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Genomic information on tumors from 50 cancer 
types cataloged by the international cancer Genome 
consortium (icGc) shows that only a few well-studied 
driver genes are frequently mutated, in contrast 
to many infrequently mutated genes that may also 
contribute to tumor biology. hence there has been 
large interest in developing pathway and network 
analysis methods that group genes and illuminate 
the processes involved. We provide an overview of 
these analysis techniques and show where they guide 
mechanistic and translational investigations.

As sequencing costs continue to decrease, it is becoming  
common to assay genomic information from a cohort 
of cancer patients at the level of single-nucleotide vari-
ants (SNVs) and copy-number alterations (CNAs). 
Other alterations including structural changes, fusion 
transcripts and epigenetic reprogramming are also 
studied routinely. These genomic data are associated 
with rich clinical annotation, and some groups have 
begun to incorporate sequencing into standard clinical 
practice1. Recent studies have painted a portrait of the 
mutation landscape for multiple cancers2 including  
pancreatic3, lung4, breast5, brain6 and ovarian7. In 
each case, the distribution of somatic SNVs across the  

samples typically includes a few altered genes at  
frequencies higher than 10% and a long ‘tail’ of 
many genes mutated at frequencies of 5% or lower2,8. 
Interestingly, some tumor types, including prostate 
cancer and some pediatric cancers, have relatively few 
SNVs or CNAs9; their biology is presumably driven 
by other types of somatic variation such as DNA 
methylation10. Driver genes are detected mostly from 
positive-selection signals found in the mutation pat-
terns of individual genes across tumors11. However, 
this approach will miss less-frequently mutated but 
functionally important genes that a typical cohort with 
hundreds of tumor samples is not statistically powered 
to detect12. Recent pan-cancer analyses have detected 
cancer genes using several thousand samples of  
different tumor types; however, these studies still 
remain limited in power because of tissue-specific 
drivers such as APC in colorectal and ovarian cancers, 
VHL in renal cell carcinoma and ERG fusion genes 
in prostate cancers. Alternatively, grouping of genetic 
alterations using prior knowledge about cellular 
mechanisms allows investigation of the full comple-
ment of mutations in a tumor and the determination 
of affected oncogenic pathways.

pathway and network analysis of cancer genomes
Pau Creixell1,21,22, Jüri Reimand2,22, Syed Haider3, Guanming Wu3,4, Tatsuhiro Shibata5, 
Miguel Vazquez6, Ville Mustonen7, Abel Gonzalez-Perez8, John Pearson9, Chris Sander10, 
Benjamin J Raphael11, Debora S Marks12, B F Francis Ouellette3,13, Alfonso Valencia6,  
Gary D Bader2, Paul C Boutros3,14,15, Joshua M Stuart16,17, Rune Linding1,18,  
Nuria Lopez-Bigas8,19 & Lincoln D Stein3,20 for the Mutation Consequences and Pathway 
Analysis working group of the International Cancer Genome Consortium

1Cellular Signal Integration Group (C-SIG), Technical University of Denmark, Lyngby, Denmark. 2The Donnelly Centre, University of 
Toronto, Toronto, Ontario, Canada. 3Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, 
Canada. 4Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA. 
5Division of Cancer Genomics, National Cancer Center, Tokyo, Japan. 6Structural Biology and Biocomputing Programme, Spanish National 
Cancer Research Centre, Madrid, Spain. 7Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK. 
8Research Unit on Biomedical Informatics, University Pompeu Fabra, Barcelona, Spain. 9Queensland Centre for Medical Genomics, 
Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland, Australia. 10Computational Biology Center, 
Memorial Sloan-Kettering Cancer Center, New York, New York, USA. 11Department of Computer Science and Center for Computational 
Molecular Biology, Brown University, Providence, Rhode Island, USA. 12Department of Systems Biology, Harvard Medical School, Boston, 
Massachusetts, USA. 13Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada. 14Department of Medical 
Biophysics, University of Toronto, Toronto, Ontario, Canada. 15Department of Pharmacology and Toxicology, University of Toronto, 
Toronto, Ontario, Canada. 16Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, USA. 
17Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, California, USA. 18Biotech Research & 
Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark. 19Institució Catalana de Recerca i Estudis Avançats, 
Barcelona, Spain. 20Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. 21Present address: Koch Institute for 
Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 22These authors contributed equally to 
this work. Correspondence should be addressed to L.D.S. (lincoln.stein@gmail.com).
Received 20 JanuaRy; accepted 27 apRil; published online 30 June 2015; doi:10.1038/nmeth.3440

