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Abstract

Patient classification has widespread biomedical and clinical appli-
cations, including diagnosis, prognosis, and treatment response
prediction. A clinically useful prediction algorithm should be accu-
rate, generalizable, be able to integrate diverse data types, and
handle sparse data. A clinical predictor based on genomic data
needs to be interpretable to drive hypothesis-driven research into
new treatments. We describe netDx, a novel supervised patient
classification framework based on patient similarity networks,
which meets these criteria. In a cancer survival benchmark dataset
integrating up to six data types in four cancer types, netDx signifi-
cantly outperforms most other machine-learning approaches
across most cancer types. Compared to traditional machine-
learning-based patient classifiers, netDx results are more inter-
pretable, visualizing the decision boundary in the context of
patient similarity space. When patient similarity is defined by
pathway-level gene expression, netDx identifies biological path-
ways important for outcome prediction, as demonstrated in breast
cancer and asthma. netDx can serve as a patient classifier and as a
tool for discovery of biological features characteristic of disease.
We provide a free software implementation of netDx with auto-
mation workflows.
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Introduction

The goal of precision medicine is to build quantitative models that

guide clinical decision-making by predicting disease risk and

response to treatment using data measured for an individual. Within

the next 5 years, several countries will have general-purpose cohort

databases with 10,000 to > 1 million patients, with linked genetics,

electronic health records, metabolite status, and detailed clinical

phenotyping; examples of projects underway include the UK

BioBank (Sudlow et al, 2015), the US NIH Precision Medicine

Initiative (https://obamawhitehouse.archives.gov/precision-medicine),

and the Million Veteran Program (http://www.research.va.gov/MVP/).

Additionally, human disease-specific research projects are profiling

multiple data types across thousands of individuals, including genetic

and genomic assays, brain imaging, behavioral testing, and clinical

history from integrated electronic medical records (Hudson et al, 2010;

Calkins et al, 2015; Collins & Varmus, 2015) (e.g., the Cancer Genome

Atlas, http://cancergenome.nih.gov/). Computational methods to inte-

grate these diverse patient data for analysis and prediction will aid

understanding of disease architecture and promise to provide action-

able clinical guidance.

Statistical models that predict disease risk or outcome are in

routine clinical use in fields such as cardiology, metabolic disorders,

and oncology (Wilson et al, 1998; Schmidt et al, 2005; Gail et al,

2007; Lee et al, 2014). Traditional clinical risk prediction models

typically use generalized linear regression or survival analysis, in

which individual measures are incorporated as terms (or features)

of a single equation. Standard methods of this type have limitations

analyzing large data from genomic assays (e.g., whole-genome

sequencing). Machine-learning methods can handle large data, but

are often treated as black boxes that require substantial effort to

interpret how specific features contribute to prediction. Black box

methods are unlikely to be clinically successful, as physicians

frequently must understand the characteristic features of a disease

to make a confident diagnosis (Castelvecchi, 2016). Interpretability

is particularly required in genomics because of relatively smaller

sample sizes and to better understand the molecular causes of

disease so that targeted therapies can be designed. Further, many

existing methods do not natively handle missing data, requiring data

pruning or imputation, and have difficulty integrating multiple dif-

ferent data types.

The patient similarity network framework can overcome these

challenges and excels at integrating heterogeneous data and
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generating interpretable models. In this framework, each feature of

patient data (e.g., gene expression profile, age) is represented as a

patient similarity network (PSN; Fig 1A). Each PSN node is an indi-

vidual patient, and an edge between two patients corresponds to

pairwise similarity for a given feature. For instance, two patients

could be similar in age, mutation status, or transcriptome. PSNs can

be constructed based on any available data, using a similarity

measure (e.g., Pearson correlation and Jaccard index). Because all

data are converted to a single type of input (similarity networks),

integration across diverse data types is straightforward. Patient simi-

larity networks (PSN) are a recently introduced concept and have

been used successfully for unsupervised class discovery in cancer

and type 2 diabetes (Wang et al, 2014; Li et al, 2015), but have

never been developed for supervised patient classification.

We describe netDx, the first PSN-based approach for supervised

patient classification. In this system, patients of unknown status can

be classified based on their similarity to patients with known status.

It applies the idea of recommender systems, similar to those used in

Amazon or Netflix (“find movies like this one”), to precision medi-

cine (“find patients who don’t respond to therapy”). This process is

clinically intuitive because it is analogous to clinical diagnosis,

which often involves a physician relating a patient to a mental data-

base of similar patients they have seen. As demonstrated below,

netDx has strengths in classification performance, heterogeneous

data integration, and interpretability.

Results

Algorithm description

The overall netDx workflow is shown in Fig 1, with detailed views

of particular steps in Figs EV1 and EV2. The example in Fig 1

conceptually shows how patient similarity networks (PSNs) can be

used to predict whether a patient is at high or low risk of developing

a disease based on one or more patient-level data types. Similarity

networks are computed for each patient pair and for each data type.

In this example, high-risk patients are more strongly connected

based on their clinical profile, which may capture age and smoking

status, and metabolomic profile. Low-risk patients are more similar

in their clinical and genomic profiles. The goal of netDx is to identify

the input features predictive of high and low risk, and to accurately

assign new patients to the correct class.

