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In acute myeloid leukemia (AML), molecular heterogeneity across patients constitutes a

major challenge for prognosis and therapy. AML with NPM1 mutation is a distinct genetic

entity in the revised World Health Organization classification. However, differing patterns of

co-mutation and response to therapy within this group necessitate further stratification. Here

we report two distinct subtypes within NPM1 mutated AML patients, which we label as

primitive and committed based on the respective presence or absence of a stem cell sig-

nature. Using gene expression (RNA-seq), epigenomic (ATAC-seq) and immunophenotyping

(CyToF) analysis, we associate each subtype with specific molecular characteristics, disease

differentiation state and patient survival. Using ex vivo drug sensitivity profiling, we show a

differential drug response of the subtypes to specific kinase inhibitors, irrespective of the

FLT3-ITD status. Differential drug responses of the primitive and committed subtype are

validated in an independent AML cohort. Our results highlight heterogeneity among NPM1

mutated AML patient samples based on stemness and suggest that the addition of kinase

inhibitors to the treatment of cases with the primitive signature, lacking FLT3-ITD, could have

therapeutic benefit.
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Acute myeloid leukemia (AML) is a genetically and biolo-
gically heterogeneous disease characterized by the clonal
expansion and impaired differentiation of mutant hema-

topoietic stem and progenitor cells1. Among the most common
AML driver mutations, stable over time, is a 4 base-pair insertion
in exon 12 of the nucleophosmin-1 (NPM1) gene, occurring in
20–30% of cases2,3. Due to its biological significance and prog-
nostic impact, mutations in NPM1 represent a distinct leukemic
entity in the World Health Organization (WHO) classification of
myeloid leukemias and play a significant role in prognosis and
treatment decision-making4.

NPM1 mutations are generally associated with a favorable
effect on patient survival following induction and consolidation
chemotherapy5. However, AML with NPM1 mutation is a
clinically heterogeneous group because it almost always exists in
the context of other mutations. For example, internal tandem
duplications in FLT3 (FLT3-ITD) are approximately twice as
frequent in NPM1-mutated AML compared to AML with wild-
type NPM16,7. Such secondary mutations have functional con-
sequences. For example, patients with NPM1 mutations in the
absence of FLT3-ITD have a more favorable prognosis, than
patients with the FLT3-ITD, and are usually not offered allogeneic
stem cell transplant8. Yet, even among this favorable group, 40%
of patients will relapse, indicating unrecognized heterogeneity in
this subgroup6,9; this may be due to additional genetic and epi-
genetic changes, contributing to the prognosis of NPM1-mutated
disease2,10. For example, within NPM1-mutated AML, the FLT3-
ITD mutation frequently co-occurs with mutations of DNMT3A,
which on its own is associated with worse outcome in patients
receiving standard induction therapy11. Most studies of NPM1-
mutated AML have focused on the co-occurrence of other
mutations, while heterogeneity at a gene expression level among
patients with mutant NPM1, and its biological significance have
not been comprehensively investigated yet.

In this work, we used RNA-seq-based gene expression profiling
to characterize the molecular heterogeneity within NPM1-muta-
ted AML patients. As a result, we identify two subtypes, referred
to as primitive and committed based on the differences in gene
expression, and find that each is consistently associated with
particular molecular characteristics, disease differentiation state
and patient survival across multiple independent AML cohorts.
Furthermore, we show that leukemic cells in the primitive sub-
type are more sensitive to certain kinase inhibitors, even in the
absence of FLT3-ITD. This suggests that the addition of kinase
inhibitors to the treatment of cases with the primitive signature,
lacking FLT3-ITD, may be of therapeutic benefit.

In this work, we characterize the molecular heterogeneity
within NPM1-mutated AML patients. Using RNA-seq-based
gene expression profiling we identify two novel subtypes, referred
to as primitive and committed. Based on the differences in gene
expression, epigenomic (ATAC-seq), and immunophenotyping
(CyToF), we associate subtypes with particular molecular char-
acteristics, disease differentiation state and patient survival across
multiple independent AML cohorts. Furthermore, we show that
leukemic cells in the primitive subtype are more sensitive to
certain kinase inhibitors, even in the absence of FLT3-ITD. This
suggests that the addition of kinase inhibitors to the treatment of
cases with the primitive signature, lacking FLT3-ITD, may be of
therapeutic benefit.