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

mailto:lincoln.stein@gmail.com
http://www.nature.com/doifinder/10.1038/nmeth.3440


perspective

616  |  VOL.12  NO.7  |  JULY 2015  |  nature methods

In this Perspective, the phrase ‘pathway and network analysis’  
denotes any analytic technique that benefits from biological  
pathway or molecular network information to gain insight into a 
biological system. The fundamental aim is to reduce data involv-
ing thousands of altered genes and proteins to a smaller and more 
interpretable set of altered processes (see recent reviews13,14). This 
process-oriented view helps generate testable hypotheses, identify 
drug targets, find tumor subtypes with clinically distinct outcomes 
and identify both cancer-specific and cross-cancer pathways.

Pathways and networks are similar concepts with certain  
distinctions. Both comprise systems of interacting genes, proteins  
and other biomolecules that carry out biological functions. 
Pathways are small-scale systems of well-studied processes 
where interactions comprise biochemical reactions and events of  
regulation and signaling. Pathways represent consensus systems 
based on decades of research and can be visualized in detailed 
linear diagrams. In contrast, networks comprise genome- or 
proteome-wide interactions derived from large-scale screens or 
integrative analyses of multiple data sets. Network interactions 
are simplified abstractions of complex cellular logic. For instance, 
physical protein-protein interactions may be represented as  
directionless edges, and directed edges may stand for inhibitory 
or activating gene regulation. Networks are noisy and challenging  
to visualize and interpret; however, they likely contain informa-
tion not covered in well-defined pathways. A related concept  
to pathways and networks is a functionally annotated gene set 
that comprises all genes involved in a particular process or  
pathway without their interactions. Annotated gene sets of the 
Gene Ontology and other resources are based on multiple types 
of evidence and are broader in scope than pathways.

Pathway and network analyses have a number of benefits  
relative to analyzing genomics data at the level of individual 
genes. First, these techniques aggregate molecular events across 
multiple genes in the same pathway or network neighbor-
hood, thus increasing the likelihood that the events will pass a  
statistical detection threshold and reducing the number of  
hypotheses tested15. Second, the results are often easier to inter-
pret, as genomic alterations are related to familiar concepts such 
as cell cycle or apoptosis. Third, potential causal mechanisms 
can be identified—for instance, by predicting a particular micro-
RNA or transcription factor that explains expression differences 
between tumor samples and controls. Fourth, results obtained 
from related data sets may become more comparable because 
pathway information allows interpretation in a common feature 
space. Finally, the techniques facilitate integration of diverse 
inputs such as genomic, transcriptomic and proteomic data into 
a unified view of tumor biology, thereby improving statistical and 
interpretative power.

Pathway and network analyses have been applied to cancer  
data sets to find driver genes and pathways16,17, to identify  
hidden tumor subtypes distinguished by common patterns 
of network alteration18, to propose cancer mechanisms and  
biomarkers17,18 and to identify key regulators of cancer-related 
gene networks19,20.

The Mutation Consequences and Pathway Analysis (MUCOPA) 
working group of the ICGC21 has developed standard operating 
procedures for the analysis of cancer genome data generated by 
the ICGC. In a recent review11 we outlined our recommendations  
for prioritizing somatic mutations using gene-level statistics, 

including criteria for the functional impact of mutations and  
positive selection for mutations in genes within the patient  
population. Here we describe diverse analytic techniques to  
prioritize altered gene sets, pathways and networks consisting of 
multiple interacting genes. Although we focus on somatic SNVs 
and altered RNA expression, the concepts are generally applicable 
to other oncogenic alterations such as CNAs, epigenetic changes 
and genomic rearrangements, though the details of analysis, 
including data processing and confounding-factor control, can 
be different for other data types.

major types of pathway and network analysis techniques
We consider three major approaches to network and pathway 
analyses to interpret somatic cancer mutations, which we present 
in order of complexity (Fig. 1). The simplest analysis provides a 
high-level summary of pathways affected in the tumor, whereas 
more complex methods provide detailed hypotheses about 
affected cellular mechanisms. We recommend that approaches 
from each of these classes be applied to cancer genome sequencing  
projects wherever feasible.