Input data design

Each patient similarity network (PSN) is a feature, similar to a vari-

able in a regression model. A PSN can be generated from any kind of

patient data, using a pairwise patient similarity measure (Fig 1A and

B). For example, gene expression profile similarity can be measured

using Pearson correlation, while patient age similarity can be

measured as normalized age similarity. A reasonable design is to

define one similarity network per data type, such as a single network

based on correlating the expression of all genes in the transcriptome,

or a single network based on similarity of responses to a clinical

questionnaire. If a data type is multivariate, defining a network for

each individual variable will result in more interpretable output.

However, this approach may lead to too many features generated

(e.g., one network each for millions of SNPs), which increases

computational resource requirements and risk of overfitting. Thus,

as with any machine-learning task, there is a trade-off between inter-

pretability and overfitting/scalability. To help address this problem

for gene-oriented data (e.g., transcriptomics), we group gene-based

measurements into biological pathways, which we assume capture

relevant aspects of cellular and physiological processes underlying

disease and normal phenotypes. This biological process-based

design generates ~2,000 features from gene expression profiles

containing over 20,000 genes, with one feature per pathway, but has

the limitation that not all genes can be mapped to pathways.

Selecting features informative for class prediction

In machine learning, the feature selection step identifies the features

(here, networks) with the highest generalizable predictive power. In

the case of netDx, predictive features are identified for each class

using feature selection. netDx is trained on samples from the class

of interest, using cross-validation (Figs EV1 and EV2) and an estab-

lished network integration algorithm (GeneMANIA; Mostafavi et al,

2008). When provided with a collection of PSNs, GeneMANIA takes

a query of patients as input (“+” nodes) and solves a constrained

regression problem on the network to maximize edges that connect

query patients, that is, enriched for (+,+) interactions, relative to

other edges in the network. The ideal network is one connecting all

patients of the same class without any connections to other classes;

an example would be a network connecting all treatment respon-

ders, and all non-responders, without edges between the two. The

least useful network is one that connects patients from one class to

patients from other classes, without connecting any patients within

the same class. The query-driven regression weights each network,

with higher weights reflecting a greater enrichment of (+,+) edges.

netDx assesses the robustness of this feature selection by perform-

ing repeated GeneMANIA queries with different subsamples of the

training samples. The netDx score for a given feature is the number

of times that feature was assigned a positive score in a query across

resampling rounds. This scoring process is repeated for each class.

The classifier’s sensitivity and specificity can be tuned by threshold-

ing this score (for instance, features passing selection could be

defined as those scoring ≥ 80%); a feature with a higher score

achieves greater specificity and lower sensitivity. Similar to feature

selection in other machine-learning algorithms, the output of this

step is a set of features that can be integrated to produce a predictor

for the patient class of interest.

Class prediction using selected features

Selected features are combined by averaging their similarity scores

to produce a single, integrated network for each class. GeneMANIA

runs label propagation on each integrated network outward from

the query nodes (“+” nodes) to rank all other nodes in the network

by similarity to the query (Fig EV2). For each class, netDx generates

a GeneMANIA database consisting of networks passing feature

selection; for example, one database for high-risk of lung cancer and

another for low-risk of lung cancer. It then runs a single Gene-

MANIA query on this database for each class, using the training

samples as the query. This is equivalent to the query, “given predic-

tive networks for patient class L, rank all patients by similarity to

known examples of L”. netDx then assigns test patients to the class

for which it has the highest similarity (Mostafavi et al, 2008;

Figs EV1 and EV2).
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netDx output

netDx returns the set of selected features for each class, predicted

labels for all test patients, and standard performance measures includ-

ing the area under the receiver operating characteristic curve

(AUROC), area under the precision-recall curve (AUPR), and accuracy

(Fig 1C). Class-specific scores for each feature are returned; if pathway

features are used, they are visualized using an enrichment map

(Fig 1D; Merico et al, 2011a). A final integrated patient similarity

network is generated by integrating all selected features. Inter- and

intra-class separation is measured using average shortest path meth-

ods over the integrated PSN (Fig 1C), and the network is visualized to

aid interpretation of the strength of class separation.

Benchmarking performance by predicting binarized survival
in cancer

To assess the classification performance of netDx, we use an estab-

lished cancer survival prediction benchmark available for four tumor

types, using data from The Cancer Genome Atlas (TCGA; http://

cancergenome.nih.gov/) via the TCGA PanCancer Survival Prediction

project website of Yuan et al (2014a), https://www.synapse.org/#!

Synapse:syn1710282). These tumor types have been thoroughly

analyzed using eight machine-learning methods, which provide

extensive performance results that we can compare to (Yuan et al,

2014a). Data are for renal clear cell carcinoma (The Cancer Genome

Atlas, 2013; KIRC, N = 150 patients; Data ref: Yuan et al, 2014b),

ovarian serous cystadenocarcinoma (The Cancer Genome Atlas,

2011; OV, N = 252, Data ref: Yuan et al, 2014c), glioblastoma multi-

forme (The Cancer Genome Atlas, 2008; GBM, N = 155, Data ref:

Yuan et al, 2014d), and lung squamous cell carcinoma (The Cancer

Genome Atlas, 2012a; LUSC, N = 77, Data ref: Yuan et al, 2014e).

