
The integrated patient similarity network enables individual patients to be 
examined in the context of patients with clinically similar profiles (“neighbours”). 
This context enables the clinical researcher to identify the features the selected 
patient either conforms with, or deviates from, relative to the typical group profile. 
For instance, a patient classified as a treatment responder, but whose metabolic 
similarity is an outlier relative to other responders, may need to be more closely 
monitored for non-response, as compared to another patient whose profile is typical 
for a responder. Such network exploration would identify the pathophysiology 
unique to the patient, thereby enabling tailoring of their personal treatment plan. 

Conclusion 
Network-based approaches have the conceptual and technical features necessary to 
enable precision medicine that is grounded in biologically-informative, 
interpretable models. We predict that this paradigm will become increasingly useful 
in the next five years as it is used for subtype identification, prediction of clinical 
outcome, and the identification of biomarkers and targetable therapies in disease-
related multi-omic studies. 
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Box items 

Box 1. Online risk calculators and popular software for clinical prediction in the 
context of precision medicine. 
 
Disease risk calculators in use 
Cardiovascular disease risk (ASCVD): 
http://tools.acc.org/ASCVD-Risk-Estimator-Plus/ 
Cardiovascular disease risk (Framingham Risk Score): 
https://www.cvdriskchecksecure.com/framinghamriskscore.aspx 
Neonatal sepsis risk: https://neonatalsepsiscalculator.kaiserpermanente.org/al 
Melanoma risk: http://www.cancer.gov/melanomarisktool/ 
Diabetes risk: http://www.diabetes.org/are-you-at-risk/diabetes-risk-test/?loc=atrisk-
slabnav 
 
Clinical risk predictors that use genetic or genomic data 
Non-Invasive Prenatal Testing: cell-free circulating DNA testing for trisomies: 
http://www.perinatalservicesbc.ca/health-professionals/professional-
resources/screening/prenatal-genetic/non-invasive-prenatal-testing-nipt 
BOADICEA:breast and ovarian cancer risk: http://ccge.medschl.cam.ac.uk/boadicea/ 
oncotypeIQ: gene expression-based tests for breast, lung, prostate, colon cancer: 
http://www.oncotypeiq.com 
 
Disease-specific genomic profiling initiatives 
Alzheimer’s Disease: Alzheimer’s Disease Neuroimaging Initiative33 
Autism: Autism Genetic Resource Exchange (https://research.agre.org), Simon’s 
Simplex Collection89, National Database for Autism Research (https://ndar.nih.gov) 
Depression Treatment: Lundbeck (http://www.lundbeck.com/global/about-
us/features/2017/flying-start-to-huge-depression-genetics-study); Canadian Biomarker 
Integration Network in Depression90 
Cardiovascular risk: STARNET34 
Cancers: The Cancer Genome Project (http://cancergenome.nih.gov) 
Schizophrenia: PsychENCODE91  
 
Software to compute clinical risk from genomic data: 
Polygenic risk score: PRSice http://prcise.info92 
Patient similarity networks for multi-omic integration: Similarity Network Fusion57 
http://netdx.org58 
General machine-learning software libraries: scikit-learn (python), caret (R), Weka, 
keras, tensorflow 
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Box 2: Concepts in patient risk modeling using machine learning 
 
Key predictive model concepts 

 Machine-learning: Algorithms that identify patterns in data by iterative exposure to 
data samples to either find subgroups within them (unsupervised learning, clustering, 
class discovery) or classify them (supervised learning). Examples of machine-learning 
algorithms include K-means clustering, regression, support vector machines, random 
forests and deep learning. 

 Supervised learning: A class of machine-learning algorithm that learns to classify 
samples or predict output from provided examples in a training set. Examples should 
represent all outcomes in roughly equal proportions. 

 Features: Inputs provided to the model for training. These could include individual 
measures (gene-level features in a gene expression matrix) or grouped measures 
(e.g. patient similarity network where genes were grouped by pathway). 

 Feature selection: Step of model development that assigns weights to features such 
that more predictive features have higher weights.  

