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Abstract

Genetic interactions help map biological processes and their functional relationships. A genetic interaction is defined as a
deviation from the expected phenotype when combining multiple genetic mutations. In Saccharomyces cerevisiae, most
genetic interactions are measured under a single phenotype - growth rate in standard laboratory conditions. Recently
genetic interactions have been collected under different phenotypic readouts and experimental conditions. How different
are these networks and what can we learn from their differences? We conducted a systematic analysis of quantitative
genetic interaction networks in yeast performed under different experimental conditions. We find that networks obtained
using different phenotypic readouts, in different conditions and from different laboratories overlap less than expected and
provide significant unique information. To exploit this information, we develop a novel method to combine individual
genetic interaction data sets and show that the resulting network improves gene function prediction performance,
demonstrating that individual networks provide complementary information. Our results support the notion that using
diverse phenotypic readouts and experimental conditions will substantially increase the amount of gene function
information produced by genetic interaction screens.
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Introduction

A genetic interaction is defined as an unexpected phenotype for a

combination of mutations given each mutation’s individual effect [1].

Genetic interactions provide valuable information about gene function

and are useful to study the organization of biological processes in the

cell [2]. Experimental techniques are now available to map genetic

interactions at a large scale, in particular in Saccharomyces cerevisiae [3]. A

genetic interaction is obtained in an experiment using a particular

phenotypic readout and set of experimental conditions in a given

species. Typically, a single, easy to observe phenotype, such as cell

growth, is used to measure genetic interactions on a large scale [3]. As

most yeast genes have no deletion mutant defect in rich media, but

have a defect in at least one environmental condition [4], and

individual genetic interactions change under different phenotypic

readouts [5], it has been postulated that many unknown genetic

interactions could be uncovered by performing the same interaction

mapping experiment under different conditions [6]. However, no

large-scale quantification of this effect has been undertaken. Here we

ask how much more genetic interaction and gene function information

is gained by mapping genetic interactions using different phenotypic

readouts and experimental conditions.

A handful of recent studies have examined parts of this question.

Linden et al. developed a normalization method to maximize the

similarity between genetic interaction networks mapped by

different laboratories so they can be combined [7], but this was

only applied to networks obtained using the same phenotypic

readout (growth phenotype). St. Onge et al. showed that mapping

genetic interactions in multiple environmental conditions (stan-

dard laboratory and compound-induced DNA damage) provides

useful information to infer functional relationships and order

pathways [8], however this study was based on only 26 genes. An

identical comparison involving almost 400 genes revealed differ-

ences between conditions and many (60–80%) condition-specific

interactions [9], and methods have been developed to identify

genetic interactions changing between conditions [10]. In a

complementary approach, Carter et al. defined multiple types of

genetic interactions in order to extract as much biological

information as possible from raw data [11]. These studies show

that changing environmental conditions and interaction definition

provides additional information about genetic interaction. How-

ever, none have yet considered other aspects of experimental

conditions, such as different phenotypic readouts, or how much

overlap between networks is expected given known false positive

and negative rates.

While most genetic interaction studies in budding yeast assess

cell fitness by measuring cell growth in standard laboratory

conditions, an increasing number have mapped genetic interac-
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tions under other experimental conditions. These include envi-

ronmental conditions such as DNA damage [8–10] or low-

ammonium agar [12], and phenotypic readouts such as gene

expression [13], filamentous growth [12], endocytosis [5] and

unfolded protein response [14] instead of normal growth. Earlier

studies focused on small gene sets (less than 150) but recent studies

have increased that number [5,9,14] to about 300–500 genes per

study, which enables a systematic comparison.

We use this recently available data to conduct a systematic

analysis of quantitative genetic interaction networks in budding

yeast mapped under different conditions, phenotypic readouts and

laboratories (Figure 1A), while considering false positive and false

negative rates. We chose the largest available network as the

reference [3] and compare it to a network mapped in a different

environmental condition (DNA damage) [9], as well as two

networks mapped using different phenotypic readouts (endocytosis

and unfolded protein response) [5,14]. A set of networks mapped

under similar experimental conditions was used as a control

[9,15,16]. We find that networks obtained in different experimen-

tal conditions overlap less than expected by chance and provide

unique and complementary information. We also find that the

laboratory where the experiments are carried out has an important

effect on the resulting genetic interaction network. Finally, we

develop a method to combine all networks together in a way that

improves gene function prediction.

