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Summary
Background Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers 
with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial 
clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological 
analyses of a cohort of patients with atypical teratoid rhabdoid tumours to fi nd out the molecular basis for clinical 
heterogeneity in these tumours.

Methods We obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profi les in 
43 primary tumours and copy number profi les in 38 primary tumours to discover molecular subgroups of atypical 
teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specifi c molecular 
markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological signifi cance of 
molecular subgroup and ASCL1-NOTCH signalling.

Findings Transcriptional analyses identifi ed two atypical teratoid rhabdoid tumour subgroups with diff erential 
enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a 
regulator of NOTCH signalling, correlated with supratentorial location (p=0·004) and superior 5-year overall survival 
(35%, 95% CI 13–57, and 20%, 6–34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·033) in 
70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival 
(34%, 7–61, and 9%, 0–21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·001) in 39 patients who 
received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with diff erential 
ASCL1 enrichment treated with chemotherapy with or without radiation were 2·02 (95% CI 1·04–3·85; p=0·038) and 
3·98 (1·71–9·26; p=0·001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed 
three distinct clinical risk groups of tumours with diff erent therapeutic outcomes.

Interpretation An integration of clinical risk factors and tumour molecular groups can be used to identify patients 
who are likely to have improved long-term radiation-free survival and might help therapeutic stratifi cation of patients 
with atypical teratoid rhabdoid tumours.

Funding C17 Research Network, Genome Canada, b.r.a.i.n.child, Mitchell Duckman, Tal Doron and Suri Boon 
foundations.

Introduction
CNS rhabdoid tumours, also called atypical teratoid 
rhabdoid tumours, are highly malignant neoplasms 
arising in very young children, with a median age of 
18–22 months at diagnosis, and, until recently, were 
thought to be fatal.1 Although the overall prognosis of 
patients with these tumours remains poor, with most 
patients living for less than 1 year from diagnosis, recent 
application of intensifi ed multimodal therapy with whole 
craniospinal irradiation2–4 or high-dose chemotherapy 

with stem-cell rescue1,3,5–7 has improved survival. However, 
treatment intensifi cation, particularly use of neuroaxis 
radiation, is associated with substantial acute and life-
long physiological and neurological sequelae in these 
patients. Remarkably, long-term survival has been 
reported in some children with atypical teratoid rhabdoid 
tumours treated without neuroaxis radiation.5,6,8 These 
fi ndings draw attention to the substantial clinical 
heterogeneity of atypical teratoid rhabdoid tumours 
and the need to avoid radiation and its associated 
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neurotoxicity, without compromising survival. The 
biological basis for clinical heterogeneity in atypical 
teratoid rhabdoid tumours remains to be elucidated; this 
gap in knowledge has impeded development of 
therapeutic models and prospective treatment models.

Atypical teratoid rhabdoid tumours have histological 
features and hallmark alterations associated with the 
SMARCB1 (INI1/hSNF5/BAF47) tumour suppressor 
locus on chromosome 22q11.23 that are also detected in 
rhabdoid tumours arising in other locations.9,10 Up to 35% 
of patients with the CNS rhabdoid tumours have germline 
SMARCB1 alterations and the rhabdoid predisposition 
syndrome characterised by development of several 
rhabdoid tumours.11–13 The biological relation between 
atypical teratoid rhabdoid tumours and non-CNS rhabdoid 
tumours remains unclear; however, atypical teratoid 
rhabdoid tumours are thought to develop from SMARCB1 
loss in restricted, undefi ned, neural precursors. SMARCB1 
is a constitutive component of the ubiquitous SWI/SNF 
chromatin remodelling complex that has specifi c 
functions in neural development.14 Results of animal 
studies show that loss of Snf is suffi  cient for the 
development of rhabdoid tumours, but intrinsic rhabdoid 
brain tumours have not been shown in Snf5–/– mice.15–17 
Although the fi ndings of studies of small cohorts suggest 
molecular heterogeneity might underlie the clinical range 
of atypical teratoid rhabdoid tumours, cumulative 
genomic analyses including whole-exome sequencing 
studies have shown SMARCB1 loss as the only recurrent 
genetic event in atypical teratoid rhabdoid tumours.18,19 
Reconciling clinical heterogeneity with tumour biology 
has been challenging for atypical teratoid rhabdoid 
tumours because it is a rare disease and there are only a 
few biological and clinical studies, thus determinants of 
survival and therapeutic responses remain poorly defi ned 
for patients. Furthermore, previous studies have been 
done on small, mixed cohorts of CNS and non-CNS 
rhabdoid tumours, and perhaps have lacked the power 
needed to defi ne the genetic and molecular ranges of 
atypical teratoid rhabdoid tumours. In this study, we did 
integrated molecular and clinicopathological analyses of 
atypical teratoid rhabdoid tumours to defi ne clinically 
relevant molecular classes of these tumours.

Methods
Patients and study design
This study was a retrospective analysis, with patients 
previously enrolled from 37 international institutions 
(appendix). The only inclusion criteria were a diagnosis of 
atypical teratoid rhabdoid tumours and centralised 
pathological review to confi rm diagnosis. Tumour samples 
and clinical information were obtained with consent as 
per protocols approved by the hospital research ethics 
boards at participating institutions; all samples were 
reassessed centrally through a multistep histopathological 
and molecular evaluation to confi rm the diagnosis of 
atypical teratoid rhabdoid tumours. All samples were 

retested to confi rm absence of SMARCB1 protein 
expression with BAF47 immunostaining. BAF47-negative 
tumours were then further tested for genetic alterations of 
SMARCB1 by use of multiplex ligation-dependent probe 
amplifi cation (MLPA) and targeted sequencing of all nine 
exons of the SMARCB1 locus with the Sanger method. 
Samples with confi rmed negative BAF47/SMARCB1 
protein immunostaining or SMARCB1 biallelic genetic 
alterations or both (appendix), were reviewed for age, 
primary tumour occurrence, tumour location, and 
histopathological diagnostic features.20 Germline 
SMARCB1 information was not included in the current 
approval by the research ethics board and thus not 
reported in this study. For BAF47 immunohistochemistry, 
tumour tissue from a related embryonal brain tumour—
primitive neural ectodermal tumour—was used as a 
positive control (appendix). Clinical information for a 
subset of patients was reported previously;5,6,8,21 143 (55%) 
of 259 patients in this study were new cases of atypical 
teratoid rhabdoid tumours. For clinicopathological and 
prognostic correlations, only cases with complete clinical 
and treatment information (appendix) were included. 
Four cases with concurrent diagnosis of atypical teratoid 
rhabdoid and non-CNS-rhabdoid tumours were excluded 
from prognostic analyses because they received 
individualised treatment. Ten cases in the discovery cohort 
were also subgrouped by ASCL1 immunohistochemistry 
and included in prognostic analyses.