 Train and test set: Model building has two phases: training the model, which 
identifies feature weights, and testing the model, where the model generalization is 
tested on independent data. Input samples are randomly partitioned into two groups; 
the set used to train the model is called the training set and that used to validate the 
model following the training is called the test set. 

 Overfitting: Overfitting is the phenomenon of a model learning patterns that are 
biased to the data it is trained on and that limits its generalizability to new data. A 
symptom of overfitting is a model that performs excellently on training data but poorly 
on new data. Overfitting is a common occurrence in machine learning, especially with 
high dimensional data, and model training must incorporate strategies such as cross-
validation to reduce the overfitting risk. 

 Cross-validation: Repeatedly holding out a portion of the training data, training on 
the remaining data, and computing prediction error on the held-out set. Repeating 10 
times is called “10-fold cross validation”. Performance over all runs is used to 
estimate the generalization of the model. 

 Performance measures: Metrics that evaluate how well a predictor works, such as 
the balance between true and false positive rate. Common measures are specificity, 
sensitivity, ROC curves, precision-recall curves, PPV, F1 and MCC. 

 Regularization: A constraint applied in model fitting problems with large number of 
features (e.g. 20,000 gene-level measures) to limit the number of features with non-
zero weights. Reduces redundancy and improves interpretability. 
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Figures 

 

Figure 1. Contemporary risk calculators and their development process. 
A. Examples of risk models in current clinical use (rows) and the patient data 

required for each (columns). See Box 1 for details. 
B. Process for risk model development. The first model is developed by testing 

performance of a variety of models on subsets of the training data (internal 
validation). Following successful internal validation, model generalizability is 
then assessed by external validation on similar populations. Generalizability 
is also tested on similar populations with specific differences (e.g. geographic 
origin). This step would identify whether it is possible to develop a general 
model for multiple populations or whether subpopulation-specific models 
are needed. A well-validated model is recommended in professional clinical 
practice guidelines, but a clinician may choose to adopt a sufficiently 
validated model earlier in this process. This process is iterative and 
refinements continue to be made on decades-long models in clinical use. 
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Figure 2. Genomics in clinical risk models. 
A. Vision of genomic analyses as part of a process for clinical decision-making.  
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The outer ring tracks patient interactions with the healthcare system in a future genomic 

era of medicine. Clinical and genomic assessment generates patient data, whereupon 

physicians diagnose patients, prescribe therapy and counsel about prevention based on 

disease risk. Patients iterate this process with follow-up visits. The field of computational 

biology will catalyze precision medicine by developing tools that help generate patient 

classification, diagnosis and prognosis, and guide therapy and prevention. 

B. Current and projected ‘omic cohorts for precision medicine. The x-axis shows the year 

of the publication or update; values at 2020 are projected by the authors based on public 

information. Y-axis shows the sample size on which the project was or is projected to run 

(powers of 10). 
90,93-101

 (IBD: https://ibdmdb.org/; https://victr.vanderbilt.edu/pub/biovu/). 

Unlabelled points are for: 1. http://www.lundbeck.com/global/about-

us/features/2017/flying-start-to-huge-depression-genetics-study, 2. Blood lipids GWAS
98

; 

3. Glioma
95

; 4. Type 2 diabetes microbiome: http://med.stanford.edu/ipop.html; 5. Breast 

cancer
51

 6 - Cholangiocarcoma
102

. MVP: Million Veterans Program. 
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Figure 3. Patient similarity networks for hypothetical example of predicting 
lung cancer risk 
Nodes are patients and edge weights reflect datatype similarity. This example shows 
similarity from clinical (red), gene expression (green) and metabolomics (blue) 
data. Here, cases and controls form separate densely connected parts of the network 
based on clinical data (red; e.g. smoking frequency), and a similar clique in 
metabolomics data (blue). The predictor would therefore select clinical data and 
metabolomic data as predictive of case status. 
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Figure 4. Predicting ependymoma subtype with netDx  
A. ROC curve showing performance over 10 train/test splits (grey) and the 

average (blue).  
B. Pathway-level scores for Group A tumours. Nodes show pathway-level 

features that scored 10/10 in >= 7 out of 10 trials; edges connect pathways 
with shared genes. AutoAnnotate was used to cluster pathways.74,103 