Results

Genetic interaction networks mapped under different
conditions are compared to a reference network and to
each other

We collected seven different quantitative genetic interaction

data sets (Figure 1). Unfortunately, even though these data sets are

reasonably large (more than 300 genes each, Text S1), no gene

was included in all of them and only a few genes were present in

four studies (Figure 1B), eliminating the possibility of a direct

global comparison. However, the very large Synthetic Genetic

Array (SGA) genetic interaction data set [3], which was obtained

in standard laboratory conditions using colony growth as the

phenotypic readout, is comprehensive enough to contain most

(80–90%) of the genes tested in each of the other data sets

(Figure 1C) and has a relatively high precision (0.63 for negative

interactions and 0.59 for positive interactions). Thus, we used SGA

as a reference and compared each of the other data sets to it

(Figure 1D). This approach enables us to consider most of the

genes tested in each study, though it doesn’t consider possible bias

from function-based gene selection across most studies. Thus, we

additionally analyzed pairs of genes tested across three studies that

used different phenotypic readouts and conditions.

We hypothesized that networks obtained using different

phenotypic readouts or in different conditions would be more

different than expected, whereas networks obtained in similar

experimental conditions would be similar. To investigate the effect

of using different phenotypic readouts on the resulting genetic

interaction network, we compared two networks (PHENO) that

used non-growth phenotypes to define genetic interactions

(endocytosis defect [5] and the unfolded protein response [14])

to SGA. Both networks are independently biologically informative

as shown in the original analysis [3,5,14]. Genetic interactions are

also known to be dependent on environmental condition, such as

temperature, starvation, or DNA damage induced by a small

molecule [8,9]. To investigate the effect of condition on the

resulting genetic interaction network, we compared our reference

SGA network, mapped in standard laboratory conditions, to the

Bandyopadhyay et al. genetic interaction network, mapped in the

presence of methyl methanesulfonate (MMS), a DNA damage-

inducing compound [9]. The three networks obtained using

different phenotypes or in different environmental conditions are

referred to as the PHENO/MMS set. We also collected a set of

three networks similar to the reference (similar ‘growth’ pheno-

typic readout and environmental conditions) obtained by other

research groups, referred to as CONTROL. To perform

meaningful comparisons (network of interest vs. SGA and SGA

vs. CONTROL vs. PHENO/MMS), analyses were limited to the

set of gene pairs tested in two or three data sets, respectively (Text

S1).

PHENO/MMS networks overlap less with the reference
than CONTROL networks

In quantitative genetic interaction networks, nodes represent

genes and weighted edges quantify the deviation of the double

mutant phenotype from what is expected from the single mutant

phenotypes. Edge weight is positive if the phenotypic readout is

significantly higher than expected and negative if it is significantly

lower. We treated the networks as undirected and did not consider

the query or array role. We used four measures to compare

networks:

1. Correlation: Spearman correlation of quantitative interaction

scores, where a high value indicates two networks with highly

similar quantitative genetic interactions.

2. Overlap: Amount of qualitative interaction overlap (measured

using Jaccard similarity), where interactions (positive or

negative) are binarized with ‘interaction’ = one and ‘no

interaction’ = zero. A high score indicates that two networks

generally agree on whether a given gene pair interacts or not.

3. Unique: Number of unique interactions in each network. A

high number signifies large disagreement between networks.

Author Summary

Genetic interactions map functional dependencies be-
tween genes, under a given phenotype. In the budding
yeast Saccharomyces cerevisiae, most genetic interactions
have been measured under a single phenotype - growth
rate in standard laboratory conditions. Recently, genetic
interactions have been collected under different pheno-
typic readouts and experimental conditions. How different
are these networks and what can we learn from their
differences? We analyzed quantitative genetic interaction
networks mapped in yeast under different experimental
conditions and phenotypic readouts and found that they
provide significant unique information. We next asked if
this unique information is complementary. As a measure of
complementarity, we asked if combining networks
mapped under different experimental conditions could
improve gene function prediction. Two genes that
genetically interact with a similar set of genes (two genes
with similar genetic interaction profiles) are more likely to
be in the same pathway or complex and this can be used
for gene function prediction. We found that combining
multiple genetic interaction profile correlation networks
using a simple ‘maximum correlation’ approach improved
gene function prediction, demonstrating that the net-
works provide complementary information. Thus, using
diverse phenotypic readouts and experimental conditions
will likely increase the amount of information produced by
genetic interaction screens.