Procedures
We did global genomic and transcriptional analyses only 
on samples from patients with confi rmed diagnosis of 
atypical teratoid rhabdoid tumours, and who had been 
treated with upfront chemotherapy or combined 
chemotherapy-radiation regimens with curative intent. 
All patients who were treated would have received 
upfront surgery, and, if they were radiated, radiation was 
after upfront surgery or after post-operative 
chemotherapy. RNA or DNA, or both, were extracted 
from snap frozen samples of 49 primary atypical teratoid 
rhabdoid tumours with standard methods, and examined 
for gene expression (43 tumours; HT-12, version 4, 
Expression BeadChip Kit, Illumina, San Diego, CA, 
USA) and high resolution copy number (38 tumours, 
OmniQuad 2.5 SNP, Illumina microarrays); 32 samples 
were analysed by use of both gene expression and copy 
number. DNA and RNA hybridisations were done at the 
Centre of Applied Genomics Facility, Hospital for Sick 
Children, Toronto, ON, Canada, in accordance with the 
manufacturer’s protocol. For gene expression, probes 
were collapsed into genes by taking the average value, 
quantile normalised with the Lumi R package (version 
2.11), and batch corrected with ComBat (version 3.12.0).22 
Details of molecular analyses done on individual samples 
are shown in the appendix; all data are deposited in the 
UK Wellcome Trust, European Genome-Phenome 
Archive (accession number: EGAS00001000506).
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Gene expression profi les were used to defi ne molecular 
subgroups of tumours. Single nucleotide polymorphism 
array data were used to confi rm and map the distinct 
chromosome 22q11.23 alterations associated with 
atypical teratoid rhabdoid tumours and to assess tumour 
purity and ploidy using allele-specifi c copy number 
analysis of tumours (appendix). We used two 
independent un supervised clustering methods—
hierarchical clustering and non-negative matrix 
factorisation analyses—on gene expression data to 
defi ne molecular subgroups of atypical teratoid rhabdoid 
tumours and then applied a supervised t test to defi ne 
genes and pathways that were most highly enriched in 
tumour subgroups. We confi rmed the most highly 
diff erentially expressed genes by use of quantitative RT-
PCR and then tested the suitability of a panel of 
candidate subgroup-specifi c markers for immunohisto-
chemical analyses. For validation studies, molecular 
subgroups were confi rmed with immunohistochemistry 
on formalin-fi xed paraffi  n embedded material on tissue 
slides or microarrays.

For validation of array data, cDNAs were synthesised 
from 1 μg of tumour RNA (cDNA Reverse Transcription 
Kit, Life Technologies, Grand Island, NY, USA) with 
quantitative RT-PCR (qRT-PCR) using TaqMan and the 
TaqMan Gene Expression Master Mix (both Life 
Technologies). The gene probes and primers used for 
qRT-PCR are listed in the appendix. All assays were done 
in triplicate and the comparative cycle time method was 
used to calculate mRNA expression relative to mRNA 
actin.

Immunohistochemical analyses were done on two sets 
of tissue microarrays. A tissue microarray containing 
55 atypical teratoid rhabdoid tumours obtained through 
the Canadian Paediatric Brain Consortium/C17 Research 
Network was constructed for this study. Previously, we 
assessed a second set of microarrays containing 
33 atypical teratoid rhabdoid tumours and 14 non-CNS-
rhabdoid tumours.23 Immunohistochemical analyses 
were done on single slides for 100 atypical teratoid 
rhabdoid tumours and 13 non-CNS-rhabdoid tumours. 
For immunohistochemical analyses, all tissue sections 
were treated with heat-induced epitope retrieval and 
blocked for endogenous peroxidase and biotin. ASCL1 
antibody (BD Biosciences, San Jose, CA, USA) and 
pSMAD1/5/8 (Cell Signaling, San Jose, CA, USA) 
reactions were visualised with a Biogenix detection kit 
(BioGenex Laboratories, San Ramon, CA, USA). 
Immunoreactivity for ASCL1 was scored manually on the 
basis of intensity (0=none, 1=low, 2=moderate, and 
3=high) and distribution of stains (0=none, 1≤10%, 
2=10–50%, and 3≥50%). A combined score of 4 or greater 
was regarded as positive. A score of less than 4 or absence 
of nuclear staining was regarded as negative for ASCL1. 
For tumours on microarray, we established 
immunoreactivity based on mean staining score in at 
least two tissue cores, whereas formalin-fi xed paraffi  n 

embedded tumours were scored on the basis of the 
extent of staining in relation to the entire tumour section. 
For ASCL1, normal human lung and placenta tissues 
were used as positive and negative controls, respectively. 
For pSMAD1/5/8, normal human stomach and placenta, 
respectively, served as positive and negative controls. 
Samples processed in parallel without primary antibodies 
were also used as negative controls. All immuno histo-
chemistry stains were scored by DP and KCH, who were 
masked to cancer status, and reviewed by AH and CEH.

Statistical analysis
We applied two orthogonal unsupervised consensus 
cluster methods to defi ne the number of molecular 
subgroups of atypical teratoid rhabdoid tumours using 
gene expression data. The gene expression data were 
analysed by use of parallel unsupervised hierarchical 
clustering (Partek Genomics Suite, version 6.6) and non-
negative matrix factorisation consensus cluster analyses. 
Genes were ranked on the basis of the coeffi  cient of 
variation and we reiterated analyses using 200–2000 genes 
to show the optimal number of molecular classes over a 
range of 2–10 k classes with the highest cophenetic 
coeffi  cient and optimal k-means class assignment. 
Hierarchical clustering analyses were also done with the 
same gene sets and concordance with non-negative 
matrix factorisation analyses was assessed with the 
Jaccard similarity coeffi  cient. SigClust (version 1.1.0) was 
used to compute the signifi cance of the clusters 
identifi ed.24 Subgroup-specifi c genes were identifi ed with 
a supervised t test adjusted for multiple hypothesis testing 
using the false discovery rate method. To defi ne regions 
of copy number alterations, we did partitioning-
segmentation analyses on inferred copy number data 
with the Partek Suite with a single nucleotide 
polymorphism window of 150.

To defi ne the clinical features of patients’ molecular 
subgroups, sex, location, and individual loci diff erences 
between the molecular subgroups were analysed with a 
two-sided Fisher’s exact test. Independent samples’ 
median test was used to assess the signifi cance of tumour 
subgroups in relation to age. To fi nd out whether 
molecular subgroups had prognostic signifi cance and to 
compare treatment eff ects, we only included patients 
who had been treated with upfront chemotherapy or 
combined chemotherapy-radiation regimens with 
curative intent. We applied a univariate Cox proportional 
hazard analysis to compare the signifi cance of clinical 
prognostic factors and molecular subgrouping. Our 
cohort was underpowered for multivariate analyses; 
therefore, we used univariate analyses adjusted for 
ASCL1 status to assess the prognostic signifi cance of 
molecular subgrouping relative to other individual 
clinical and treatment factors and to estimate the hazard 
ratios and 95% CIs. We combined clinical prognostic 
factors with molecular groups to defi ne disease risk 
categories, and used the log-rank analysis with the 
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Kaplan-Meier method to compare survival times and χ² 
analyses to compare the proportion of survivors across 
tumour subgroups and disease risk categories, and eff ect 
of treatment on survival. Since this was a retrospective, 
discovery-based analysis, we did not do an a priori power 
analysis to defi ne the adequate number of samples 
needed. Also, a centre-adjustment was not feasible 
because several institutions contributed single cases of 
tumours. All analyses were done in the R statistical 
environment (version 2.15.2) or with SPSS (version 22.0). 
A p value of less than 0·05 was regarded as signifi cant 
for all analyses.