Results
NPM1-mutated AML clusters into two distinct groups. We
investigated whether analysis of gene expression patterns might
identify molecular subtypes of NPM1-mutated AML. To define
consensus molecular subtypes across a large compendium of 391

RNA-sequencing profiles of NPM1-mutated AML samples, we
applied a meta-clustering approach using the CoINcIDE12

framework (Supplementary Table 1, Supplementary Fig. 1 and
Supplementary Methods). Our meta-clustering analysis revealed two
robust subtypes across our data compendium (Fig. 1A and Sup-
plementary Figs. 1 and 2). Next, the PERT algorithm13 was used to
elucidate the cellular composition of the AML samples in each
cluster. We found that one cluster was significantly enriched for
stem cells, hence labeled as primitive. In contrast, the other cluster
was enriched for gene expression associated with myeloid and
hematopoietic differentiation, hence we labeled it committed
(Fig. 1B). The two clusters did not differ in clinicopathological
parameters such as age, karyotypem and white blood cell counts
(Chi-square test false discovery rate [FDR] > 5%; Supplementary
Tables 2–5). We also investigated the distribution of key driver
mutations in the primitive and committed subtypes (Fig. 1C,
“Subtype and mutations” section in Supplementary Discussion and
Supplementary Tables 6–17). Although subtypes were enriched with
certain mutations (FLT3-ITD in primitive and DNMT3A in the
committed group), genetic alterations in driver mutations are poorly
predictive of the committed and primitive subtypes (Supplementary
Figs. 3–16 and Supplementary Discussion) with low Matthews
correlation coefficient (MCC) between gene mutations and subtypes
(MCC= 0.32 for FLT3-ITD and MCC=−0.16 for DNMT3A;
Supplementary Fig. 3). Multivariate analysis between mutation
and subtype achieved a weak area under precision-recall curve
(AUPRC= 0.62) value (Supplementary Fig. 7).

Molecular basis of clusters of NPM1-mutated AML patients.
We further explored the transcriptomic patterns specific to each
subtype by identifying the genes that are consistently differen-
tially expressed across our compendium of RNA-sequencing
datasets using the DESeq2 method14 in a meta-analysis frame-
work (Fig. 2A and Supplementary Fig. 8). The differential analysis
shows that the cadherin-2 (CDH2) gene is significantly upregu-
lated in the primitive subtype (Fig. 2B and Supplementary
Data 1). A member of the cadherin family, CDH2 is known to be
a regulator of stem cell fate decisions15. Similarly, G protein-
coupled receptor 12 (GPR12) which is upregulated in the pri-
mitive subtype, is known to play a role in stem cell maintenance
and somatic reprogramming of cancer stem cells16. The MyoD
family inhibitor (MDFI), increasingly expressed in the primitive
subtype, has been reported to be a regulator of WNT signaling
pathway and is exclusively expressed in hematopoietic stem
progenitor cells17. Interestingly, zinc finger protein 521 (ZNF521),
a transcription factor whose knockdown has been shown to
reduce proliferation in human leukemia cell lines18 had sig-
nificantly higher expression in the primitive subtype.

In the committed subtype, we found an upregulated
expression of CD163, which has been associated with
monocytic differentiation19,20. CD163 is an immunomodulator
and member of the macrophage scavenger receptor family,
known to be expressed by AML cells of monocytic lineage21.
Higher expression of other genes in the committed cluster
includes immune-related genes such as C1QA, CD14, and
MARCO. The MSR1 gene, a known suppressor of leukemia
stem cell proliferation, is also highly expressed in the
committed cluster22. We confirmed the differential expression
of key genes by qPCR (Fig. 2B). Using gene set enrichment
analysis (GSEA) we detected that in the committed subtype,
immune response pathways such as interferon-gamma-
mediated signaling, GPCR signaling, and toll-like receptor
(TLR) signaling are upregulated (Fig. 2C, D, Supplementary
Figs. 16, 18, and Supplementary Data 2). Concurring with the
weak association with FLT3-ITD and DNMT3A mutations, we
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Fig. 1 NPM1 mutated AML patients can be classified into two distinct molecular subtypes. A Consensus clustering of gene expression data shows two
distinct clusters across five different datasets. Unsupervised machine-learning method was applied to five different patient cohorts independently and an
optimal number of clusters (two clusters, supplementary Fig. 1) were discovered in each cohort. In the network, each node represents a cluster from a
dataset. The size of the nodes are proportional to the number of the patients in the cluster and are colored according to the dataset. To compare the
clusters from different datasets, Pearson correlation coefficients between their centroids was used. In the network, edge width is proportional to the
correlation between clusters. This network was further classified into two clusters (meta-clustering), annotated as primitive and committed. For network
visualization, Fruchterman–Reingold force directed layout algorithm was applied. B The cellular deconvolution shows that primitive clusters are enriched in
stem cells (two-sided Wilcoxon rank-sum test p-value < 2.2E−16 for UHN, KI, BeatAML, Leucegene dataset, and p-value= 4.5E−14 for TCGA dataset).
PERT algorithm was applied to compute the stem cell score for all samples. Higher PERT score indicates that the subtype is enriched with stem cells.
CMutation status of genes in primitive and committed clusters. In the oncoprint, the top bar indicates primitive and committed subtype and the second bar
shows patient cohort.
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found that the differential gene expressions and enriched
pathways are uniquely activated in subtypes (Supplementary
Figs. 8–16).

