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Mapping the Cellular Response
to Small Molecules Using
Chemogenomic Fitness Signatures
Anna Y. Lee,1,2* Robert P. St.Onge,3* Michael J. Proctor,3 Iain M. Wallace,1 Aaron H. Nile,4

Paul A. Spagnuolo,5 Yulia Jitkova,6 Marcela Gronda,6 Yan Wu,6 Moshe K. Kim,7,8

Kahlin Cheung-Ong,1,2 Nikko P. Torres,1,7 Eric D. Spear,9 Mitchell K. L. Han,10 Ulrich Schlecht,3

Sundari Suresh,3 Geoffrey Duby,11 Lawrence E. Heisler,1 Anuradha Surendra,1 Eula Fung,3

Malene L. Urbanus,2 Marinella Gebbia,1 Elena Lissina,1,2 Molly Miranda,3 Jennifer H. Chiang,12

Ana Maria Aparicio,3 Mahel Zeghouf,13 Ronald W. Davis,3 Jacqueline Cherfils,13 Marc Boutry,11

Chris A. Kaiser,9 Carolyn L. Cummins,10 William S. Trimble,7,8 Grant W. Brown,1,7

Aaron D. Schimmer,6 Vytas A. Bankaitis,4 Corey Nislow,1,2,12 Gary D. Bader,1,2 Guri Giaever1,2,10,12†

Genome-wide characterization of the in vivo cellular response to perturbation is fundamental
to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small
molecules affects biology and medicine by revealing the mechanisms of drug action. We used
a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a
compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We
identified 317 compounds that specifically perturb the function of 121 genes and characterized the
mechanism of specific compounds. Global analysis revealed that the cellular response to small
molecules is limited and described by a network of 45 major chemogenomic signatures. Our results
provide a resource for the discovery of functional interactions among genes, chemicals, and
biological processes.

Chemical genomics is a powerful approach
for understanding in vivo mechanisms of
drugaction.The ability to interpretmolecular-

level responses in a cellular context has led to
therapies for intractable diseases (1). “Guilt-by-
association” approaches allow mechanisms of un-
tested compounds to be inferred on the basis of
profile similarity to established drugs (2, 3). Loss-
of-function genetic screens provide direct mecha-
nistic insight as they report genes thatwhen deleted,
confer drug sensitivity. Here, we used yeast ge-
nomic tools (4) in loss-of-function assays to sys-
tematically characterize the cellular response to
small-molecule perturbation by screening 3250
compounds using a haploinsufficiency profiling

(HIP) and homozygous profiling (HOP) chemo-
genomic platform (5–7). HIP exploits drug-induced
haploinsufficiency (8), as measured by a growth
or fitness defect (FD) observed in a heterozygous
strain deleted for one copy of the drug’s target
gene. HIP identifies candidate protein targets by
measuring the drug-induced FDs of ~1100 het-
erozygous strains representing the yeast essential
genome (5, 6). In the complementary HOP assay,
drug-induced FDs are reported for ~4800 homo-
zygous deletion strains, identifying the nonessen-
tial genes required to buffer the targeted pathways
(7, 9). Each combined HIPHOP profile provides a
genome-wide view of the cellular response to a
specific compound.

By prescreening 50,000 diverse druglike small
molecules, we identified 3250 compounds that in-
hibitedwild-type yeast growth (~95%of unknown
mechanism; table S1 and fig. S1). Each compound
was profiled genome-wide, and FDs were mea-
sured for each strain; larger scores representing a
greater requirement for the deleted gene to re-
sist chemical treatment (10). For example, the
Erg11D /ERG11 strain represents a “hit” as it had
the largest FD in the fluconazole HIP profile and
passed significance and specificity thresholds
(10). Fluconazole inhibits the protein Erg11, thus
demonstrating the ability of HIP to identify targets
in vivo (Fig. 1A). Fluconazole HOP identified
mechanisms that buffer the ergosterol pathway,
including the requirement for iron (Fig. 1A). Gene
Ontology (GO) enrichments are provided for
each profile (fig. S2) (10). Additional relationships
among genes, profiles, pathways, and compounds
can be exploredwith the interactive onlineHIPHOP
chemogenomic database http://chemogenomics.
pharmacy.ubc.ca/HIPHOP/ (10).