Role of funding source
The funders of this study had no role in the study design, 
data gathering, analysis, or interpretation, or writing of 
this report. JT, DP, NJ, EB, LL-C, and AH had full access 
to the data for this study and had fi nal responsibility for 
the decision to submit for publication.

Results
We did unsupervised consensus cluster analyses of 
global gene expression profi les from 43 primary tumours 
using orthogonal bioinformatic methods to defi ne 
molecular subgroups of atypical teratoid rhabdoid 
tumours. Hierarchical clustering and non-negative 
matrix factorisation analyses of 200–1000 genes showed 
the strongest cophenetic coeffi  cient at k=2 (appendix), 
indicating two broad classes of atypical teratoid rhabdoid 
tumours (groups 1 and 2), with suggestion of further 
heterogeneity within group 2 tumours (appendix). 
Atypical teratoid rhabdoid tumours also segregated into 
two groups when compared with primitive neural 
ectodermal tumour and medulloblastoma, two closely 
related paediatric embryonal brain tumours (data not 
shown). The results of the SigClust analysis showed that 
the two clusters were signifi cantly unique (p<0·0001; 
appendix); we did not use resampling methods because 
the small sample size made accurate interpretation of the 
results diffi  cult. To establish the molecular features of 
each subgroup of atypical teratoid rhabdoid tumours, we 
identifi ed genes most diff erentially enriched in each 
tumour subgroup using a supervised analysis of gene 
expression data and did functional and pathway 
enrichment analyses. Groups 1 and 2 tumours diff ered 
signifi cantly in genes regulating cell lineage and 
developmental signalling (appendix). Specifi cally, group 1 
atypical teratoid rhabdoid tumours were most highly 
enriched for genes involved in brain or neural 
development, and axonal guidance, and had upregulation 
of genes involved in the NOTCH developmental 
signalling pathway (appendix). Notably, FABP725 and 
ASCL1,26 markers of primitive neural lineage, were 
among the most highly diff erentially upregulated genes 
with about 10–20 times greater expression in group 1 
than in group 2 atypical teratoid rhabdoid tumours 
(appendix). The HES5/6 and DLL1/3 genes, which 

respectively encode targets and ligands of the NOTCH 
signalling pathway,27 were also among the top enriched 
genes in group 1 tumours (appendix). By contrast, 
expression of neural lineage markers was signifi cantly 
diminished in group 2 atypical teratoid rhabdoid 
tumours, which had the greatest enrichment of genes 
involved in mesenchymal diff erentiation and the bone 
morpho genetic protein (BMP) signalling pathway 
including the BMP4, BAMBI, SOST, SERPINF1, FBN2, 
and MSX1 loci (appendix). Gene set enrichment analysis 
showed the MAPK signalling pathway and genes 
regulating cell adhesion and migration were signifi cantly 
enriched in group 2 tumour transcriptomes (appendix). 
We confi rmed the specifi c signalling and lineage-specifi c 
transcriptional features of group 1 and 2 atypical teratoid 
rhabdoid tumours with qRT-PCR analyses of the top-
enriched individual genes (appendix).

To investigate the clinical relevance of the molecular 
subgroups of atypical teratoid rhabdoid tumours, we 
sought markers for tumour subgroups that could 
be reliably analysed with immunohistochemistry of 
formalin-fi xed paraffi  n embedded tissues from a large 
cohort of patients with precise clinical diagnoses. We 
obtained 259 rhabdoid tumour samples (atypical teratoid 
rhabdoid tumours [diagnosis based on absence of 
SMARCB1 immunostaining] and non-CNS rhabdoid 
tumours) from 12 Canadian paediatric brain consortium 
centres and 25 international institutions (appendix) with 
a histopathological diagnosis of atypical teratoid rhabdoid 
tumours. Recurrent samples and samples with incom-
plete clinical information were excluded from all clinical-
correlative analyses. Of the 259 rhabdoid tumours 
received, three (1%) with BAF47 immuno positivity and 
27 (10%) non-CNS rhabdoid tumours were excluded after 
central review; they were not included in the genomic 
analyses and were assessed only for ASCL1 expression 
with immunohistochemistry (fi gure 1). Of the 229 
tumours eligible for analysis, 51 (22%) had adequate 
materials for genomic analysis; the remaining 178 (78%) 
had formalin-fi xed paraffi  n embedded material only and 
were analysed for validation—eight (4%) were excluded 
as secondary or concurrent atypical teratoid rhabdoid 
tumours and 26 (15%) because of inadequate material to 
give a validation cohort of 144 primary atypical teratoid 
rhabdoid tumours with subgroup established with 
ASCL1 immunohistochemistry, and these were included 
in clinical correlative analyses (fi gure 1). 70 tumours with 
intention-to-treat and location information were available 
for the assessment of survival outcome. We selected 
lineage-specifi c genes that were validated with qRT-PCR 
analyses and associated with enriched developmental 
signalling pathways in group 1 and 2 tumours for 
immunohistochemical testing. We tested commercially 
available FABP7 (Abcam, Toronto, ON, Canada), 
NOTCH1 (Santa Cruz, Dallas, TX, USA), and ASCL1 
(appendix), a NOTCH pathway regulator,27 as putative 
markers of group 1 tumours, and a proprietary NOTCH-
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NICD antibody (Cleaved Notch 1, Cell Signaling). For 
group 2 markers, we tested commercial antibodies for 
CLDN1 (Invitrogen, Burlington, ON, Canada), BMP4 
(Abcam), phospho-SMAD1/5 (Cell Signaling), and 
phosphor-SMAD1/5/8 (appendix), an eff ector of BMP 
signalling.28 Despite extensive investigation with several 
putative group 1 and 2 markers, we identifi ed a high 
degree of non-specifi city in our samples in all but ASCL1, 
which showed robust immunostaining in the formalin-
fi xed paraffi  n-embedded tissues analysed, allowing for 
accurate distinction between ASCL1-positive and ASCL1-
negative tumours (appendix). In a small subset of 
tumours with both gene expression and immunohisto-
chemical analyses, we noted ASCL1 immunostaining 
correlated well with ASCL1 gene expression levels in 
individual tumours and with tumour subgroup 
assignment based on gene expression data (appendix).