Primitive phenotype and chromatin accessibility. While gene
expression reflects the active state of cell identity, cis-regulatory

elements (CREs), including promoters and enhancers underly the
determination of cell fate potential23,24. Hence, we investigated
whether NPM1-mutated AML samples would also stratify into
primitive and committed clusters based on their cis-regulatory
landscape. Using assay for transposase-accessible chromatin
sequencing (ATAC-seq) regions of accessible chromatin, typical
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of CREs, across 18 AML (9 primitive and 9 committed) samples
from UHN cohort were identified. CREs are known to form
clusters, previously reported as COREs, super-enhancers and
stretch-enhancers25. Focusing on COREs identified by the
CREAM method26 resulted in the clustering of the AML samples

according to the expression profiles, with one exception (Fig. 3A).
Our results indicate that COREs are formed in the promoters in
primitive samples as opposed to intergenic regions in committed
samples (promoters: FDR= 11%, intergenic: FDR= 2%; Fig. 3B,
C and Supplementary Fig. 19). The DNA-binding site motifs for

Fig. 2 Gene and pathway level analysis elucidates molecular differences between subtypes. A Gene expression pattern across five AML cohorts.
Patients are represented in columns while genes are represented in rows. The genes that are differentially expressed across all the datasets are shown on
the right side of the heatmap with a short horizontal black bar. B The expression level of selected genes were confirmed using qPCR analysis (n= 6 patient
samples, each with three replicates). Bars show relative expression of genes in samples belonging to primitive (in red color bars) and committed (in blue
color bars) subtypes. Data are represented as relative mRNA expression and as mean ± SEM. In the primitive subtype samples, CDH2, GPR12, ZNF521,
PLXNB1, and MDFI have high expression. In the committed subtype CD163, C1QA, CD14, MARCO, and MSR1 show high levels of expression. C Network
visualization for gene set enrichment analysis showing pathways with enrichment FDR <5%. Each node in the network represents a pathway and the edge
represents common genes between pathways. Size of the nodes and edges are proportional to the number of genes in the pathway and common genes,
respectively. For individual pathway names see Supplementary Fig. S18. D Pathway enrichment plot for transcription and Toll receptor cascade pathway.
Plots show the running enrichment score and positions of the genes belonging to the pathway in the rank order list of all genes. The transcription pathway
is enriched in the primitive subtype while the Toll receptor cascade pathway is enriched in the committed subtype.

Fig. 3 Cis-regulatory landscape of AML samples shows high degree of agreement with gene expression based phenotype (primitive or committed).
A Clustering of AML samples using the called COREs from ATAC-seq profiles, groups samples into two clusters. These clusters are highly concordant with
gene expression-based primitive or committed subtypes. Comparison of distribution of AML COREs at (B) promoters and (C) intergenic regions within the
human genome. COREs are enriched in the promoter regions of the primitive subtype. For the committed subtype, COREs are more enriched in the intergenic
regions. D Dotplot visualization of top 10 enriched motifs for transcription factor-binding sites (TFBS) in primitive and committed subtypes. The x-axis
represents the enrichment score, y-axis shows names of the TFBS motif and dots’ size and color is proportional to FDR. Motif names with red background (on y-
axis) have a significant enrichment score (FDR < 0.05) in primitive subtype and with blue have significant enrichment score (FDR < 0.05) in committed subtype.
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members of RUNX and GATA families, HOXC9 and CTCF were
exclusively enriched in the COREs in the primitive subtype,
suggesting potential factors in gene regulation in the primitive
subtype (Fig. 3D, Supplementary Data 3). Motif-enrichment
analysis of exclusively accessible COREs in the committed sub-
type identified consensus sequences recognized by CEBP, ATF
family members, OCT2, IRF2, NFkB-p65, ESRRB, and EGR2,
suggesting their potential role in committed subtype (Fig. 3D,
Supplementary Data 3).