Comparing Multiple Genetic Interaction Experiments
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Figure 1. Overview of the comparison approach. A) Genetic interaction experiments differ in the phenotypic readout used, the environmental
conditions and the laboratory where the experiment was conducted. B) Every network is compared to a common reference, the SGA network [3]. For
each of the 1480 genes in SGA that are also present in at least another network, we show which data set considered that gene in their study. The two

Comparing Multiple Genetic Interaction Experiments

PLoS Computational Biology | www.ploscompbiol.org 3 June 2012 | Volume 8 | Issue 6 | e1002559



4. Disagree: Number of interactions that disagree on interaction

sign (positive vs. negative).

These measures were computed only for genes and gene pairs

present in both network of interest vs. SGA and in three networks

SGA vs. CONTROL vs. PHENO/MMS. We also evaluated how

different the resulting measures are for a given network pair from

what is expected based on a statistical model that considers known

experimental interaction detection error rates.

Analyzing networks obtained using different phenotypic read-

outs, we find that SGA and PHENO networks have quantitative

genetic interaction scores that are less correlated (0.037 on

average) than SGA and CONTROL networks (0.13 on average)

(Figure 2). This shows that SGA and PHENO networks contain

different information. The lack of SGA-PHENO correlation could

in part be due to error and noise differences between experiments,

though the higher SGA-CONTROL correlation between net-

works from different research groups suggests that this is not

simply due to laboratory specific effects.

We also find that SGA and PHENO networks overlap less (0.10

on average) than SGA and CONTROL networks (0.19 on

average) (Figure 2). These results could be due to experimental

errors in both data sets or to genuinely complementary biological

information. To distinguish between these two cases, we estimated

the expected level of overlap given the experimental error rates of

the networks, following previous work on network error modeling

[17]. Positive and negative interaction networks have different

properties and error rates [3], thus we analyzed them separately.

Since we limited our study to genetic interactions involving gene

pairs that were tested in both data sets, the absence of an

interaction indicates that no genetic interaction was detected

between the corresponding two genes. This provides us with an

accurate number of negatives for the error model. Based on an

estimation of the error rates of the data sets, we computed the

overlap expected by chance (Methods). We find that SGA and

PHENO overlap less than expected (ratio observed/expected 0.53

on average, Text S1). As a control, we compare SGA to each of

our ‘similar phenotype’ CONTROL networks and find that they

overlap more than expected (ratio 1.55 on average, Text S1). In

agreement with this, SGA and PHENO have more unique

interactions and are more unique than expected while SGA and

‘similar’ CONTROL networks are less unique than expected

(Figure 2, Text S1). We also found that SGA and PHENO

networks disagree more on interaction sign than ‘similar pheno-

type’ networks (SGA vs. CONTROL) (Figure 2). Values obtained

for PHENO networks are also significantly different to those of the

CONTROL networks in general (Figure 2, Text S1). Taken

together, we observe substantial differences between genetic

interaction networks mapped using different phenotypic readouts

and these are not simply due to network error rates.

We repeated the analysis on networks obtained in different

environmental conditions, and found similar results: SGA and

MMS have a lower correlation, lower overlap, higher unique ratio

and higher disagreement ratio than networks in the control set

(Figure 2). In addition, SGA and MMS overlap less and provide

more unique information than expected (Text S1). Values

obtained for the MMS network are also significantly different to

those of the CONTROL networks in general (Figure 2, Text S1).