All three approaches require two general resources. The first  
is a list of oncogenic alterations that affect protein-coding genes. 
The second is a database of gene sets, pathways or network  
interactions22. Gene-set databases are lists of genes that have 
been grouped according to common biological properties; 
a familiar example would be the association of gene products  
with the Gene Ontology controlled vocabulary of biologi-
cal processes, molecular functions and cellular locations23. 
Pathway databases represent biological processes as series of 
biochemical reactions and other physical events (for exam-
ple, complex formation, phosphorylation events, subcellular  
localization and conformational changes), whereas network data-
bases use a simpler data model that treats biological processes 
as sets of bimolecular interactions. A simplified version of the 
epidermal growth factor (EGF) pathway illustrates the essential 
difference between pathway and network interaction databases 
(Fig. 2). The first approach, fixed–gene set enrichment analysis, 
analyzes functionally annotated gene sets that can be extracted 
from either pathway databases or network interaction databases. 
Inputs to the second approach, de novo network construction and 
clustering, are provided by network interaction databases. And in 
the most sophisticated approach, network-based modeling, both 
types of databases are used.

Approach 1: fixed–gene set enrichment analysis. This approach 
treats pathways, biological processes and networks simply as gene 
sets and ignores information about their interactions. Fixed–gene 
set enrichment analysis identifies genes in pathways (or any other 
functionally related grouping) that are present in a gene list more 
frequently than expected by chance. The gene sets are usually  
collected from curated community databases or the gene annota-
tion tables of the Gene Ontology23 but may also be experimentally 
derived (for example, genes upregulated in a cell line exposed 
to low oxygen levels). Several recommended software tools are 
available (Supplementary Table 1). The simplest input to such 
analysis is a list of genes that is most differentially expressed or 
frequently mutated in a data set. A typical analysis workflow  
consists of two steps: (i) a gene list is defined by filtering experi-
mental data for genes with significant gene-level statistics, and 
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(ii) enrichment analysis is performed to 
determine processes and pathways over-
represented in the gene list.

A hypergeometric distribution (Fisher’s 
exact test) is commonly used to calculate  
the statistical significance of this over-
representation, followed by a correction 
for multiple testing to estimate the propor-
tion of enriched gene sets that would occur 
by chance given the number of tested gene 
sets. The basic form of this test is applied 
in many tools (Supplementary Table 1)  
including the widely used but no longer 
updated web service DAVID24. However, 
the key drawback of this approach is that 
an arbitrary threshold is used to select the 
input genes, and potentially informative 
genes below the threshold are excluded.  
An alternative approach enables interpretation  
of a ranked list of genes in the experiment 
(for example, by strength of differential 
expression) with the assumption that top-
ranking genes are more important in terms 
of biological function. One recommended 
web service, g:Profiler25, applies a modified  
hypergeometric test to analyze increasingly complete ranked lists 
of input genes and determines a sub-list with the strongest level of 
enrichment. The GSEA method26 is designed to work with continu-
ous data and searches for gene sets that are enriched at the top (over-
expressed vs. control) or bottom (underexpressed) of a ranked list 
of all genes. Both methods score each gene set separately and com-
pute additional statistics to estimate P values and make multiple- 
testing corrections with false discovery rate.

Enhancements of these approaches allow enrichment analysis 
for each tumor sample, thereby enabling the discovery of distinct 
cancer subtypes from different enrichment patterns. Examples  
of methods that allow comparisons among samples include  
sample-level enrichment analysis (SLEA)27, single-sample GSEA 
(ssGSEA)26 and gene-set variation analysis (GSVA)28.

Rank-based enrichment methods do best when genes are easily  
ranked but may be suboptimal in scenarios such as cancer  
mutation analysis in which most genes are difficult to rank owing 
to low mutation counts. A pathway association analysis may be 
helpful in case of a two-class experimental design (for example, 
cases vs. controls). This resembles a genome-wide association 
analysis and uses pathways and other gene sets instead of genetic 
markers. For each experimental class and gene set, one counts 
all samples containing a mutation that may affect that gene set. 
A series of Fisher’s exact tests identify gene sets significantly 
mutated in cases versus controls, followed by multiple-testing 
correction.

Fixed–gene set enrichment analysis generates a list of processes 
and pathways and provides a bird’s-eye view of affected biological 
systems. However, sometimes many related gene sets are enriched. 
The key functional themes in these large pathway lists can be identi-
fied using tools such as the Enrichment Map29 app of the Cytoscape 
network visualization software30. Another useful approach is to 
overlay the original genomics data on a detailed pathway diagram 
or high-level molecular interaction network. For example, the  
databases KEGG31, Reactome32 and HumanCyc33 enable diagrams 
of enriched pathways with colors highlighting the genes of interest. 
This may help researchers to move beyond asking which path-
ways are enriched among alterations toward understanding the  
functional consequences of the altered gene set.