We assessed clinical features of tumour subgroups 
established by gene expression profi ling in a molecular 
discovery cohort of 43 primary atypical teratoid rhabdoid 
tumours and for 41 (95%), 39 (91%), 43 (100%), and 
29 (67%) cases, respectively, we had information about 
tumour location, patient’s age, patient’s sex, and 
metastatic status at diagnosis. Clinical features of the 
discovery cohort were compared with those of a distinct 
validation cohort of 144 primary atypical teratoid rhabdoid 
tumours, for which tumour grouping was established 
with ASCL1 immunohistochemistry. For 125 (86%), 
127 (88%), 126 (88%), and 85 (59%) tumours in the 
validation cohort, information was available about 
tumour location, patient’s age, patient’s sex, and disease 
stage at diagnosis, respectively. The results of these 
comparative analyses showed that group 1 tumours were 
signifi cantly associated with supratentorial location and 
group 2 tumours were signifi cantly associated with 
infratentorial location in both the discovery and validation 
cohorts (table 1). Our analyses did not show signifi cant 
diff erences in incidence of metastases or sex between 
children with group 1 or 2 atypical teratoid rhabdoid 
tumours (appendix). Median age at presentation was not 
signifi cantly diff erent between group 1 and 2 patients in 
our discovery cohort (appendix). Age-related information 
available for 127 (88%) of 144 patients in our validation 
cohort indicated 25 (63%) of 40 children with group 1 
tumours and 50 (57%) of 87 children with group 2 
tumours were older than and up to 18 months old at 
diagnosis, respectively (p=0·055; appendix).

Clinical features with prognostic signifi cance for 
atypical teratoid rhabdoid tumours and the best treatment 
approach have been diffi  cult to establish because small 
heterogeneous patient cohorts were assessed in most 
studies.11,21,29–32 We therefore investigated whether atypical 
teratoid rhabdoid tumour molecular subgrouping had 

Figure 1: Flow chart of sample analyses
*Patient presented with brain and spinal tumours. †A total of 43 cases were 

analysed for gene expression and 38 for copy number.

259 rhabdoid tumours received

2 recurrent

51 cases with adequate biomaterials for copy  
number or gene expression analyses

49 primary tumours assessed in genomic
discovery studies†
32 analysed for both copy number and 

gene expression
11 analysed for gene expression only
6 analysed for copy number only

16 tested for ASCL1 expression with 
immunohistochemistry (13 with subgroup 
established with gene expression and 3 with 
copy number)

10 complete treatment and survival analyses

30 excluded 
3 BAF47/SMARCB1-immunopositive tumours

27 non-CNS rhabdoid tumours

229 cases of CNS rhabdoid or atypical teratoid
rhabdoid tumours (225 brain and 4 spinal)

178 atypical teratoid rhabdoid tumour 
subgroup and clinical feature analyses
preserved for validation

6 excluded (no treatment
information)

170 ASCL1 immunohistochemistry

144 subgroup established with ASCL1  
immunohistochemistry analysis
(validation cohort)

8 excluded
3 recurrent
1 post-therapy atypical

teratoid rhabdoid
tumour*

4 atypical teratoid and
non-CNS rhabdoid
tumours 

26 excluded (inadequate
for ASCL1 immuno-
histochemistry)

33 not tested for ASCL1 
      expression

125 primary tumours with location information 
subgroup established with ASCL1
 immunohistochemistry

19 unknown specific brain
location excluded

70 postoperative chemotherapy with or with- 
out radiotherapy (intention-to-treat cohort)

65 excluded
41 with no survival

 or treatment
information

24 no treatment

39 postoperative chemotherapy only
(intention-to-treat cohort)

31 excluded (radiotherapy)



Articles

6 www.thelancet.com/oncology   Published online April 14, 2015   http://dx.doi.org/10.1016/S1470-2045(15)70114-2

prognostic signifi cance and how ASCL1 expression 
status or molecular grouping compared with reported 
clinical and treatment prognostic factors, including 

patient’s age, tumour location, disease stage, extent of 
surgery, and receipt of high-dose chemotherapy or 
craniospinal radiation, or both.1,3,5–7,21,29–32

Without treatment, atypical teratoid rhabdoid tumours 
are fatal; we therefore only looked at samples taken from 
patients who had been treated with curative intent, and for 
which complete information about postsurgical chemo-
therapy or radiation, or both, was available. Analyses of 
ASCL1 expression and survival in 70 patients who received 
treatment with curative intent showed ASCL1 expression 
or tumour molecular subgrouping correlated with superior 
overall but not progression-free survival for all patients 
treated with chemotherapy with or without radiation 
(median progression-free survival 11·6 months, 95% CI 
8·1–15·1, and 8·4 months, 6·7–10·1, for ASCL1-positive 
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Molecular discovery cohort Validation cohort

Total 
analysed

Group 1 Group 2 p 
value*

Total 
analysed

Group 1 Group 2 p 
value*

Number 43 21 22 144 45 99

Location 41 20 21 125 39 86

Supratentorial 17 13 (65%) 4 (19%) 0·004 55 25 (64%) 30 (35%) 0·003

Infratentorial 24 7 (35%) 17 (81%) 70 14 (36%) 56 (65%)

Group 1 tumours were ASCL1 positive and group 2 were negative. *Fisher’s exact test.

 Table 1: Diff erence in location between atypical teratoid rhabdoid tumour subgroups

Figure 2: Survival analyses of molecular subgroups of atypical teratoid rhabdoid tumours
(A) Progression-free survival and (B) overall survival of 70 patients with atypical teratoid rhabdoid tumours treated with postoperative chemoradiotherapeutic 
regimens in relation to established tumour molecular subgroups. (C) Progression-free survival and (D) overall survival of 39 patients with atypical teratoid rhabdoid 
tumours treated with chemotherapy only without neuroaxis radiation regimens in relation to established tumour molecular subgroups. The Kaplan-Meier method and 
log-rank test were used to estimate and compare, respectively, progression-free survival and overall survival; 5-year survival estimates with 95% CIs are shown for each 
survival curve. Black lines indicate patients who were censored. The p values were calculated with log-rank analyses. Group 1 tumours were ASCL1 positive and group 2 
were negative.
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and ASCL1-negative tumours, respectively, p=0·281; 
median overall survival 29·2 months, 95% CI 5·9–52·5, 
and 11·7 months, 8·3–15·1 for ASCL1-positive and ASCL1-
negative tumours, respectively, p=0·033;  fi gure 2A, B; 
table 2). Because atypical teratoid rhabdoid tumour is 
predominantly a tumour of infancy, radiation-free 
approaches are often used for patients to minimise long-
term neurocognitive sequelae. Although survivors of 

radiation-free approaches have been reported,5 
determinants of radiation-free survival remain unknown 
in children with atypical teratoid rhabdoid tumours. We 
therefore investigated how ASCL1 expression correlated 
with progression-free survival and overall survival in a 
subset of 39 patients who did not receive irradiation as part 
of their primary therapy. Remarkably, in patients treated 
with chemotherapy only, ASCL1-positive group 1 tumours 

Combined therapy Radiation-free therapy

Total 
analysed

Group 1 Group 2 p value Total 
analysed

Group 1 Group 2 p value

Number 70 25 45 39 16 23

Age (months) 

Median (IQR) 70 21 (14·0–28·2) 15·2 (9·0–28·8) 0·134* 39 15·0 (13·0–22·0) 11·1 (6·6–13·8) 0·078*

≤12 21 3 (12%) 18 (40%) 0·016† 18 3 (19%) 15 (65%) 0·008†

>12 49 22 (88%) 27 (60%) 21 13 (81%) 8 (35%)

≤18 37 9 (36%) 28 (62%) 0·047† 30 9 (56%) 21 (91%) 0·019†

>18 33 16 (64%) 17 (38%) 9 7 (44%) 2 (9%)

Sex 70 0·32† 39 0·523†

Female 30 13 (52%) 17 (38%) 19 9 (56%) 10 (43%)