Data for a given tumor type include clinical variables (e.g., age and

tumor grade); mRNA, miRNA, and protein expression; DNA methyla-

tion; and somatic copy number aberrations. Binarization of survival

and format of clinical variables followed previous work (Yuan et al,

2014a; Data ref: Yuan et al, 2014f); comparison of data processing

and predictor methods to that of the PanCancer Survival project is

shown in Fig EV3 and Appendix Table S1.

D High-scoring pathways provide mechanistic insight
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Figure 1. The netDx method.

A Patient data, provided as input to netDx in the form of tables. The simple example for predicting low/high risk of disease uses clinical, genomic, metabolomic, and
genetic data as input.

B Patient similarity networks (or PSN) are networks with patients as nodes and weighted edges representing patient similarity by some measure. netDx converts patient
data into a set of patient similarity networks. netDx identifies which networks strongly relate high-risk patients (here, clinical and metabolomic data) and which relate
low-risk patients (clinical and gene expression data). Feature selection is used to score networks by their ability to predict patient class (details in Fig EV1).

C netDx output. netDx returns several types of output. Top-scoring features are combined into a single view, or network of overall patient similarity, which can be used
to classify new patients based on relative similarity to known patient classes. netDx also provides standard classifier performance metrics and scores for the
predictive value of individual features.

D Network-based visualization of top predictive pathways. If pathway features are used, netDx identifies and visualizes the pathways most useful for classification.
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For each tumor type, we classified samples into high and low

survival categories using a range of models, each with different

combinations of input data, following (Yuan et al, 2014a) for

comparability (Fig 2A). Each model was independently trained

(80:20 train:test) and optimized. For a given train/test split, feature

selection was performed over 10 resamplings of the training samples

for each class, and features robustly identified in at least 9 out of 10

resamplings were used to classify test samples. This process was

repeated for multiple random splits of train and test until perfor-

mance measures stabilized (20 splits; Fig 2A). Performance for each

model was measured as the average of test classification (mean

AUROC) across the 20 splits. Optimization of each model included

varying choice of similarity metric, whether features were defined at

the level of entire data types or of individual variables (genes), and

by whether or not imputation was used (Appendix Table S1–S3).

Where features were defined at the level of individual genes,

Feature
selection

A

Clinical
RNA
DNAm
Proteins
miRNA
sCNA

Select
1+ datatypeGood Poor

Top-scoring 
features

per class
Classification

Repeat 
over random

train/test splits
Calculate

average performance 
over splits

Classify
tumour by
survival

Patient
data

Predictor design

Performance by tumour type

SVM

RF

PLS

NC

LR

DA

KNN

DDA●

●

●

● ● ● ●

●

●

●

●

●

●

KIRC

●M
ea

n 
A

U
R

O
C

OV LUSC GBM Machine-learning
method

B

netDx

KIRC, clinical data

S
ur

vi
va

l p
ro

ba
bi

lit
y

0

0.25

0.50

0.75

1.0

0.5

1000 20000
time (days)

Hazard ratio
("Poor" relative to "Good")

p < 0.02

1 2 5 10

0.6

0.7

0.8
p=0.03

p=0.01 p=0.02
p=0.07

Figure 2. Performance benchmarking with PanCancer Survival data.

A Method. Various combinations of patient data types were provided as input to netDx, to predict binary survival (Good/Poor). Performance was compared for renal clear cell
carcinoma (KIRC, N = 150 patients), ovarian cystadenocarcinoma (OV, N = 252), lung squamous carcinoma (LUSC, N = 77), and glioblastoma multiforme (GBM, N = 155).

B Average performance of netDx compared to other machine-learning methods. Each panel shows data for one tumor type, and each boxplot shows mean AUROC (20
train/test splits) for a given machine-learning method across different tested combinations of input data (Appendix Table S1–S3). Boxplot center indicates median;
box bounds indicate 25th and 75th percentile, and whiskers mark 1.5 times the interquartile range. Dots indicate points that fall outside this range. netDx is shown in
pink. Statistical significance is computed using a one-sided Wilcoxon–Mann–Whitney comparing netDx to all other methods combined; this was done to establish
strictly higher performance of netDx relative to other methods. Bottom: Yellow box: As a reference point, Kaplan–Meier curves and hazard ratios are shown for
predicted samples from a representative KIRC split (split with AUROC closest to the mean AUROC across 20 splits). The light shaded pink and blue areas in the
Kaplan–Meier curve indicate 95% confidence intervals based on log-hazard; P-value from log-rank test. Error bars for the hazard ratio indicate 95% confidence
intervals; P-value from Cox proportional hazards model.
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variables were prefiltered using lasso regression to reduce the

number of features considered. Prefiltering supplements the robust

feature selection step described above and is performed within the

resampling loop, by creating features only using selected variables.

Appendix Fig S1 shows an example of variability produced in pre-

filtered features. For similarity metrics, we tested normalized simi-

larity, Pearson correlation with and without exponential scaling,

radial basis function, and Euclidean-distance-based similarity with

exponential scaling. In total, 40 different models were trained, 9–11

per cancer type (Dataset EV1).