This family of techniques is still evolving. For instance, most 
enrichment statistics assume that genes in the list occur inde-
pendently, an assumption that does not hold true for co-regulated 
genes in gene expression data, overlapping or shared exons in 
point-mutation data, or colocated paralogous genes with similar 
functions. The quality and coverage of gene sets can also affect 
interpretation of fixed–gene set enrichment analysis, as databases 
report genes and their functions with variable levels of detail and 
confidence. Combined use of multiple databases, filtering and 
visualization help overcome these problems. Another issue is 
that many annotated pathways represent normal physiology that 
may be altered in disease. New methods have been developed to 
address these issues: for example, CAMERA34 corrects gene-set  
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a set of mutated or differentially
expressed genes 
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Figure 1 | Major approaches to pathway and 
network analysis of cancer data. Some commonly 
used tools are included for each approach. In the 
network diagrams (“Output”), red circles indicate 
genes whose activities are increased (first and 
third columns) or altered by mutations (center 
column). Green circles are genes whose activities 
are decreased. 
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enrichment statistics for inter-gene corre-
lations. A more fundamental limitation of 
this class of algorithms is their ignorance of 
interactions between genes and proteins, as 
neither network topology nor dynamics is taken into account. 
These limitations are addressed by the next two approaches.

Approach 2: de novo network construction and clustering. 
Methods in this section construct cancer gene networks de novo 
by analyzing networks of molecular or functional interactions. 
These methods begin with a list of mutated or otherwise altered 
genes as well as one or more databases of gene or protein inter-
actions, such as those compiled by iRefIndex35, BioGRID36, 
IntAct37, STRING38 or GeneMANIA39 (Supplementary Table 2).  
The altered genes and a subset of their neighbors are then extracted 
from the databases and reconstructed as an interaction network. 
The resulting network reveals interactions of input genes and 
helps discover additional related genes by ‘guilt by association’, 
highlighting nonmutated genes that likely participate in tumor 
biology because of their interactions. By clustering and annotating 
the discovered networks with the enrichment and colorization  
approaches described above, one may find similarities and  
differences among distinct tumors that would not be apparent at 
the gene level.

Examples of recommended network-construction algo-
rithms include GeneMANIA39, ReactomeFIViz40, STRING38, 
ResponseNet41, NetBox42, MEMo43 and EnrichNet44 
(Supplementary Table 2). GeneMANIA is an interactive web 
service and a Cytoscape app that uses a diverse set of interaction 
databases. It suggests genes that are related to those in the experi-
mental data set using network analysis. ReactomeFIViz (previously  
called Reactome FI Plugin) runs in Cytoscape and features 
a number of algorithms for clustering and annotating sets of  
interacting genes and for relating these clusters to tumor 
phenotype and patient clinical characteristics. For example, 
ReactomeFIViz identified prognostic biomarkers in breast and 
ovarian cancer45. NetBox is conceptually similar to ReactomeFIViz 
and reports functional network modules by identifying clusters  
of altered genes on a background network derived from  
databases. MEMo studies mutual exclusivity of cancer alterations 
in groups of genes across tumor samples to discover subnetworks of  
synthetic lethality and other functional groupings. It nominates 
sets of oncogenic alterations that have a particularly strong  

selective effect, potentially pointing to therapeutic combinations 
where mutual exclusivity reflects synthetic lethality.

A key use of networks is to search for alteration patterns in 
interacting genes that correlate with clinical information46. The 
HyperModules method47 identifies subnetworks with cancer 
mutations that are maximally correlated with clinical character-
istics such as patient survival, tumor stage or relapse. This tool can 
also be used to study tumor subtypes by extracting subnetworks 
whose mutations are significantly enriched in a particular subtype.  
HyperModules was applied to the kinase-signaling network in 
ovarian cancer and revealed network modules with mutations 
in phosphorylation sites and kinase domains that significantly 
correlated with patient survival48.

A drawback of de novo network construction and clustering 
techniques is their use of a simplified data model that discards 
much information known about biological networks. For example,  
an alteration may act at the DNA level by deleting a portion of a 
gene, at the transcriptional level by disrupting a promoter, or at 
the protein level by altering a catalytic site. The activating effect of 
a mutation in a transmembrane receptor can be masked by inac-
tivation of a downstream effector of the same signaling pathway. 
These subtleties are not easily captured in a binary interaction 
network. In addition, the molecular interactions in databases 
are derived from specific experiments, such as yeast two-hybrid 
assays, that may or may not matter for cancer biology. Thus, it 
is advisable to consult the literature establishing the network 
interactions when forming hypotheses on the basis of patterns 
observed in interaction networks; several text-mining tools are 
available to automate this task49.