In total, HIP identified 317 compounds that
specifically perturb the function of 121 essential
genes. To distinguish these compounds from
drugs or credentialed chemical probes, we refer
to them as “chemical-genetic probes,” and to their
interacting gene partners as “HIP hits” (10). Con-
sistent with the ability of HIP to identify protein
targets, these specific interactions were signifi-
cantly enriched for established compound-target
pairs (hypergeometric test P < 10−4) including
drugs approved by the U.S. Food and Drug Ad-
ministration (e.g., rapamycin) and chemical probes
(e.g., cerulenin) (table S2 and fig. S3). These drugs
and probes target homologous proteins in yeast
and mammalian cells, suggesting that some of our
uncharacterized compounds may function similarly
in mammalian cells, even though yeast required
about fives times as much compound to inhibit
growth by 20% [minimum 20% inhibitory con-
centration (IC20) = ~244 nM, median = ~100 mM;
fig. S4 and table S3]. This observation is consist-
ent with published data (11, 12) and reflective of
yeast’s robust xenobiotic defenses. Using quan-
titative growth assays (fig. S5 and table S2), we
confirmed dose-dependent drug-induced haplo-
insufficiency for 63 compound-gene pairs, 54 of
them novel (figs. S6 to S9). Specific chemical-
genetic probes were tested for inhibitory activi-
ties in cell-free assays (IC50 range 1 to 500 mM,
median = ~23 mM) and/or cell-based assays (IC50

range 30 nM to 100 mM, median = 60 mM). For
example, we validated inhibitors of actin (0136-
0228) and tubulin (1327-0036) in yeast and mam-
malian cell-based assays (IC50 range 30 nM to
100 mM) and in in vitro polymerization assays
(IC50 range 20 to 25mM; fig. S10).An in vitro assay
suggested that compound 1327-0036 binds to the
colchicine-binding site on the tubulin dimer (fig.
S10). Another compound (3013-0144) perturbed
the septin Cdc12 (IC50 = 1 mM), exhibiting about
five times more activity than forchlorfenuron, a
known septin inhibitor (13) (Fig. 1B). Three
compounds that perturb Sec14, a conserved
phosphatidylinositol transfer protein, were also
biochemically validated (IC50 = ~1 mM; Fig. 1C),
and we have recently shown that two additional
inhibitors are effective in vivo and in vitro (14).
The specificity of these compounds for Sec14 was
further validated by demonstrating that suppressed
double mutants cki1D sec14D (15) and kes1D
sec14D (16) were resistant to these inhibitors (fig.
S7). This experimental support provides encour-
aging proof-of-concept data and underscores the
need for further characterization of putative pro-
tein inhibitors (see fig. S5 for the structures of all
validated inhibitors).

Hierarchically clustering all HIPHOP profiles
allowed classification of cellular response types
into major (covering ~36% of profiles), minor
(~40%), or unique (~24%) signatures. Each ma-
jor response was defined by a characteristic gene
signature in a cluster of more than four profiles,
while most minor signatures were associated with
three to four profiles (fig. S11 and table S4). Sev-
eral minor signatures point to compelling biology,
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including a signature representing the response to
three chemical-genetic probes that share a 2,5-
dimethylpyrrole chemical moiety and putatively
target the geranylgeranyltransferase complex
RAM2/CDC43 (table S2). Unique signatures (one
to two profiles each) include distinctive drugs
(e.g., methotrexate) and chemical-genetic probes
(e.g., 0kpi-0099, fig. S12).