We use the AUROC to measure performance as this was the metric

reported by the PanCancer Survival project (Yuan et al, 2014a;

Appendix Table S3). Information on the exact samples used for the 10

train/test splits used by Yuan et al is not available, thus we used new

random splits, but used more splits (n = 20) until we reached a stable

AUROC estimate. For all tumor types, netDx demonstrates perfor-

mance consistently better than, or at par with, other machine-learning

methods (Fig 2B; Dataset EV1). Average netDx performance is signifi-

cantly higher than that for all other methods for three of the tumors

(one-tailed WMW to test strictly higher netDx performance; KIRC:

P = 0.03; OV: P = 0.02; GBM: P = 0.02) and is not significant for the

fourth (LUSC: P = 0.07). Furthermore, the top-performing netDx

model outperforms all eight tested machine-learning algorithms for

kidney, ovarian, and brain cancer (Fig 2B, Appendix Table S1), and

outperforms all but one outlier model for lung cancer (netDx

best = 0.72, Yuan et al second best = 0.71). Pairwise comparison of

netDx broken down by machine-learning method shows that netDx

has a significantly better median AUROC score in most (75%) cases

(Appendix Table S2). Performance statistics reported by Yuan et al

were the best performing models out of 320 tested for different data

combinations with eight different machine-learning methods: diagonal

discriminant analysis; K-nearest neighbor; discriminant analysis; logis-

tic regression; nearest centroid; partial least squares; random forest;

and support vector machine. Thus, netDx can perform as well as, or

better than, a diverse panel of machine-learning methods.

Pathway-level feature selection identifies cellular processes
predictive of clinical condition

Creating a single feature per data type identifies the general predic-

tive value of that data layer but, without further work, does not

provide insight into which genes or cellular processes are useful for

classification. To better understand disease mechanisms, netDx

supports the ability to group gene-level measures into pathways

(gene sets) so that the predictive value of pathway features can be

measured. To illustrate this ability, we classified breast tumors as

being of the Luminal A subtype or not, using tumor-derived gene

expression (N = 348 patients; 154 Luminal A, 194 non-Luminal A;

The Cancer Genome Atlas, 2012b; Data ref: The Cancer Genome

Atlas, 2012c,d). Gene expression was used as input, and features

were defined at the level of curated pathways of cellular processes

(i.e., 2,119 patient similarity networks, one per pathway; Data ref:

Merico et al, 2011b). We split the data into train and test groups in

an 80:20 ratio and ran netDx as described in the previous section to

classify Luminal A vs. “other”. This process was repeated with 100

train/test splits to achieve stable pathway-level scores (Appendix

Fig S2). Consistently predictive pathways, representing a high-confi-

dence set of features, are visualized as an EnrichmentMap (Fig 3),

with each pathway associated with a consistency score (highest

netDx feature selection score in ≥ 70% of the 100 splits).

Classification performance was high, with an average (SD) AUROC

of 0.97 � 0.01, average AUPR of 0.92 � 0.02, and average accuracy of

89 � 3% (100 train/test splits; Fig 3A). Performance for pathway-level

features is slightly, but significantly, better than when gene expression

is provided as a single feature (mean AUROC for single network =

0.96 � 0.02; one-sided Wilcoxon–Mann–Whitney test P = 0.013).

Top-scoring pathways included themes of cell cycle progression and

checkpoint regulation, DNA synthesis, DNA mismatch repair, and

DNA double-strand break repair (Fig 3B, Dataset EV2). These

processes are consistent with the pathways known to be dysregulated

in luminal breast tumors and cancer progression in general. netDx also

identified pathways related to solute carrier family membrane trans-

port proteins and vesicle release, which are not traditionally linked to

breast cancer, but which may support new insights (see Discussion).

We integrated the features from top-scoring pathways (those scoring

10 out of 10 in all 100 train/test splits) into a single network (Fig 3C).

In this network, LumA patients are significantly closer to other LumA

patients (average shortest distance = 0.52), compared to patients of

other breast cancer subtypes (average shortest distance = 0.59; one-

tailed Wilcoxon–Mann–Whitney test P < 2e-16). Therefore, top-

scoring features succeed in separating same-class patients, relative to

patients of other classes.

A common problem with genomic data is relating cohort-level

analysis results, such as the set of affected pathways in Fig 3B, to

changes in individual patients. To address this, we performed prin-

cipal component analysis on gene expression values of individual

selected pathways and correlated the projections of the first three

principal components with clinical outcome (Fig 3). Most features

individually showed significant correlation with tumor subtype

(e.g., correlation for “Amplification of Signal from the Kineto-

chores” = �0.80, t-test, P = 3.3e-72), and the patient class boundary

is visually evident in these features (Fig 3D). However, not all

features had this property (e.g., correlation for “Glucuronida-

tion” = 0.1, t-test, P = 0.038). Pathways that score highly in feature

selection and correlate with outcome are good candidates for

follow-up biomarker or mechanistic studies.