Approach 3: network-based modeling. The approaches  
discussed in this section infer how network states are disrupted 
in cancer. Network-based modeling approaches use qualitative 
and quantitative measurements to infer the activities and inter-
actions of various genetic components in pathway or networks. 
These methods relate the activities of some components with their 
influences and consequences on other components. Such mod-
eling approaches have been applied to infer the mechanisms of 
NRAS signaling in melanoma50 to map transcriptional regulatory  
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Figure 2 | Pathway and network representations 
of EGF signaling. (a) In the simplified pathway 
representation, heterogeneous nodes and edges 
correspond to genes, proteins, small molecules and 
their regulatory and catalytic relationships. Nodes 
do not interact directly but participate in reaction 
events designated by white squares. (b) In the 
network representation, all nodes correspond to 
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nodes are uncurated proteins participating in 
physical interactions.
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networks in physiologically normal and diseased states19,20,51–53, 
to build maps of phosphorylation networks54 and to identify can-
cer drivers16. Below, we briefly describe several network-modeling 
algorithms that are available as user-installable software packages 
and have been applied to cancer (Supplementary Table 3).

The HotNet55 tool treats the gene network as a metallic lattice 
and uses the physics of heat diffusion to model the effects of gene 
alterations. Each gene in the query ‘heats up’ its local region of 
the network, and the effect is then metaphorically propagated 
along metallic wires defined by gene-gene linkages, leading to 
‘hot’ (highly relevant) network neighborhoods. This approach 
mitigates some of the ascertainment biases in curated gene inter-
action networks. For example, because tumor suppressor TP53 is 
exceedingly well studied, it is an artificially inflated hub of known 
linkages to other genes; but because of TP53’s high degree of  
connectedness, heat diffuses away from it rapidly, reducing its 
overall influence. The related method TieDIE56 extends the  
network-diffusion concept to integrated analysis of multiple types 
of genomic alterations.

The Pathifier method57 transforms gene-level information to 
network-level information by quantifying molecular activities on 
a continuous sample-by-sample curve in the multidimensional 
space of gene expression values. It ranks cancer samples along a 
gradient of clinical or biological attributes such as tumor aggres-
siveness or patient survival. The method generates hypotheses 
and identifies testable markers to predict clinical outcomes.

Signaling pathway impact analysis (SPIA)58 applies a recursive 
algorithm similar to that used by Google to rank search results. 
SPIA scores a gene product as highly impactful if it points to other 
impactful gene products in the network diagram. By ranking the 
effects hierarchically, SPIA distinguishes primary changes in gene 
activity and secondary effects of the regulatory network.

Several methods use information theoretical principles to 
reconstruct regulatory networks from gene expression data. 
Application of these methods to cancer genomics has led to 
insights into tumor biology and identification of actionable drug 
treatments. ARACNE applies mutual information to discover 
regulatory networks of transcription factors and target genes59, 
whereas MARINa interrogates these networks to identify master  
regulators19,20. For example, application of these tools to the 
reconstruction of the gene regulatory network in glioblastoma and 
follow-up experimental validations revealed the transcription fac-
tors C/EBPβ and STAT3 to be master regulators of mesenchymal  
transformation20.

Other methods integrate gene expression and CNA data to 
identify cancer driver genes and downstream regulatory networks.  
For example, CONEXIC assumes that copy-number gains and 
losses alter gene expression16. It employs a Bayesian network 
algorithm to find significantly altered genes regulating modules 
of differentially expressed genes. The approach was applied to 
predict and experimentally validate multiple cancer driver genes 
in melanoma and glioblastoma16,17.

Several approaches have been developed to fit gene interac-
tions to the data rather than taking the interactions as prior  
knowledge. Thus, interactions are not interpreted as direct physical  
interactions but as measures of influence between network nodes. 
Functions of discrete logic were used to connect gene products  
through ‘gates’60 and to infer functions best capturing the observed 
dynamics in the data. This was extended to fuzzy logic61 that 

relaxes the rules of gene interactions and allows for biological 
noise and uncertainty. Similar approaches were developed for  
partial least-squares regression models62 in which parameters are 
fit to dependent variables typically reflecting a cellular pheno-
type. These approaches were applied to interpret drug response in 
triple-negative breast cancer and to suggest effective therapeutic 
treatments63. The DataRail package64 allows users to experiment 
with multiple similar model-fitting methods for gene networks.