We focused on the highest-confidence major
cellular response signatures, which represent ~70%
of our chemical-genetic probes (10). Of these 45
signatures, 33 were enriched for known gene func-
tion, 40 represent ≥1 HIP hits, and 11 represent
≥2 compounds of known mechanism (Fig. 2).
Five of these 11 signatures are enriched for com-
pounds with similar bioactivity [hypergeometric
test false discovery rate (FDR) ≤ 0.1; table S5],
supporting mechanism prediction for related
compounds (10) (Fig. 2). For example, the exosome
signature compounds included four chemotherapeu-
tics known to target this complex (hypergeometric
test P < 10−10; Fig. 3) (5, 6), allowing a similar
mechanism to be inferred for two additional com-
pounds. Similarly, we predict DNA damage as the
underlyingmechanism for 20 uncharacterized com-
pounds with the same signature as established
DNA-damaging agents (table S5). Response sig-
natures also provide hypotheses applicable tomam-
malian cells. For example, trichlorophene induced
mitochondrial stress. Trichlorophene-treated im-
mortalized human leukemia cells confirmed a

mitochondrial-specific mechanism; exhibiting
increased generation of mitochondrial reactive
oxygen species and a reduction in reserve oxygen
capacity (fig. S13). Signatures also yielded new
information about well-characterized compounds;
e.g., the tubulin inhibitors nocodazole and benomyl
induced a signature containing tubulin biogenesis
and SWR1 complex genes, a biological link be-
tween cytoarchitecture and chromatin structure
supported by genetic interaction data (17).

Our signatures are recognizable in other genome-
wide data sets, supporting their biological rele-
vance. Yeast large-scale genetic interaction data
(18) revealed that our response signatures were
observed in 12% of 380 genetic profiles that
lacked GO enrichment (table S6). In some cases,
the signatures provided annotation for unchar-
acterized genes. For example, genes known to
genetically interact with YPL109C (18) are not
enriched for any GO-based function, yet were
significantly enriched for our ubiquinone biosyn-
thesis and proteasome signature (hypergeometric
test FDR ≤ 0.1), suggesting a related function.
Our signatures also identify links between bio-
logical processes (fig. S14). For example, the
ubiquinone biosynthesis and proteasome signa-
ture links these two processes by 38 gene pairs
exhibiting correlated fitness, or “cofitness.” In-
dependent support for this observation is pro-
vided by nine genetic interactions (18) and one
physical interaction (17) (table S7). Cofitness

also supported a functional relationship between
diphthamide biosynthesis and histone exchange
in the NEO1-PIK1 signature (table S7).

Approximately half (n = 28) of the major
response signatures are associated with compounds
significantly enriched for chemical moieties (hy-
pergeometric test FDR ≤ 0.1; table S8 and Fig. 2),
suggesting that specific molecular structural prop-
erties can drive a cellular response. For example,
the NEO1 and NEO1-PIK1 signatures (Fig. 2) are
characterized by NEO1 haploinsufficiency induced
by cationic amphiphilic drugs (CADs; fig. S15).
CADs are associated with drug-induced phospho-
lipidosis (DIPL), a human phospholipid storage
disorder (19, 20) caused by diverse therapeutics.
At a cellular level, DIPL arises from the selective
accumulation of CADs in the acidic vacuole and
lysosome, in yeast and mammalian cells, respec-
tively. Consistent with published yeast genetic
studies, we confirmed that inhibition of yeast
vacuolar adenosine triphosphatase by bafilomycin
A alleviates the FD induced by CADs (21).
Furthermore, we found that bafilomycin A res-
cued CAD-induced NEO1 haploinsuffiency (Fig.
4A and fig. S8). Structural features of NEO1 and
NEO1-PIK1 compounds proved predictive of
response; a statistical structure-based model
performed about seven times better than random
in identifying compounds that induce NEO1
haploinsufficiency (fig. S16; percentage of cor-
rect predictions in cross-validation = 99%) (10).
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Fig. 1. Validation of chemical-genetic probes. (A) Fluconazole HIPHOP
profile. Fitness defect (FD) scores plotted for each deletion strain. HIP (left)
identifies the established drug target Erg11. HOP (right) identifies processes
directly (e.g., sterol biosynthesis) and indirectly (e.g., iron ion homeostasis)
related to ERG11 function. Significant FDs (standard normal distribution P ≤
0.001) are labeled except those (blue) not covered by the highlighted processes;
*, dubious gene overlapping labeled gene. (B) Cdc12 inhibitor. In a wound-
healing assay, HeLa cells with dimethyl sulfoxide (DMSO), 1 mM 3013-0144,
and 5 mM forchlorfenuron (FCF) were fixed and stained as described, with DNA