While we observe a consistent trend across PHENO and MMS

vs. reference and CONTROL vs. reference comparisons, it is

possible that function-based gene selection in PHENO, MMS and

CONTROL networks could bias the data in a way that artificially

causes the results we observe. To gain more confidence in our

results, we additionally analyzed all gene pairs that were tested in

the reference SGA network and one of the PHENO/MMS

networks and one of the CONTROL networks. For the 48,499

gene pairs tested in these three categories (SGA, PHENO/MMS,

CONTROL), we found that the correlation between SGA

reference and PHENO/MMS is lower than between SGA and

CONTROL values (paired T-test p,0.003, Figure S1). Similarly,

the overlap is lower (paired T-test p,0.029) and the agree ratio is

lower (paired T-test p,0.011). Each network seems to provide a

similar level of unique information in this analysis, as the unique

ratios are not significantly different.

Altogether, our results show that genetic interaction networks

mapped using different phenotypic readouts and in different

environmental conditions provide unique information.

Networks obtained in different experimental conditions
provide complementary information

We have shown that genetic interaction networks obtained

under different experimental conditions (phenotype readout or

environmental condition) provide unique information. We next

examined if this unique information is complementary. Since a

major goal of mapping genetic interactions is to discover new gene

function information, we used gene function prediction perfor-

mance as a measure of biological information contained in a

genetic interaction network. Two genes that genetically interact

with a similar set of genes (two genes with similar genetic

interaction profiles) are more likely to be in the same pathway or

complex [16,18]. Thus, the function of a gene in a genetic

interaction network can be predicted based on genes with similar

genetic interaction profiles (a guilt-by-association approach). The

quantitative genetic interaction network can be transformed into a

genetic profile correlation network useful for gene function

prediction by computing a correlation coefficient of the genetic

interaction profiles for all gene pairs. We can then measure gene

function prediction performance by holding out a fraction of a set

of genes known to have the same function (e.g. cell budding), using

the remaining genes to predict additional genes with the same

function (based on genetic interaction profile similarity), and then

assessing how many known (held out) genes were in the prediction

list. This can be repeated with all available gene function

categories and is automated using the GeneMANIA gene function

prediction software system [19,20].

We reasoned that if gene function prediction performance

improves when genetic interaction networks are combined then

they must contain complementary information. To combine a

network of interest with the reference network, we computed a

genetic interaction profile similarity network for each one (using

Spearman correlation) and then chose the maximum correlation

value for a pair of genes to include in the ‘combined’ network. To

make the comparison fair, we analyzed just the set of genetic

interactions tested in all the networks we compared. We quantified

the utility of the individual correlation networks and the combined

networks obtained in Bandyopadhyay et al. (untreated and MMS) are based on the same genes. C) The bar plots indicate how many genes are in
common with the reference for each network considered. D) We compared genetic interactions mapped using different phenotypic readouts [5,14]
and in different environmental conditions [9] to the reference [3]. A set of networks mapped using similar experimental conditions was used as a
control [9,15,16]. We also compared gene pairs tested in the reference, a control network and a network based on different phenotype or
environmental condition (not shown).
doi:10.1371/journal.pcbi.1002559.g001
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correlation network for gene function prediction using GeneMA-

NIA with all available Gene Ontology (GO) terms [21]. Since we

used five-fold cross validation, we limited our analysis to GO terms

with at least five genes. We measured gene function prediction

performance using the area under the receiver-operating charac-

teristic (ROC) curve and the area under the precision recall (PR)

curve statistic for each term in the three gene ontologies (Biological

Process, Molecular Function, Cellular Component).

We find that PHENO/MMS networks each enable a significant

performance improvement in PR values when combined with the

reference network (Figure 3A, Table 1), whereas CONTROL

networks do not provide a significant improvement. The difference

between PHENO/MMS and CONTROL is highly significant

(Wilcoxon p-value,0.0043). This suggests that the unique

information provided by the PHENO/MMS networks is comple-

mentary to the information from the reference network and

combining them improves gene function prediction.

However the ROC results are less clear (Figure 3B) where the

set of networks providing significantly complementary information

(Schuldiner, Bandyopadhyay-mms and Bandyopadhyay-un) does

not correspond directly to the set of PHENO/MMS networks.

Also, when considering all networks, gene function prediction

performance is improved when combining a given network with

the reference both for PR (Table 1, p,2.2e-4) and ROC (Table 2,

p,7.6e-5). This suggests that other factors, such as laboratory

effects, may also contribute to the presence of complementary

information.