Male 40 12 (48%) 28 (62%) 20 7 (44%) 13 (57%)

Location 70 0·024† 39 0·043†

Supratentorial 29 15 (60%) 14 (31%) 14 9 (56%) 5 (22%)

Infratentorial 41 10 (40%) 31 (69%) 25 7 (44%) 18 (78%)

Stage 69 0·799† 38 0·001†

M0 42 16 (64%) 26 (59%) 22 11 (69%) 11 (50%)

M1–M4 27 9 (36%) 18 (41%) 16 5 (31) 11 (50%)

Extent of surgical resection 70 0·005† 39 0·001†

Complete 31 17 (68%) 14 (31%) 16 13 (81%) 3 (13%)

Incomplete 39 8 (32%) 31 (69%) 23 3 (19%) 20 (87%)

High-dose chemotherapy with stem-cell transplant 70 0·012† 39 0·001†

Yes 30 16 (64%) 14 (31%) 18 15 (94%) 3 (13%)

No 40 9 (36%) 31 (69%) 21 1 (6%) 20 (87%)

Radiotherapy 70 0·327† ··

Yes 31 9 (36%) 22 (49%) ·· ·· ··

No 39 16 (64%) 23 (51%) ·· ·· ··

Relapse status 70 0·293† 39 0·146†

Relapse 46 14 (56%) 32 (71%) 28 9 (56%) 19 (83%)

No relapse 24 11 (44%) 13 (29%) 11 7 (44%) 4 (17%)

Survival status 70 0·041† 39 0·027†

Dead 45 12 (48%) 33 (73%) 28 8 (50%) 20 (87%)

Alive 25 13 (52%) 12 (27%) 11 8 (50%) 3 (13%)

Progression-free survival 

Median (months) 11·6 (8·1–15·1) 8·4 (6·7–10·1) 0·281 11·6 (9·0–14·2) 5·2 (3·3–7·1) 0·022

24 months‡ 39% (17–61) 28% (14–42) 37% (10–64) 12% (0–28)

60 months‡ 26% (6–46) 25% (11–39) 28% (3–53) 12% (0–28)

Overall survival

Median (months) 29·2 (5·9–52·5) 11·7 (8·3–15·1) 0·033 19·3 (16·0– 22·6) 8·9 (5·7–12·1) 0·001

24 months‡ 47% (25–64) 30% (16–44) 42% (15–69) 9% (0–21)

60 months‡ 35% (13–57) 20% (6–34) 34% (7–61) 9% (0–21)

Data are number (%) or estimate (95% CI), unless otherwise indicated. Group 1 tumours were ASCL1 positive and group 2 were negative. *Independent-samples median test. †Fisher’s exact test. ‡Log-rank 
(Mantel-Cox) test.

Table 2: Summary of clinical features and treatment outcomes in atypical teratoid rhabdoid tumour molecular subgroups 
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correlated signifi cantly with higher 5-year progression-free 
survival (28%, 95% CI 3–53) and 5-year overall survival 
(34%, 95% CI 7–61) relative to ASCL1-negative group 2 
tumours (5-year progression-free survival 12%, 
95% CI 0–28, and 5-year overall survival 9%, 95% CI 0–21; 
table 2). Importantly, the results of the Cox proportional 
hazard analyses indicated ASCL1 expression associated 
with group 1 tumours as a signifi cant factor for overall 
survival in all treated patients, and for progression-free 
survival in patients treated with only chemotherapy, 
although not for those patients treated with 
chemoradiotherapy (table 3). The signifi cance of the 
molecular groupings of tumours in relation to various 
patients’ characteristics and treatment could not be 
robustly assessed with multivariate analyses because 
complete clinical data were not available for all patients. 

We therefore assessed the prognostic signifi cance of 
ASCL1 expression in group 1 atypical teratoid rhabdoid 
tumours in relation to clinical and treatment variables. In 
children who received chemotherapy with or without 
radiotherapy, ASCL1 status retained prognostic 
signifi cance for both progression-free survival and overall 
survival after adjustment for young age (<18 months), and 
receipt of intensifi ed treatment with high-dose 
chemotherapy or radiation (table 3). These fi ndings 
suggested that ASCL1 or tumour molecular grouping 
might have prognostic signifi cance independent of 
treatment-related factors. ASCL1 expression did not 
correlate with progression-free survival in non-irradiated 
patients after adjustment for clinical and treatment factors; 
however, ASCL1 retained prognostic signifi cance for 
overall survival relative to age, extent of surgical resection, 
and high-dose chemotherapy with stem-cell transplant 
(table 3). We noted a strong correlation between ASCL1 
expression and supratentorial atypical teratoid rhabdoid 
tumours (data not shown); however, according to the 
results of univariate analyses, we identifi ed ASCL1 and not 
tumour location as a signifi cant prognostic factor for both 
progression-free survival and overall survival in non-
irradiated children (table 3). A signifi cantly higher 
percentage of children with ASCL1-positive tumours had 
complete tumour resection than did those with ASCL1-
negative tumours irrespective of location (p=0·005 in 
children receiving combined therapy and p=0·001 in those 
receiving radiation-free therapy; table 2).

To investigate whether clinically relevant risk 
stratifi cation of patients with atypical teratoid rhabdoid 
tumours might be achieved by integration of information 
about tumour biology and clinical prognostic factors, we 
investigated the survival features of patients stratifi ed by a 
combination of ASCL1 status, tumour location, disease 
stage, and extent of tumour surgery, all of which correlated 
with prognostic signifi cance in regression analyses. We 
excluded age in our analyses as a factor in our risk 
stratifi cation schemes because treatment data available 
for 86 (40%) of 213 patients in our retrospective study 
cohort suggested a strong age-related bias against curative 
treatment (data not shown). Consistent with a historical 
bias against intensive treatment of very young children 
with brain tumours, we noted that 32 (46%) of 69 patients 
up to 18 months old and nine (21%) of 43 patients older 
than 18 months did not receive postoperative treatment 
(appendix). Although our retrospective patient cohort 
received heterogeneous treatments, regression analyses 
suggested that three risk categories of patients with 
distinct survival features can be identifi ed with a 
combination of tumour molecular features and patients’ 
clinical prognostic factors—average risk, high risk, and 
very high risk. Patients with completely resected ASCL1-
positive non-metastatic supratentorial tumours (average 
risk) had the best 5-year progression-free survival (60%, 
95% CI 17–100) and 5-year overall survival (60%, 
95% CI 17–100; fi gure 3A, B; table 4). By contrast, children 

Hazard ratio 
(95% CI)

p value p value 
adjusted 
for ASCL1 
expression

Combination therapy

Progression-free survival (n=70)

Age (≤18 months vs >18 months) 3·07 (1·66–5·65) 0·001 0·009

Location (infratentorial vs supratentorial) 1·37 (0·76–2·48) 0·30 0·12

Metastasis (yes vs no) 2·53 (1·40–4·57) 0·002 0·21

Surgical resection (gross total vs subtotal) 2·72 (1·44–5·15) 0·002 0·15

High-dose chemotherapy with stem-cell transplant (yes vs no) 2·40 (1·28–4·50) 0·006 0·029