C. Integrated patient similarity network following feature selection. Nodes 
show the two types of tumours. Edges show patient similarity for pathways 
scoring 10/10 in all splits for either class. For visualization, the top 90% 
edges were included; edge-weighted spring-embedded layout was used to lay 
out the network in Cytoscape. 
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Figure 5. Vision for a network-based classification tool for precision medicine. 
A. User interface for a network-based patient classifier software tool, such as netDx, 
in the near future. Such a system could be integrated with a research hospital 
Electronic Medical Record system and in-house genomics database. A clinical 
researcher could use this to build a predictor by selecting data of interest and 
predictor options. 
B. User interface for visualizing predictor results, represented as multiple tabs. Here, 
the active tab shows a hypothetical integrated patient similarity network. The user 
has interactively highlighted a single patient for detailed study (red node) as shown 
in the right panel.  
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Tables 

Table 1. Methods used in clinical risk models 
Method Advantages Disadvantages Applications  

Similarity 
networks 

* Interpretable 
* Handles missing 
data 
* History of success 
in gene/protein 
function prediction 

* New paradigm, yet to be 
extensively applied 
* Scalability needs to be 
improved 
* Currently supports only 
categorical outcomes 

Gene function 
prediction34,65,77, 
protein function 
prediction79, 
cancer survival 
prediction, asthma 
case/control 
prediction, breast 
cancer subtype 
prediction58  

Linear/ 
logistic 
regression 

* Simple to use * Requires imputation of 
missing data 
* Effective only for linearly 
separable data 
* Requires coding of 
categorical variables 

Diabetes, Prostate 
cancer11,12 

Cox 
proportional 
hazards 
models 

* Well-suited for 
modeling survival 
(time-dependence of 
risk) in censored 
data  
* Moderate 
assumptions about 
underlying model  
 

* Requires imputation of 
missing data 
* Assumes risk is always 
proportional to base 
* Limited usefulness for 
problems not related to 
survival   

Risk of developing 
cardiovascular 
disease or stroke; 
breast cancer 
risk10,13,14  

Polygenic 
risk score 

* Easy to calculate Limited to genetic data, 
limited by GWAS results 
 

Coronary heart 
disease, 
schizophrenia. 
23,38,39 

MultiBLUP 
(or realized 
relationship 
matrix) 

* Captures full 
contribution of 
genetic component 

* Current framework specific 
to quantifying effect of large 
number of genetic 
contributors with varied 
effect sizes and local 
correlation structure, on a 
complex trait. Suitability for 
other problem domains to be 
yet demonstrated. 

Celiac disease, 
yeast QTL 
analysis 41,42 

Support 
vector 
machines 

Consistently well-
performing 

* Requires imputation of 
missing data 
* Compute-intensive 
* Requires tuning 
* Interpretation requires work 

Cancer survival 
prediction; Celiac 
disease genetic 
risk21,27,45 
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Random 
forest 

* Handles 
continuous and 
categorical data 
* Improved 
interpretability , 
compared to support 
vector machines 

 

 Potentially slow for real-
time predictions, 
especially for models with 
many decision trees 

 May perform poorly with 
rare outcomes  

Survival prediction 
in various cancer 
types; autism 
case/control 
prediction from 
CNVs27,38,39,104,105 

Deep 
learning 

* Can model 
complex 
nonlinearities based 
on structure of 
neural net 
* Consistently 
excellent 
performance 

* Requires additional work to 
interpret 
* Computationally intensive 
to run 
* Requires computational 
expertise to tune 

Deep survival 
models (cancer 
survival)106 
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Highlights 
* Future clinics will combine clinical and genomic data with cellular models for 
precision medicine.  
 
* Statistical risk calculators using genomics need to be interpretable due to small 
sample sizes. 
 
* Patient similarity networks (PSN) are a new model to integrate data to 
cluster/classify patients. 

 
* PSN are accurate, intuitive, preserve patient privacy and supply mechanistic 
insight. 
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