To investigate the differences between the combined networks

and the reference, we selected the GO terms with the highest gene

function prediction PR value differences (adjusted p-value,0.05)

Figure 2. Comparison of the networks with various measures. Each square represents the comparison of a network to the reference and is
colored according to the group of the networks (CONTROL, PHENO, MMS). The comparison measures are: ‘correlation’ is Spearman’s correlation
coefficient; ‘overlap’ is the percentage of interactions in common among all observed interactions; ‘negative (resp. positive) overlap’ is the ratio of
expected/observed overlap based on our statistical model for negative (resp. positive) networks; ‘unique’ is the percentage of interactions observed
in only one network among all observed interactions; ‘negative (resp. positive) unique is the ratio of expected/observed unique ratio based on our
statistical model for negative (resp. positive) networks; ‘disagree’ is the percentage of interactions of different type (positive, negative) among all
interactions observed in common.
doi:10.1371/journal.pcbi.1002559.g002
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(Figure S2). We found that Burston performs significantly better

on ‘actin filament organization’, ‘late endosome to vacuole

transport via multivesicular body sorting pathway’ and ‘endoplas-

mic reticulum unfolded protein response’ (Figure S3). The

members of the ‘actin filament organization’ biological process

are more densely connected in the correlation network in the

Burston data set leading to better gene function prediction as

compared to the reference SGA data set where PBS2 is not

connected at all. The Jonikas data set performs better on ‘protein

glycosylation’ and ‘Hrd1p ubiquitin ligase ERAD-L complex’

(Figure S4). For the latter complex, the subunits are generally

better connected in the Jonikas dataset, leading to better gene

function prediction for this GO term. For instance, Jonikas shows

a strong correlation between YOS9 and HRD3 subunits, which

physically interact, but this correlation is not strong in the

reference. Similarly, the members of the lipid-linked oligosaccha-

ride biosynthesis pathway (ALG9, ALG6, ALG3, ALG12) are

strongly connected in the Jonikas data set, leading to better gene

function prediction for this GO term. Jonikas shows strong

correlations between those four genes, which all physically

interact, but those correlations are not present in the SGA

reference. For the control networks, Collins performs better on

‘loop DNA binding’, ‘mismatch repair’ and ‘histone exchange’

while Schuldiner is worse on ‘dolichyl-diphosphooligosaccharide-

protein glycotransferase activity’ and ‘Hrd1p ubiquitin ligase

ERAD-L complex’. Both Bandyopadhyay networks (untreated

and in presence of MMS) perform better on ‘regulation of

transcription’ but the untreated network performs worse on

‘regulation of cyclin-dependent protein kinase activity’ (it only

contains one correlation between MIH1 and PTC3 protein

phosphatase genes, while the reference contains many more

correlations (Figure S5). ROC values did not distinguish GO terms

enough to identify significant differences between networks (Figure

S6).

As noted above, it is possible that function-based gene selection

in PHENO, MMS and CONTROL networks could bias our

results. In particular, gene selection bias causes a different set of

GO terms to be tested for each network. Thus, we repeated our

gene function prediction analysis on triplets of gene pairs tested

across SGA, PHENO/MMS and CONTROL networks. The

combination of the PHENO/MMS correlation network with the

reference correlation network tends to perform better in terms of

gene function prediction as compared to that of the CONTROL

and reference networks (Figure S7), for example for ‘response to

stress’ in both PR and ROC measurements (Text S1). As before

the trend is significant on the PR measurements (paired Wilcoxon

test p,0.012) but not on the ROC measurements.

Altogether, our results show that genetic interactions mapped in

different conditions provide complementary information.

Figure 3. Complementarity of the networks as measured by
gene function prediction. The boxplots show the relative improve-
ment of the area under the receiver operating characteristic (ROC) and
the precision recall (PR) curves obtained when predicting gene function
with the GeneMANIA algorithm on the Gene Ontology categories when
combining each network with the reference, in comparison to
predicting with each network separately. The red stars indicate a
significant improvement (p-value,0.05). The networks are B–M
Bandyopadhyay et al. [9] in MMS, B–U Bandyopadhyay et al. [9]
untreated, BUR Burston et al. [5], JON Jonikas et al. [14], SCH Schuldiner
et al. [16], COL Collins et al. [15].
doi:10.1371/journal.pcbi.1002559.g003

Table 1. Relative area under the precision-recall (PR) curve
improvement for all considered GO terms.