As a second case study to demonstrate that netDx identifies path-

ways consistent with the biology of the condition, we predicted

case/control status in asthma using gene expression from sorted

peripheral blood mononuclear cells (Yang et al, 2015; 97 cases, 97

controls; Data ref: Yang et al, 2015) using an identical predictor

design as used for breast cancer above (2,119 pathway-level

features). The netDx predictor achieved an AUROC of 0.70 � 0.07

(SD) (Fig 3E; mean AUPR = 0.65; mean accuracy = 66%). Feature-

selected pathways included cytotoxic T-lymphocyte-related

processes and Notch2 signaling (Fig 3D; Appendix Table S4). These

themes are consistent with prior knowledge of cellular changes in

asthma (see Discussion). Similar to the breast cancer example, path-

way-level features result in significantly improved classification

performance, relative to a predictor design where gene expression

is provided as a single feature (100 train/test splits; mean

AUROC = 0.56, AUPR = 0.54; one-sided WMW for greater perfor-

mance of pathway-based design, P < 2e-16). These examples

demonstrate that when used with pathway-level features, netDx can

provide insight into molecular mechanisms and disease-related

processes that discriminate patient groups. Altogether, our results
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A netDx performance for binary classification of breast tumor as Luminal A subtype from tumor-derived gene expression (N = 384 patients).
B Pathways feature-selected by netDx in predicting Luminal A status. Nodes are pathways, and edges indicate shared genes. Nodes are colored by highest netDx score

consistently achieved out of a maximum possible of 10, in ≥ 70% of 100 train/test splits. Themes identified by AutoAnnotate (Merico et al, 2011a; Kucera et al, 2016).
C Integrated patient similarity network. Nodes represent patients, and edges represent average similarity computed from pathways that scored 10 out of 10 in all splits.

Nodes are colored by tumor type. Edges with weight < 0.7 were excluded, and the top 20% of edges per node were retained. The resulting network was visualized in
Cytoscape (spring-embedded layout, spring strength = 5).

D Correlation of top-scoring pathway features (represented as the first three principal components of pathway-specific gene expression) with tumor type (Spearman’s
correlation). Table cells are colored by sign and magnitude of correlation (blue: Spearman corr. > 0; red, corr. < 0). Circled letters correspond to detailed panels on the
right. Right: Projections of patient-level gene expression in feature-selected pathways onto the first two principal components (individual dots indicate patients).
Points are colored by survival class. Decision boundaries were calculated using logistic regression on scatterplot data.

E Selected features for asthma case status in the case of asthma case/control prediction (N = 97 cases; N = 97 controls). Legend as in (B).
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show that using pathway-level features can improve classification

performance and provide insight into disease mechanisms.

Discussion

We describe netDx, the first supervised patient classification system

based on patient similarity networks. We demonstrate that netDx

does as well as or better than a diverse panel of machine-learning

approaches in predicting survival across four different tumor types.

Further, feature selection, especially when biological pathways are

used, aids interpretability and provides insight into disease mecha-

nisms important for classification. This framework can be used to

create accurate, generalizable predictors and has particular strengths

in data integration and interpretation compared to standard machine-

learning approaches. netDx is targeted at researchers who are inter-

ested to see whether their sample-level data can answer a specific

sample classification question. netDx provides a standard workflow

that can determine whether the given classification question can be

answered based on a training set and if so, provides a set of relevant

features and a software tool to classify new samples.

With the PanCancer benchmark set, netDx performs as well as or

better than all machine-learning methods tested. In the case of KIRC,

the basic netDx model outperformed other methods without any

additional tuning. Some of this performance gain may be due to the

use of regularized regression in GeneMANIA. In the context of

predicting gene function, the original GeneMANIA benchmarking

tests determined that, relative to unregularized linear regression,

regularization improved performance by reducing overfitting

(Mostafavi et al, 2008). In other instances (LUSC, OV, and some

GBM models), tuning the sparsification level of the input networks

changed netDx’s performance sufficiently to outperform other meth-

ods. Parameters to alter sparsification included how many of each

patient’s strongest edges were retained (i.e., top 30–50 edges per

patient), and whether or not an exponential scaling filter was applied

to edge weights. We found that the optimal parameter choice differed

depending on the dataset (Dataset EV1). Similar to regularization,

the sparsification of input networks was demonstrated to improve

GeneMANIA performance in gene function prediction, presumably

by accentuating signal and reducing noise (Mostafavi et al, 2008).

We therefore attribute the improved performance of netDx to the fine

tuning of the input networks through sparsification and to the use of

regularized regression in the GeneMANIA algorithm used by netDx.

A single support vector machine model from Yuan et al for lung

cancer survival prediction vastly outperformed any other model,

including netDx, perhaps because it identified a useful non-linear

decision boundary, or was overfit. Future work will explore whether

considering non-linear effects (e.g., via non-linear similarity measure

and network combinations) can improve performance.