Radiotherapy (yes vs no) 2·02 (1·11–3·66) 0·021 0·005

ASCL1 (positive vs negative) 1·68 (0·89–3·14) 0·11 ··

Overall survival (n=70)

Age (≤18 months vs >18 months) 3·91 (2·06–7·41) 0·001 0·006

Location (infratentorial vs supratentorial) 2·44 (1·31–4·59) 0·005 0·41

Metastasis (yes vs no) 1·47 (0·81–2·67) 0·21 0·15

Surgical resection (gross total vs subtotal) 3·06 (1·59–5·88) 0·001 0·054

High-dose chemotherapy with stem-cell transplant (yes vs no) 2·11 (1·12–3·97) 0·02 0·036

Radiotherapy (yes vs no) 2·15 (1·17–3·95) 0·013 0·001

ASCL1 (positive vs negative) 2·02 (1·04–3·85) 0·038 ··

Radiation-free

Progression-free survival (n=39)

Age (≤18 months vs >18 months) 4·35 (1·30–14·49) 0·017 0·83

Location (infratentorial vs supratentorial) 1·49 (0·68–3·25) 0·32 0·18

Metastasis (yes vs no) 4·06 (1·72–9·60) 0·001 0·081

Surgical resection (gross total vs subtotal) 4·74 (1·84–12·2) 0·001 0·079

High-dose chemotherapy with stem-cell transplant (yes vs no) 4·18 (1·83–9·52) 0·001 0·10

ASCL1 (positive vs negative) 2·89 (1·28–6·49) 0·01 ··

Overall survival (n=39)

Age (≤18 months vs >18 months) 6·99 (1·64–29·41) 0·008 0·001

Location (supratentorial vs infratentorial) 2·22 (0·99–4·98) 0·053 0·26

Metastasis (yes vs no) 2·29 (1·06–4·93) 0·035 0·044

Surgical resection (gross total vs subtotal) 7·04 (2·58–19·23) 0·001 0·032

High-dose chemotherapy with stem-cell transplant (yes vs no) 6·17 (2·61–14·71) 0·001 0·047

ASCL1 (positive vs negative) 3·98 (1·71–9·26) 0·001 ··

 Table 3: Cox proportional hazard analyses of molecular and clinical prognostic factors in atypical teratoid 
rhabdoid tumour molecular subgroups
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with incompletely resected ASCL1-negative infratentorial 
tumours (very high risk) had poor 5-year progression-free 
survival (8%, 95% CI 0–22) and 5-year overall survival 
(6%, 95% CI 0–16), whereas those with ASCL1-positive or 
ASCL1-negative, metastatic or incompletely resected 
supratentorial or completely resected infratentorial 
tumours (high risk) had intermediate 5-year progression-
free survival (29%, 95% CI 11–47) and 5-year overall 
survival (32%, 95% CI 14–50; fi gure 3A, B; table 4). 

Pairwise comparisons showed signifi cant survival 
diff erences between patient risk categories except 
between average and high risk patients (table 4), which 
might be due to the small numbers of patients with 
average risk disease in our cohort (six [9%] of 69). Age 
was signifi cantly diff erent between risk categories: 
19 (83%) of 23 patients at very high risk, 16 (40%) of 40 at 
high risk, and one (17%) of six at average risk were 
18 months old or younger (p=0·001; table 4).

Figure 3: Integrated molecular and clinical risk stratifi cation of atypical teratoid rhabdoid tumours
(A) Progression-free survival and (B) overall survival of 70 patients treated with curative intent in relation to disease risk categories. (C) Progression-free survival and 
(D) overall survival of 69 patients treated with HDSCT with or without neuroaxis radiation in relation to risk categories. The Kaplan-Meier method and log-rank test 
were used to estimate and compare, respectively, progression-free survival and overall survival; 5-year survival estimates with the 95% CIs are shown with the survival 
curves. Black lines indicate patients who were censored. The p values were calculated with log-rank analyses. The signifi cance of treatment intensifi cation could not 
be calculated for average risk patients because no patient received both radiation and high-dose chemotherapy. HDSCT=high-dose chemotherapy and stem-cell 
rescue. Group 1 tumours were ASCL1 positive and group 2 were negative.
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There is continuing debate about the benefi t of 
treatment intensifi cation with high-dose chemotherapy 
with stem-cell transplant or irradiation for children with 
atypical teratoid rhabdoid tumours,33,34 and these patients 
receive heterogeneous treatments. Since therapeutic 
studies have been done on biologically and clinically 
heterogeneous patient cohorts, we investigated whether 
eff ects of treatment intensifi cation might diff er for risk 
categories of patients. We investigated the survival of 

patients stratifi ed by both disease risk features and 
receipt of treatment intensifi cation with high-dose 
chemotherapy with stem-cell transplant or radiation, or 
both. Eff ect of treatment intensifi cation in the average 
risk patients could not be assessed because all patients 
who received high-dose chemotherapy with stem-cell 
transplant did not receive radiation. Our analyses showed 
that treatment intensifi cation was associated with 
signifi cantly improved survival in patients with high risk 

Total 
analysed

Average risk High risk Very high risk p value

Number 69 6 40 23

Age (months) 

Median (IQR) 69 23·0 (20·25–26·88) 21·25 (13·18–33·33) 13·2 (6·95–17·45) 0·10*

≤12 20 0 9 (23%) 11 (48%) 0·027†

>12 49 6 (100%) 31 (78%) 12 (52%)

≤18 36 1 (17%) 16 (40%) 19 (83%) 0·001†

>18 33 5 (83%) 24 (60%) 4 (17%)

Sex 69 0·47†

Female 30 4 (67%) 17 (43%) 9 (39%)

Male 39 2 (33%) 23 (58%) 14 (61%)

Location 69 0·001†

Supratentorial 28 6 (100%) 22 (55%) 0

Infratentorial 41 0 18 (45%) 23 (100%)

Stage 69 0·063†

M0 42 6 (100%) 25 (63%) 11 (48%)

M1–M4 27 0 15 (38%) 12 (52%)

Extent of surgical resection 69 0·001†

Complete 31 6 (100%) 25 (63%) 0

Incomplete 38 0 15 (38%) 23 (100%)

High-dose chemotherapy with stem-cell transplant 69 0·011†

Yes 30 5 (83%) 20 (50%) 5 (22%)

No 39 1 (17%) 20 (50%) 18 (78%)

Radiotherapy 69 0·04†

Yes 31 1 (17%) 23 (58%) 7 (30%)

No 38 5 (83%) 17 (43%) 16 (70%)

Relapse status 69 0·044†

Relapse 45 2 (33%) 24 (60%) 19 (83%)

No relapse 24 4 (67%) 16 (40%) 4 (17%)

Survival status 69 0·011†

Dead 44 2 (33%) 22 (55%) 20 (87%)

Alive 25 4 (67%) 18 (45%) 3 (13%)

Progression-free survival

Median (months) ·· 12·9 (7·0–18·8) 6·1 (1·7–10·5) 0·187‡, 0·013¶, 
0·003||

24 months§ 60% (17–100) 41% (23–59) 8% (0–22)

60 months§ 60% (17–100) 29% (11–47) 8% (0–22)

Overall survival

Median (months) ·· 23·4 (6·3–40·6) 9·9 (7·4–12·4) 0·35‡, 0·01¶, 0·001||

24 months§ 60% (17–100) 48% (30–66) 11% (1–21)

60 months§ 60% (17–100) 32% (14–50) 6 (0–16)

Data are number (%) or estimate (95% CI). *Independent-samples median test. †Fisher’s exact test. ‡Average risk versus high risk. §Log-rank (Mantel-Cox) test. ¶Average risk 
versus very high risk. ||High risk versus very high risk.