PHENO/MMS CONTROL

PR
improvement GLOBAL BMS BUR JON BUN COL SHU

# terms 496 81 49 47 81 179 59

# positive 250 37 27 33 38 88 27

# negative 243 44 22 14 43 88 32

mean 0.044 0.071 0.118 0.093 0.014 0.028 20.004

p-value 2.2E-4 0.04 0.004 0.0037 0.27 0.078 0.55

Significant p-values (,0.05) are bolded.
doi:10.1371/journal.pcbi.1002559.t001

Table 2. Relative area under the receiver-operating
characteristic (ROC) curve improvement for all considered GO
terms.

PHENO/MMS CONTROL

ROC
improvement GLOBAL BMS BUR JON BUN COL SHU

# terms 496 81 49 47 81 179 59

# positive 300 55 28 33 54 94 36

# negative 192 25 21 14 27 82 23

mean 0.0024 0.0031 0.0016 0.0028 0.0019 0.0021 0.0039

p-value 7.6E-05 0.016 0.08 0.053 0.022 0.057 0.047

Significant p-values (,0.05) are bolded.
doi:10.1371/journal.pcbi.1002559.t002
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Comparison across all networks reveals an effect
associated to the laboratory

The above results hinted that there may exist factors other than

phenotypic readout or condition that explain genetic interaction

data set differences. To gain a better understanding of these

potential other factors, we generalized our analysis to compare all

pairs of networks, by clustering the all data set by all data set

comparison matrices for our four measures: correlation, overlap,

unique and disagree. The two networks obtained with different

phenotypes (Burston and Jonikas) are clearly outliers in this

analysis, in particular for the correlation values (Figure 4A),

reinforcing our above results. Surprisingly, the Bandyopadhyay et

al. MMS network is always grouped with its associated untreated

network, which are both separated from the control networks and

very close to each other (4A–D). Indeed their correlation (r = 0.58)

is the second highest in the correlation matrix. This suggests that

factors, such as the laboratory environment external to the

experiment, also affect network mapping. This may be due to the

‘batch effect’ recently described for large-scale genetic interactions

[22]. In agreement with this, the most correlated networks

(Schuldiner and Collins, r = 0.65) were obtained in the same

laboratory. Since these two networks are both in the control group

(similar phenotype, similar conditions), we were originally not

surprised to find that they are always grouped together. However,

the fact that they are more similar each other than they are to the

SGA network suggests an important laboratory effect is present. As

an additional analysis, we compared genetic interaction profiles for

individual genes across all data sets (Methods). For a given gene

and a given pair of networks, we computed the correlation

(Spearman) between the genetic interaction profiles of that gene in

both networks. This measure was previously used, for example, to

identify genes with different profiles between untreated and DNA

damage condition genetic interaction networks [9]. Clustering all

networks based on their average correlation measures across all

genes shows similar results to those above (Figure S8). Thus, in

addition to phenotypic readout and internal experiment condition,

external factors in the laboratory where the experiment is

performed contribute to the unique information present in each

network.

Combining all networks improves gene function
prediction

To create a fair comparison, we previously reduced each set of

networks analyzed to common tested gene pairs. However, all of

the information available in all networks should be considered for

gene function prediction. Thus, we repeated our analysis of gene

function prediction performance using genetic interaction profile

correlation networks computed using all genes in each data set and

combined all seven of them using the same correlation network

building methodology described above (max correlation). We find

that the combined network provides substantially better results, on

average, across GO terms for both ROC and PR performance

measures (Figure 5).

To illustrate the complementarity of the individual correlation

networks, we examined the SWR1 complex, one of the annotation

categories that the combined network predicts better than any

individual network (Figure 6). The SWR1 complex (GO:0000812)

is a multi-subunit complex involved in chromatin remodeling and

is required for the incorporation of the histone variant H2AZ into

chromatin. All of its 13 subunits are connected when combining all

networks, whereas only subsets of those are connected in each

individual network (five genes in Jonikas et al., 10 in Costanzo et

al., 12 in Collins et al.). In some cases the missing genes were not

present in the original screen (Jonikas and Costanzo), while in

others they were mostly present (Collins), illustrating the benefit of

the new combined network to gather information and genes from

different studies to get a more complete view of functional

connections among all genes in a system.