netDx includes support for grouping genes into pathways to

improve interpretability. Grouping genes into a smaller number of

features can mitigate overfitting risk, improve signal detection with

sparse data, be easier to analyze, and improve prediction perfor-

mance. The themes identified for Luminal A classification of breast

tumors are consistent with processes known to be dysregulated in this

type of cancer. For instance, themes of DNA repair and G2-M check-

point regulation are consistent with the known roles of BRCA1/BRCA2

and ATM proteins, which are established risk factors for breast cancer

(Roy et al, 2011). Cell cycle dysregulation accompanies genomic insta-

bility as a feature of several cancers (Negrini et al, 2010). netDx also

identified a theme of solute carrier family proteins, many of which are

overexpressed in tumors, are thought to support the metabolic needs

of growing tumors (McCracken & Edinger, 2013; Uhlen et al, 2015)

and are associated with genetic risk of breast cancer (Fletcher et al,

2011). These suggest novel directions for biomarker identification and

therapeutic targeting. Similarly, the themes identified for asthma case

prediction, including cytotoxic T lymphocytes and associated apopto-

sis, are consistent with known asthma genetics and genomic results.

netDx also identified Notch signaling as predictive of asthma. Notch

signaling regulates the differentiation of T-helper cells, and inhibitors

of this pathway are being tested in clinical trials to suppress symptoms

of asthma (Okamoto et al, 2008, 2009; Huang et al, 2017). In

summary, when provided with pathway-level features, netDx can be a

useful tool for discovery research.

We compared the output of netDx’s pathway-based patient clas-

sifier to traditional pathway enrichment analysis (gene set enrich-

ment analysis or GSEA; Subramanian et al, 2005), by applying

GSEA to the Luminal A vs. “other” gene expression comparison data

mentioned previously (N = 348 patients, expression for 17,814

genes). GSEA identified roughly ~1.5 times more pathways (126

pathways, Q < 0.05; Dataset EV3) than netDx did (80 pathways

scoring ≥ 7 out of 10 in ≥ 70 out of 100 train/test splits). Roughly

half of netDx identified pathways (48%) were also found by GSEA

(Appendix Fig S3, Dataset EV4), and these overlapping pathways

are all known to be affected in breast cancer (e.g., cell division, cell

cycle checkpoints, DNA replication, and DNA damage repair). Over-

all, netDx is more conservative than GSEA in terms of pathways

reported, likely because netDx uses regularized regression to reduce

redundancy in the feature selection step.

We also compared netDx to the DIABLO multi-omic patient classi-

fier (Rohart et al, 2017) which uses a partial latent structure-based

method to identify correlation between individual features, such as

gene expression levels, and with outcome. For this, we integrated

mRNA and miRNA expression from 346 primary breast tumors (The

Cancer Genome Atlas, 2012b), using pathway-level features in netDx

and, for comparison, the set of genes covered by these pathways in

DIABLO. Both methods used identical train/test splits of 80:20. Both

methods performed well (AUROC: DIABLO: average AUROC = 0.86;

netDx: 0.96; accuracy: DIABLO: 90%, netDx 91.4%; Dataset EV5 and

EV6). netDx selected pathways with themes similar to the Luminal A

gene expression-based predictor previously mentioned (Fig 3B),

including cell cycle regulation and DNA damage repair (Appendix Fig

S4A). DIABLO identified a range of features correlated with outcome,

such as the known link of mir-30a overexpression with improved

survival in both luminal and basal tumors (Kawaguchi et al, 2017). It

also highlighted individual genes present in the pathways found by

netDx (Appendix Fig S4B), for example, CENPA and AURKB in

Aurora signaling pathways. DIABLO focuses on gene-level features,

and netDx natively supports pathway-level features; thus, both tools

provide complementary views of predictive multi-omic features that

could be useful when applied in tandem.

In conclusion, netDx is a useful tool for precision medicine because

it combines a conceptually intuitive paradigm of patient similarity

networks with classification performance better than or equal to tradi-

tional machine-learning methods, as well as biological interpretability

when using pathway features. Like other machine-learning methods,
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model performance and generalizability are limited by feature design

choices and sample size. Our ultimate vision is to enable clinical

researchers to assess classification performance for questions of inter-

est, such as “will a patient respond to one therapy or another?” based

on patient measurements and outcomes present in large electronic

medical record databases. Output would include a report card on model

performance and generalizability estimates on independent cohorts,

feature interpretation, an interactive integrated patient similarity

network visualization enabling the exploration of individual patients,

and a ready-to-run classifier for new patients (Pai & Bader, 2018).

One limitation of netDx, as for any supervised machine-learning

method, is the need for a large bank of patient samples to learn

from. Fortunately, clinical data are growing rapidly, though specific

queries involving smaller patient cohorts will need alternative

methods to address. Additionally, netDx needs to compute similari-

ties of training as well as test patients. Private data will therefore

potentially need to be shared with users of any netDx classifier.

Secure sharing, differential privacy, or privacy-preserving data

mining techniques could be developed to enable patient similarity

computations without the need to share complete private data. We

therefore expect that netDx will initially be useful as a multi-omic

data analysis tool for research groups rather than in a production

clinical environment.

netDx is implemented as an open-source R software package

available at http://netdx.org, with worked examples and a Docker

container enabling reproduction of the results and figures in this

paper (https://doi.org/10.5281/zenodo.2558452). We also propose

that users store and publicly share patient similarity networks,

useful as features for netDx and other PSN methods, in the NDEx

network exchange system (Pratt et al, 2015).

Materials and Methods

PanCancer Survival benchmark models

We tested various models for the PanCancer survival benchmarking.