Table 4: Clinicopathological and survival features of atypical teratoid rhabdoid tumour risk categories 
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disease, but slight eff ects on survival of very high risk 
patients (fi gure 3C, D; table 4). Notably, these analyses 
also suggested a distinct, rapid progression of disease for 
very high risk patients and emphasise the substantial 
limitations of current treatments for these patients, who 
comprised a third of our cohort.

Discussion
Our results show that atypical teratoid rhabdoid tumours 
are a biologically heterogeneous disease that comprise at 
least two molecular subtypes with distinct clinico-
pathological associations. Group 1 tumours were 
predominantly supratentorial, whereas group 2 were 
predominantly infratentorial. Furthermore, the tumours 
could be stratifi ed into average, high, and very high risk 
categories by integration of tumour molecular 
subgrouping through ASCL1 immunostaining with 
clinical prognostic factors. Importantly, we have 
identifi ed biological and clinical risk features that are 
associated with long-term radiation-free survival in a 
small group of patients treated with chemotherapy alone. 
To our knowledge, this study is the fi rst and largest 
integrated global molecular and clinicopathological 
analysis of childhood atypical teratoid rhabdoid tumours 
and our results provide an important fi rst framework for 
molecular classifi cation and treatment risk stratifi cation 
of patients with this highly challenging disease of infancy 
and novel insights into therapeutic pathways (panel). 
Together with the enrichment of cell invasion and 
migration genes noted in group 2 tumours, our fi ndings 
suggest that clinical prognostic factors, such as extent of 
resection and tumour location, might indicate inherent 
biological diff erences and treatment responsiveness 
between molecular classes of atypical teratoid rhabdoid 
tumours. Thus, outcomes might be determined by and 
dependent on a combination of tumour biology and 
clinical or treatment risk factors.

SMARCB1 alterations have been thoroughly validated 
and characterised in many atypical teratoid rhabdoid 
tumours.10–13 However, global genomic and transcriptional 
features have only been reported for small cohorts.18,19,35 
Although animal models of non-CNS rhabdoid 
tumours16,17 have been generated, modelling of atypical 
teratoid rhabdoid tumours has been unsuccessful and 
the results suggest that the tumours might arise from 
highly restricted cell types. Indeed, the results of our 
gene expression studies indicate at least two molecular 
classes of tumours with diff erential enrichment of 
neurogenic or forebrain markers (LHX2,36 MEIS2,37 
FABP7,25 and ASCL138), hind-brain markers (ZIC239 and 
OTX240), and mesenchymal lineage markers (BMP4 and 
MSX1) with predominant locations in supratentorial and 
infratentorial brain compartments. In addition to cell 
lineage features, tumour subtypes diff ered in cellular 
processes and signalling features. In group 1 tumours, 
the proneural NOTCH signalling pathway and genes 
regulating neural diff erentiation were highly enriched, 

whereas in group 2 BMP signalling and cell adhesion or 
migration pathways were enriched. We noted that 
12 (86%) of 14 non-CNS rhabdoid tumours also did not 
express ASCL1 (appendix), thus group 2 tumours and 
non-CNS rhabdoids in which BMP signalling is also 
implicated41 might have similar pathogenic mechanisms. 
The distinct transcriptional signature and anatomical 
predilection of molecular subtypes of the atypical teratoid 
rhabdoid tumours suggest distinct cellular origins with 
lineage-specifi c SMARCB1 loss and additional alterations 
of unknown modifi er genes leading to the heterogeneous 
clinical phenotypes of the tumours. Although the 
clustering suggests two main molecular subgroups, our 
results will need to be corroborated in larger prospective 
studies. As shown by other investigators, the molecular 
classifi cation of tumour samples is changeable and can 
be refi ned as additional samples become available; 
additional prognostic markers and subtypes might also 
emerge. Cluster analysis with gene expression is only 
one method for identifi cation of putative prognostic loci 
and it will be crucial to corroborate our results in 
independent cohorts.

Our results show that the expression of neural 
diff erentiation features is an important novel prognostic 
factor for patients with atypical teratoid rhabdoid 

Panel: Research in context

Systematic review
We searched PubMed and Google Scholar for molecular and clinical studies of atypical 
teratoid rhabdoid tumours between April 18, 1987, and Dec 31, 2014, using the search 
terms “ATRT”, “AT/RT”, “CNS-ATRT”, and “atypical teratoid rhabdoid tumor” and the gene 
names “SMARCB1”, “hSNF5”, and “INI1”. We considered clinical data for all cases with 
diagnosis of atypical teratoid rhabdoid tumours, according to pathological review of each 
respective institution. We restricted our search to English-language publications.

Interpretation
There is no consensus treatment strategy for atypical teratoid rhabdoid tumours because 
of their rare incidence; hence, clinical trials or studies have only been done on small, mixed 
cohorts of patients with CNS and non-CNS rhabdoid tumours. Treatment is empirical, 
based on the treatment of other embryonal brain tumours such as medulloblastoma for 
which whole brain and spine radiation are used for CNS prophylaxis. Although improved 
survival for patients with atypical teratoid rhabdoid tumours who are treated with such 
combined modality regimens has been reported, results from small series indicate that 
radiation therapy, which is detrimental to very young children, might not always be 
necessary and that there is biological heterogeneity in these tumours. Thus, whether 
treatment intensifi cation with brain and spine radiation or the use of high-dose 
chemotherapy is justifi ed for all patients remains debated because the biological basis for 
the diff erent therapeutic profi les of patients remains unknown. The results of our current 
integrative genomic study build on our earlier fi ndings of long-term survival of patients 
with atypical teratoid rhabdoid tumours treated with a chemotherapy-only, 
radiation-sparing approach with the intent to minimise neurocognitive sequelae in 
survivors. The results of our current study, which show molecular subtypes of tumours 
with distinct clincopathological and survival features, provide a powerful basis for a 
risk-stratifi ed prospective clinical trial in which young patients might be spared 
unnecessary toxicity associated with the current intensive empirical treatment 
approaches without compromising their survival. 
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tumours. Specifi cally, we noted that the group 1 tumours 
characterised by high expression of the proneural ASCL1 
marker correlated with superior long-term survival in all 
patients who received multimodal treatment with 
curative intent. Importantly, ASCL1 expression correlated 
with better overall survival, but not progression-free 
survival, in these patients. Since only complete 
information for primary treatment was available, it is 
possible that patients were given second-line therapy, 
which had additional benefi cial eff ects in some patients. 
Patients with group 1 tumours had long-term overall 
survival of about 29 months (table 2), ranging from 
5·4 to 98·8 months (appendix), whereas children in 
group 2, with nearly all infratentorial tumours, had an 
overall survival of only about 12 months (table 2), with 
most patients (32 [71%] of 45) progressing within 1 year 
after treatment (appendix). We noted that group 1 
tumours were also associated with superior radiation-
free survival; projected 24-month and 60-month overall 
survival were 42% and 34% for non-irradiated children 
with group 1 tumours compared with 9% for those with 
group 2 tumours (table 2). These fi ndings suggest greater 
intrinsic chemosensitivity of the neurogenic group 1 
tumours and importantly indicate that some very young 
children with favourable tumour biology could be spared 
radiation without compromising their survival.