Discussion

Genetic interaction experiments are performed using a partic-

ular phenotypic readout and set of experimental conditions in a

given species. Using recently available data, we conducted a

systematic analysis of quantitative genetic interaction networks in

budding yeast mapped under different experimental conditions.

We showed that genetic interaction networks mapped in different

environmental and laboratory conditions or using different

phenotypic readouts provide unique and complementary infor-

mation. The functional interactions defined by genetic interaction

profile correlations can be combined using a simple ‘max

correlation’ procedure to aid gene function prediction.

Given the low overlap between the data sets, we adopted a

reference-based comparison approach where each data set is in

turn compared to a common high confidence reference. While this

enables a global comparison, it is possible that the reference

network is biased towards certain gene sets present in only some

compared networks and this could affect our results. Thus, we

repeated our analysis on a set of gene pairs present across three

networks under comparison. While these results agree, there a

many fewer gene pairs tested across three networks than there are

for two networks. The SGA dataset continues to grow and will be

complete in the future. Also, we expect additional networks to be

mapped under different conditions. Ideally, an additional global

genetic interaction map of the scale of SGA in different conditions

would be available to analyze, but this is unlikely to be available

anytime soon, as SGA cost millions of dollars and has already

taken more than a decade to achieve a 30% coverage rate of all

interactions. Smaller genetic interaction networks mapped under

different environment and phenotypic readout among comparable

gene sets are more likely to be available in the near future and

would help test our results.

We propose a simple method to combine diverse genetic

interaction networks and show that this improves gene function

prediction. We chose to combine data sets at the level of genetic

interaction profile correlations instead of individual genetic

interactions for a number of reasons: correlation can be computed

for all gene pairs in a sufficiently large genetic interaction map not

just those pairs tested in both maps, no tuning of parameters is

needed, no normalization of individual data sets is needed as

would be required if combining data at the level of genetic

interactions [7], correlation is the primary type of relationship

used for gene function prediction from genetic interaction

networks [3,18], and similar methods are established in the gene

expression field that we can draw from [23]. We chose gene

function prediction as a means to assess and compare the

biological content of each network, as it is one of the main goals

of genetic interaction mapping. However, other measures could be

used such as the overlap with benchmark data sets [7]. Moreover,

it is likely that the method we propose could be improved to yield

even better gene function prediction results, for instance by tuning

the weight of each network to optimize gene function prediction

for a given gene function, as is done in the multi-network version

of GeneMANIA [19] (we only used GeneMANIA on a single

combined genetic interaction profile correlation network). It will

also be interesting to evaluate the gene function prediction

improvement gained by combining genetic interactions with other
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types of network data, such as protein-protein interactions. We

provide our combined network as a resource at http://baderlab.

org/Data/GeneticInteractionComparison.

We expect our results to extend to other organisms, which are

increasingly targeted for genetic interaction mapping [24–30] with

traditional growth assays and diverse phenotypic readouts [31].

Analysis of additional multi-condition and multi-phenotype data

will eventually enable us to select experimental conditions that

maximize discovery of gene function information, as has been

accomplished with gene expression data [32].

Methods

Genetic interaction networks
All genetic interaction data sets were downloaded from original

publications or requested from the authors (Figure 1, Text S1).

Measures to compare a network to the reference
The measures used to compare a network to the reference are:

‘correlation’ is the Spearman correlation coefficient of genetic

interaction scores for all compared pairs; ‘overlap’ is the percentage

of binary interactions in common among all observed interactions;

‘unique’ is the percentage of interactions observed in only one

network among all observed interactions; ‘disagree’ is the percent-

age of interactions of different type (positive, negative) among all

interactions observed in common. Gene profile correlation is

computed for a given gene as the Spearman correlation coefficient

of the genetic interaction profiles of that gene in two data sets,

limited to genetic interaction partners found in both data sets. The

similarity between two data sets used for clustering is the mean of

the gene profile correlation distribution (Figure S3). We only

consider gene pairs tested in all data sets to enable a fair comparison.