Probabilistic graphical models (PGMs) have been applied to can-
cer network analysis. PGMs are widely used in machine learning 
and statistics for modeling complex dependencies among multiple 
variables. PathOlogist65 analyzes pathways from curated databases 
to derive a set of network interactions. It then uses the inhibitory and 
excitatory regulatory connections in each pathway-derived network 
model to determine (i) whether a given cancer gene expression data 
set is consistent with the model and (ii) whether the pathway-derived 
network’s components are activated. Thus, a collection of known 
gene interactions with details of co-regulation helps interpret gene 
expression data. This family of algorithms was applied to develop 
predictors of drug sensitivity in cancer cell lines66.

PARADIGM67 extends the PGM framework of PathOlogist 
by formally modeling the ‘central dogma’ of gene transcription  
to RNA, followed by RNA translation to protein and post- 
translational events, together representing pathway and network 
effects of alterations at the DNA, RNA and protein levels. This 
method uses factor graphs to assign weights to each molecular 
interaction and to integrate the effects of multiple simultaneous 
alterations (for example, copy-number changes, simple somatic 
mutations and expression changes). The tool provides predicted 
pathway activity scores by integrating all observed variations 
to assess whether the activities of each pathway are increased, 
decreased or unaffected. The algorithm was used to identify new 
tumor subtypes on the basis of shared pathway-activation patterns18.  
An extension called PARADIGM-Shift infers whether somatic 
mutations are neutral, loss-of-function or gain-of-function muta-
tions68. This method has detected several well-known examples 
of pathway alterations, including loss-of-function events in TP53 
in breast cancer and gain-of-function events in oncogene NFE2L2  
in lung squamous cell tumors. More recent PGM approaches 
include the application of dynamic Bayesian networks to consider  
tumorigenesis as a temporally evolving system. The inferred 
network of breast cancer cell lines contributes an important  
proof of concept in this area69.

Higher-resolution modeling of cellular wiring in cancer requires 
quantitative data that are not yet readily available from patient 
tissue samples. Established cell lines, organoids and xenograft 
models will enable collection of more data for integrative  
analysis. Time courses and perturbation experiments on such 
cancer models will contribute key data points that will help 
parameterize more realistic models such as systems of differential 
equations. Large interacting systems of differential equations such 
as full cell models70 also show promise but are in their infancy in 
their application to cancer.

challenges and future perspectives
Pathway and network analysis can effectively uncover biological sys-
tems perturbed in tumor cells. However, our knowledge of pathways 
and networks both in normal cells and, more acutely, in cancer cells 
is far from complete. Many approaches, particularly the techniques  
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of network-based modeling, require accurate, detailed and com-
prehensive pathway descriptions with regulatory relationships, 
orthogonal data (DNA, RNA, protein) and extensive quantitative 
data. Even among protein-coding genes, high-resolution data are 
available for only well-studied biological processes and are scarce  
for pathways involving many noncoding genomic elements. This 
argues for an expanded effort to develop pathway databases and 
systematically reconstruct regulatory and signaling networks.

A second challenge is the computationally expensive modeling 
of biological networks that can consume weeks of CPU time,  
particularly for permutation-based estimates of statistical  
significance. This problem will only grow as reference pathways  
and networks and experimental data sets increase in size. 
As cancer genomics data become available for progressively  
larger patient cohorts, fundamental computer science research 
is needed to optimize these algorithms to scale to thousands  
of samples71.

A third challenge arises from the abundant interdependencies 
in complex biological systems. It is well established that the role of 
a mutation, such as its functional impact or its role in suppressing  
or enabling a tumor, is not static. Instead it depends on cell state 
and the presence of other mutations72 and could have effects 
on multiple cellular processes. The establishment of annotation 
standards that can encapsulate such dependencies also represents 
a major challenge for the field.

A final challenge is the evaluation of pathway and network 
methods in patient care. With a sufficient battery of pathway-
specific therapeutics, one can envision the selection of therapies 
based on networks constructed from the molecular altera-
tions present in individual tumors. It will be a major statistical  
challenge to devise adaptive clinical trials that leverage such  
information73. The difficulties of communicating genomic  
information to clinicians and patients will certainly be exacer-
bated by the complexity of network-level alterations74.

Our understanding of cancer biology through the lens of path-
way and network analyses is nascent, but it holds the potential to 
transform our thinking on disease etiology and treatment.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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