Clinical features of the molecular subtypes of atypical 
teratoid rhabdoid tumours identifi ed in this study largely 
corroborate many of the clinical prognostic factors 
reported in small studies (table 2).11,21,29–32 Notably, 
infratentorial tumour location and BMP signalling, which 
are features enriched in the less favourable biology 
group 2 tumours, have been linked to worse outcomes 
previously.35 We did not note overall subtype-specifi c 
diff erences in patients’ ages (appendix), although age has 
been reported as an adverse prognostic factor in atypical 
teratoid rhabdoid tumours.29 Comparisons of age 
categories showed a signifi cantly greater percentage of 
children aged 12 months old and younger and aged 
18 months old and younger with group 2 tumours than 
group 1 (table 2). Furthermore, we noted that age 
18 months old and younger was signifi cantly associated 
with poorer progression-free survival and overall survival 
(table 3). We noted a broader age distribution and more 
heterogeneity in gene expression profi le for group 2 
tumours than for group 1, suggesting that further age-
associated group 2 subtypes might emerge with studies of 
much larger patient cohorts.

Importantly, we noted strong but not exclusive 
association of tumour molecular subgroups with 
location. Furthermore, previously reported adverse 
associations with germline SMARCB1 status12 and 
disease stage7 were not evident in our study. Two of four 
long-term survivors in our cohort were infants at 
diagnosis and four non-radiated long-term survivors 
had germline SMARCB1 alterations (data not shown). 
The overall incidence of metastases was not signifi cantly 

diff erent between group 1 and 2 tumours (appendix); 
however, we noted a signifi cantly greater proportion of 
group 2 tumours with subtotal surgery (table 2) in 
keeping with functional enrichment analyses of group 2 
expression signatures, suggesting more invasive and 
migratory cellular phenotypes than in group 1 tumours. 
In univariate analyses, the prognostic signifi cance of 
tumour location, disease stage, and surgical resectability 
on progression-free survival and overall survival was 
lost or reduced when adjusted for tumour grouping 
based on ASCL1 expression (table 3). Together, these 
fi ndings suggest that the prognostic signifi cance of 
specifi c clinical factors might be dependent on the 
molecular subgrouping of the tumour.

We further defi ned risk categories of atypical teratoid 
rhabdoid tumours with distinct disease trajectories and 
therapeutic outcomes by integrating molecular features 
with clinical variables signifi cantly associated with 
progression-free survival or overall survival including 
tumour location, disease stage, and extent of surgery. Our 
data suggest that children with localised supratentorial 
tumours with high ASCL1 expression and complete 
surgery represented a favourable risk category with a 
projected 5-year progression-free survival and overall 
survival of 60% and disease recurrence in only about a 
third of the patients. By contrast, children with metastatic 
or subtotally resected infratentorial tumours with no 
ASCL1 expression comprised the worst prognostic group. 
Nearly all patients in this very high risk category (>80%) 
died within 24 months of diagnosis, whereas the high risk 
category of patients with ASCL1-positive, localised but 
subtotally resected supratentorial or infratentorial 
tumours had intermediate outcome and progression 
(table 4). Although most children with atypical teratoid 
rhabdoid tumours are given intensive chemo-
radiotherapeutic regimens used for high risk malignant 
brain tumours, it remains unclear whether high-dose 
chemotherapy or craniospinal radiation, or both, benefi ts 
or is necessary for all patients. Our fi ndings suggest that 
diff erent therapeutic approaches might be needed for the 
three risk categories of atypical teratoid rhabdoid 
tumours. Unlike the highest risk group in which early 
disease progression occurs despite interventions, the 
average risk patients who received only chemotherapy 
had the best survival with rare recurrences beyond 
24 months after diagnosis. Despite the small number in 
our cohort, our data suggest that most patients with 
average risk disease might be cured with chemotherapy 
alone, whereas novel therapeutic agents are urgently 
needed for patients at very high risk. Our data suggest 
that conventional intensifi cation of treatment with high-
dose chemotherapy or craniospinal irradiation, or both, 
provides the greatest survival benefi t for children in the 
high risk category with ASCL1-positive, localised but 
subtotally resected supratentorial or infratentorial 
tumours (fi gure 3). However, these patients had a more 
protracted disease course with adverse events up to 
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60 months after diagnosis (data not shown); thus, 
indicating that more prolonged treatment or maintenance 
regimens might provide additional survival benefi ts.

With improved survival of patients with atypical teratoid 
rhabdoid tumours,3–8 it has become increasingly 
important to identify and assess prognostic factors to 
justify and stratify the use of highly aggressive and 
potentially toxic conventional interventions in very young 
patients42 and to seek more specifi c therapeutic agents. 
Results of in-vitro studies have shown several promising 
biological agents for the treatment of atypical teratoid 
rhabdoid tumours;43–47 however, their role in specifi c 
biological subtypes of tumours remains to be investigated. 
Our results suggest that inhibitors of NOTCH, BMP, and 
MAPK signalling and angiogenesis would be important 
novel, subgroup-specifi c therapeutic agents for atypical 
teratoid rhabdoid tumours. Studies to assess how such 
novel biological agents might be incorporated into 
conventional regimens will be important for reducing the 
substantial burden of current treatments in patients with 
atypical teratoid rhabdoid tumours.

Despite having a large cohort of patients with atypical 
teratoid rhabdoid tumours, our clinical fi ndings need to 
be interpreted with the knowledge that complete clinical 
information was not available for all patients. Further-
more, as our retrospective study spanned decades it is 
also limited by biases and heterogeneity inherent in the 
treatment of rare diseases. Nonetheless, we believe that, 
our data are unique and valuable for informing and 
expediting biology-based trials and therapies for atypical 
teratoid rhabdoid tumours and other related cancers. The 
identifi cation of ASCL1 as a marker for group 1 tumours 
is an important advance. However, further heterogeneity 
is likely to be shown in atypical teratoid rhabdoid 
tumours and additional markers will be needed to 
robustly distinguish all subtypes of these tumours. In 
view of our restricted success in establishing a multipanel 
immuno histochemical diagnostic panel, it is likely that 
additional diagnostic analyses will need to be combined 
with immunohistochemistry to establish robust clinical 
and diagnostic assays. Data from this study also provide 
novel information for developing disease models that 
capture the clinicopathological spectrum of atypical 
teratoid rhabdoid tumours. Most importantly, our data 
provide a crucial fi rst framework for the development of 
prospective risk stratifi ed clinical trials in patients with 
atypical teratoid rhabdoid tumours.
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