For the stochastic model, we use the error rates estimated by

Figure 4. Comparison of all networks. The comparison measures (A: Correlation, B: Overlap, C: Unique, D: Disagree) between all pairs of networks
considered in the study are shown in a clustered heat map view.
doi:10.1371/journal.pcbi.1002559.g004
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Figure 5. Gene function prediction results on full independent and combined networks. The boxplots show the area under the receiver
operating characteristic (ROC) curves obtained when predicting gene function with the GeneMANIA algorithm on the Gene Ontology categories for
the networks separately and after combination, using all available genes and interactions (full networks): B–M Bandyopadhyay et al. [9] in MMS, B–U
Bandyopadhyay et al. [9] untreated, BUR Burston et al. [5], JON Jonikas et al. [14], SCH Schuldiner et al. [16], COL Collins et al. [15], COS Costanzo et al.
[3], NEW the combined network.
doi:10.1371/journal.pcbi.1002559.g005
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Costanzo et al. for positive (sensitivity = 0.18 and precision = 0.59)

and negative (sensitivity = 0.35 and precision = 0.63) genetic inter-

actions. Since such estimates for the other data sets are not available,

we use the Costanzo values for all data sets. This information is then

used to compute the expected number of interactions present in

zero, one or two data sets and compared to the observed numbers of

interactions (Text S1). We compare those measures between

networks in the CONDITION group to networks in the

CONTROL group with a Student’s t-Test.

Gene function prediction assessment
To limit the analysis to the best associations, correlation networks

only contain correlation values higher than 0.1. To assess each

network, we use the command line version of the GeneMANIA

Cytoscape plugin (version 2.11) [20]. We use five-fold cross

validation with the function ‘CrossValidator’ and then compared

the results for the different networks. The validation was run on a set

of 3618 GO terms (1789 BP, 1299 MF, 530 CC), though only a

subset of these terms are tested in each network (according to which

genes are present). To avoid circularity in the analysis and

annotations potentially coming from the networks we are studying,

we only considered annotations that were derived from direct

assays/experiments (evidence codes EXP, IDA, IPI, IMP, IGI,

IEP). We manually checked that IGI annotations were not derived

from genetic interactions from networks we analyze (only three IGI

annotations from these studies were found). For both the PR and

ROC assessments, each network is associated with a score. The

relative improvement of the combined network C obtained from

two individual networks A and B is computed as follows:

I~
Sc{SA,B

SA,B

where SA,B is the mean score of the two individual networks A and B.

Supporting Information

Figure S1 Similarity measures restricted to the sets of gene pairs

tested in the reference, a CONTROL and a PHENO/MMS

network. For a given measure, the difference between the

PHENO/MMS and CONTROL values is tested by a paired t-

test. For the specific case with Bandyopadhyay-MMS as PHENO/

MMS and Schuldiner as CONTROL (BMS-SHU), no interac-

tions are observed between the same gene pairs, thus the

agreement coefficient is not available.

(EPS)

Figure S2 Performance of the combined and reference networks

as measured by the area under the PR curve.

(EPS)

Figure S3 Correlation networks for the SGA and Burston data sets,

limited to the gene pairs tested in both. The color of the edges indicates

the network. The thicker the edge, the higher the correlation value.

(EPS)

Figure S4 Correlation networks for the SGA and Jonikas data sets,

limited to the gene pairs tested in both. The color of the edges indicates

the network. The thicker the edge, the higher the correlation value.

(EPS)

Figure S5 Correlation networks for the SGA and Bandyopad-

hyay networks, limited to the gene pairs tested in both. The color

of the edges indicates the network. The thicker the edge, the

higher the correlation value.

(EPS)

Figure S6 Performance of the combined and reference networks

as measured by the area under the ROC curve.

(EPS)

Figure S7 Improvement in the gene function prediction when

combining either the PHENO/MMS or the CONTROL

correlation network with the SGA reference correlation network,

on the exact same set of gene pairs for all three networks.

(EPS)

Figure S8 Clustering of the data sets based on the gene profile

correlation values. The hierarchical clustering was done using

different criteria (Ward, Complete, Average, Median).

(EPS)

Text S1 This document contains more detailed information

about the genetic interaction networks, the comparison measures

and the gene function prediction performance.

(PDF)
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