This section describes the model details; models are named as per

Dataset EV1. The models varied based on whether or not they

included a data imputation step, whether or not variables were pre-

filtered using lasso regression, and choice of similarity metric (Pear-

son correlation, normalized similarity, scaled Euclidean/Pearson).

Where used, imputation or prefiltering was performed only on train-

ing samples inside the cross-validation (CV) loop to avoid leaking

information from train to test.

Base (no lasso prefiltering)

In this model, each data type was treated as a single feature (e.g.,

one patient similarity network was generated for gene expression,

one for clinical data). Similarity was defined by Pearson correlation

where a data type had more than six measures (Abdel-Megeed,

1984) or by average normalized similarity if the data type had five

or fewer variables. For the case of a single continuous variable, we

use the normalized similarity, defined as follows:

Sða; b;GÞ ¼ 1� absða� bÞ
maxðGÞ �minðGÞ

Where a and b are the values of the variable for individual

patients (a and b) and G is the set of all values for the variable (e.g.,

age). For a set of k variables G={g1,g2,..gk}, where 1 ≤ k ≤ 5, the

similarity S’ between two patients a and b is defined as the average

of normalized similarity for each of the variables:

S0ða; b;GÞ ¼
Pk

i¼1 Sða; b; giÞ
k

Variable prefiltering and scaled Euclidean/scaled Pearson

similarity metrics

This model design defines features at the level of individual vari-

ables (e.g., genes and clinical variables) and performs within-CV

prefiltering using lasso regression to rank features by their ability to

predict outcome (Tibshirani, 1996). This method is likely a better

choice than combining all variables of a data type into a single

network when only a handful of variables carry predictive informa-

tion for that data type. Only variables with a non-zero weight are

included in the analysis. Regression uses only training samples

within a given fold to avoid leaking information from train to test.

The similarity metric used is either Euclidean distance (model

code = eucscale) or Pearson correlation, followed by local exponen-

tial scaling (Wang et al, 2014). Imputation (pearimpute, eucimpute)

is performed within the cross-validation loop separately for training

and test samples to avoid leaking information from train to test. The

lung cancer dataset demonstrated the best performance if the model

was also limited to the top clinical variable from lasso (plassoc1).

Integrated patient network

The integrated patient network is an average combination of all

selected networks (features) to create a single network (i.e., average

of all edge weights between patients from all selected networks).

Visually, the goal is to view similar patients as being more tightly

grouped and dissimilar patients as being farther apart. Similarity

(normalized from 0 to 1) is therefore converted to dissimilarity,

defined as 1-similarity. Weighted shortest path distances are

computed on this resulting dissimilarity network. The one-tailed

Wilcoxon–Mann–Whitney test is used to ascertain whether within-

class distances are collectively shorter than across-class distances.

To aid visualization, only edges representing the top 40% of

distances in the network are included. The weighted shortest path

between patient classes (a node set) in the integrated network was

computed using Dijkstra’s method (igraph v1.01; Csardi & Nepusz,

2006); distance was defined as 1-similarity (or edge weight from a

patient similarity network). The overall shortest path was defined as

the mean pairwise shortest path for a node set.

Survival curve and hazard ratios

Survival curves were constructed based on netDx-predicted classes

of test samples. The R packages survival and survminer were used

to compute Kaplan–Meier curves, and rms was used to calculate the

log-rank test for separation of survival curves. The package survival

was also used to compute the Cox proportional hazards model of

predicted poor survivors, using predicted good survivors as a refer-

ence, and to calculate the hazard ratio and associated P-value.
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Pathway networks

Pathway definitions were aggregated from HumanCyc (Romero

et al, 2005; http://humancyc.org), NetPath (Kandasamy et al, 2010;

http://www.netpath.org), Reactome (Croft et al, 2014; Fabregat

et al, 2016; http://www.reactome.org), NCI Curated Pathways

(Schaefer et al, 2009), mSigDB (Subramanian et al, 2005; http://

software.broadinstitute.org/gsea/msigdb/), and Panther (Mi et al,

2005; http://pantherdb.org/). The compiled set of pathways was

downloaded from http://download.baderlab.org/EM_Genesets/Feb

ruary_01_2018/Human/symbol/Human_AllPathways_February_01_

2018_symbol.gmt (Merico et al, 2011a). Only pathways with 10–

200 genes were included (2,119 pathways). Pathway-level patient

similarity was defined as the Pearson correlation of the expression

vectors corresponding to member genes, and the network was spar-

sified (see next section).

For the asthma case study, Ensembl IDs were mapped to HGNC

symbols using the Bioconductor package org.Hs.eg.db.

Sparsification of input networks

Sparsification is useful for reducing the number of edges to be

considered in input networks, speeding computation, and for reduc-

ing noise in the data, as weak correlations are removed. Sparsifi-

cation uses three parameters: the minimum edge weight to include

(cutoff; set at smallest possible non-zero weight for models using

exponential scaling, and at 0.3 for others), how many top interac-

tions to include per node (topX), and the upper bound on the

number of edges in a network (maxEdges). By default, GeneMANIA

sparsifies networks by first excluding edge weights below a cutoff

and retaining the top 50 edges per node (Mostafavi et al, 2008). We

used this sparsification strategy in all instances where Pearson

correlation was used to compute patient similarity. For other simi-

larity measures (e.g., normalized similarity) or where exponential

scaling was applied to networks, we found that additionally limiting

the total number of edges in the network (i.e., adding a maxEdges

parameter) improved performance in some models. In the latter

instance, we ensured that a network included all input patients (so

test patients could be classified) by adding the strongest edge for

any patients excluded by the maxEdge criterion. If this edge weight

was lower than the network cutoff, it was set to be at the cutoff

value. Different tumor datasets performed optimally with different

levels of sparsification: KIRC: topX = 30, maxEdges = 6,000; LUSC:

topX = 40, maxEdges = 6,000; GBM: topX = 50, maxEdges = 3,000.