stained blue and antibodies against the Golgi visualized via green fluorescence
(10). DMSO-treated cells show the Golgi reoriented toward the wound edge
(white line); in contrast, 3013-0144 inhibited Golgi reorientation as effectively
as FCF (scale bar, 10 mm). (C) Dose-dependent inhibition of the phosphatidy-
linositol (PtdIns) transfer activity of purified recombinant Sec14 (10). Transfer of
radiolabeled PtdIns as a percentage of the untreated control (y axis), measured
in the presence of 9131112, 9097855, 9053361*, and 9045654 (an inactive
derivative) at the indicated concentrations (x axis). Data are mean T SD (N = 3).
*9053361 did not qualify as a HIP hit, but was nonetheless validated.
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Our yeast-based model suggests that haploinsuffi-
ciency of NEO1, and by extension, its human
homologs (ATP9A and B), may prove useful as a
biomarker to identify DIPL-causing compounds
(Fig. 4B).

Our systems-level view of the cellular re-
sponse to small molecules provides a resource for
the exploration of multifaceted relationships among
genes, biological processes, chemical structures,
and response signatures. Although not previously
captured by any existing GO category, in retro-
spect, we detect signatures present in other large-
scale genomic data sets suggesting that they may
be used to address the challenges of incomplete
gene annotation and integration of diverse genome-
wide data sets. It is likely that we have identified
all major signatures (within similar chemical space
in yeast), as we observed saturation in our screen.
Reanalysis of our prior chemogenomic data set
(7) revealed that ~60% of the 45 signatures
could be detected (fig. S17 and table S4), and

simulation demonstrates that 80% of our 45
major clusters would be identified after screen-
ing <30% of the compounds (fig. S18). We ex-
pect that these signatures therefore represent
fundamental small-molecule response systems
that are present across eukaryotic cells. Accord-
ingly, we expect that many of our 317 chemical-
genetic probes will be directly applicable to
mammalian cell biology and may support novel
targets as opportunities to pursue for therapeutic
intervention (5, 22, 23).
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Fig. 3. Mechanism inference with the exosome signature. (A) Den-
drogram of the exosome profiles extracted from the dendrogram of all
HIPHOP profiles. Profiled compounds with established mechanisms are shown
in red. (B) The exosome signature. For each gene in the signature, the bar plot
indicates the median FD score across the exosome profiles. (C) Mechanism

inferred by signature similarity. Scores of genes exhibiting significant fitness
defects in the profiles of 5-fluorouridine and an uncharacterized compound
(4215-0184) associated with the exosome signature. Both compounds contain
a 5-fluoropyrimidine substructure (green). Guilt-by-association infers that
4215-0184 inhibits the exosome.
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Fig. 4. NEO1-based signatures and drug-induced phospholipidosis (DIPL). (A) Rescue of CAD-
induced NEO1 haploinsufficiency. Tamoxifen-induced NEO1 haploinsufficiency is rescued by bafilomycin
A. Growth of the neo1∆ /NEO1 strain treated with these compounds was monitored by measuring the
optical density at 600 nm (OD600) (y axis) for 24 hours (x axis). (B) Prediction of DIPL. The plot shows the
percentage of DIPL-causing compounds (actives; y axis) identified among the top-scoring compounds
(x axis).
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