Map of selected networks

The Enrichment Map app (3.1.0RC4) in Cytoscape 3.6.1 (Shannon

et al, 2003) was used to generate enrichment maps (Merico et al,

2011a). A Jaccard overlap threshold of 0.05 was used to prune iden-

tical gene sets. AutoAnnotate v1.1.0 was used to cluster similar

pathways using MCL clustering with default parameters.

Gene set enrichment analysis for LumA subtype in breast cancer

Limma (Linear Models for Microarray and RNA-Seq Data; Ritchie

et al, 2015) was used to fit a linear model to compare mRNA levels

of LumA breast cancer vs. other breast cancer subtypes (i.e., Her2,

Basal, LumB, and Normal) in the TCGA BRCA mRNA microarray

dataset. This analysis produced a list of genes ranked by a moder-

ated t-statistic. As we were interested in both up- and down-regu-

lated genes (i.e., overall change in LumA and other subtypes taken

together), we ranked the limma output based on the absolute value

of the moderated t-statistic. A weighted pre-ranked GSEA (gene set

enrichment analysis; Subramanian et al, 2005) analysis was

performed using the ranked list of genes obtained from the above

limma analysis as input. Gene sets were filtered out if they had < 10

or > 500 genes and 1,000 permutations were run. The set of path-

way definitions was identical to that used in the netDx breast cancer

predictor.

An Enrichment Map was created using the union of GSEA pathways

enriched in LumA and other subtypes (FDR < 0.05) and netDx path-

ways that consistently had high scores across multiple train/test splits

(maxScore ≥ 7). This enrichment map was created to assess overlaps

in pathways and themes (where a theme is a group of related path-

ways). We used the Enrichment Map 3.1.0 app (Merico et al, 2011a) in

Cytoscape 3.6.1 (Shannon et al, 2003) and the GMT file Human_

AllPathways_February_01_2018_symbol.gmt (same as that used for

the pathway-based netDx breast cancer tumor subtype predictor).

Comparison of netDx and DIABLO for multi-omic classification

Previously published gene expression and miRNA data for 346

tumors were downloaded from the Cancer Genome Atlas data portal

(https://tcga-data.nci.nih.gov/docs/publications/brca_2012/; BRCA.

348.precursor.txt; BRCA.exp.348.med.txt; The Cancer Genome

Atlas, 2012b).

miRNA were mapped to pathways. The MSigDB miRNA gene set

database (c3.mir.v6.2.symbols.gmt) (Subramanian et al, 2005) was

used to map individual miRNA to genes, and the pathway gene set

database (Human_AllPathways_February_01_2018_symbol.gmt)

was used to assign each miRNA to pathways in which it had a target

gene. For comparison to netDx, we limited RNA and miRNA vari-

ables provided as input to DIABLO to those present in pathways.

Both methods also used identical train/test splits.

For netDx, a predictor was run with pathway-level features for a

single train/test split of 80:20. Only pathways with 10–200 genes

(2,119 pathways) or those with more than 5 miRNA (for stable

computation of Pearson correlation, after (Abdel-Megeed, 1984))

(1,935 pathways) were included. Pathway-level patient similarity

was defined by Pearson correlation (network sparsification parame-

ters: edges with correlation below 0.3 were ignored, top 50 strongest

edges per node were retained, to a maximum of 3,000 edges per

network). RNA and miRNA patient similarity networks were

constructed using the same parameters. Training samples were used

to construct pathway-level features (4,054 features), and these were

scored between 0 and 10 for predictive value, as with previous

netDx predictors; features with score ≥ 9 were used to classify the

blind test samples.

We ran DIABLO with a gene-centered model, following operating

procedures specified in the online tutorial (http://mixomics.org/mix

diablo/case-study-tcga/). The design matrix was a 2 × 2 matrix with

0 in the diagonals and 0.1 in the off-diagonal. Block.splslda() was

used to estimate the number of components to use; the most

frequent estimate of number of components (median choice.ncomp

$WeightedVote) was used as the number of components in the
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model. A grid-based search was performed to estimate the number

of variables to retain for each omic layer and component. Specifi-

cally, tune.block.splsda() was used with 10-fold cross-validation to

ascertain the number of variables to keep (between 5 and 30 vari-

ables). DIABLO was used to select variables for each component.

Data availability

The R software implementation of netDx is available as a public

GitHub repository at: https://github.com/BaderLab/netDx. A

Docker image with netDx installed is made available at Zenodo

(https://doi.org/10.5281/zenodo.2558452). It includes all the data

and software needed to reproduce results in this manuscript.

Expanded View for this article is available online.
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