Immunophenotyping of primitive and committed subtypes.
We performed mass spectroscopy-coupled flow cytometer
(CyTOF) analysis to explore immunophenotypic differences
between 9 primitive and 8 committed AML NPM1-mutated cases
at the single-cell level. We used the cytometry (diffcyt)27 pipeline
to computationally define groups of cells (immunophenotypic
clusters) with similar high-dimensional phenotypes. Each immu-
nophenotypic cluster mapped to discrete areas on 2D t-stochastic

neighbor embedding (t-SNE) maps (Fig. 4A; Supplementary
Figs. 20, 21), confirming that they expressed distinct immuno-
phenotypes. Analysis showed that seven malignant immunophe-
notypic clusters expressing varying levels of CD45 and markers of
hematopoietic progenitors (CD34, CD38) or myelomonocytic
differentiation (CD33, CD14, CD11c, CD16, and HLA-DR) typi-
cal of AML were differentially abundant between the two subtypes
(Fig. 4B, C). Committed cases also contained a higher abundance
of non-leukemic immunophenotypic clusters consisting of CD45hi

T (CD3+), B (CD19+) and NK (CD3− CD56+ CD16+) cells
(Supplementary Fig. 20).

Primitive cases of NPM1-mutated AML had a significantly
higher abundance of immunophenotypic clusters 3 and 8, which
were phenotypically primitive, consisting of CD34+ CD38lo (3) or
CD34− CD38lo (8) cells that expressed low levels of myelomo-
nocytic differentiation markers (Fig. 4C, D, Supplementary
Fig. 21). The non-significant leukemic clusters were CD34− but
expressed few myelomonocytic markers. In contrast, committed

Fig. 4 Mass cytometric single cell analysis identifies phenotypic cell clusters that differ significantly between primitive vs. committed NPM1-mutated
AML cases. A tSNE plots of FlowSom immunophenotypic clusters in representative primitive and committed cases with the indicated FLT3-ITD genotypes.
Twenty-five unique FlowSom immunophenotypic clusters were identified and are colored in the Z dimension according to the color scale on the right. The
numerical IDs of key leukemic (black numbers) and normal non-leukemic (red numbers) immunophenotypic clusters are labeled. B Stacked bar-plot of
FlowSom immunophenotypic cluster abundance (% of total) in each sample grouped according to FLT3-ITD status within the primitive vs committed
groups. immunophenotypic clusters identified by diffcyt as differentially abundant between the two groups (FDR(Q) < 0.05) are boxed as “Significant” in
the legend. Leukemic versus normal non-leukemic immunophenotypic clusters were identified based on marker expression (Supplementary Figs. 20, 21).
To simplify visualization, very low abundance (<5% of total cells) non-significant leukemic (gray) and all normal non-leukemic immunophenotypic clusters
(black) were aggregated. C Heatmap representation of the median metal intensity of each marker for each differentially abundant immunophenotypic
cluster, represented as the Arcsinh ratio. D Box and whisker plots of leukemic immunophenotypic clusters that were differentially abundant between the
primitive and committed groups in the diffcyt analysis (n= 9 in primitive and n= 8 in committed group). The whiskers represent the 1.5 × interquartile
range (IQR) extending from the hinges. Q-values for each from the diffcyt-DA-edgeR analysis are indicated.
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cases of NPM1-mutated AML showed a higher abundance of five
immunophenotypic clusters (1, 7, 16, 22, and 24) than primitive
cases (Fig. 4B, D). These immunophenotypic clusters consisted of
CD34−/lo CD38+ CD11c+ cells that also expressed CD33, CD14,
CD16, and HLA-DR in various combinations, revealing aberrant
myelomonocytic differentiation (Fig. 4C, Supplementary Fig. 21A).
We noted that the total abundance of significant primitive
immunophenotypic clusters in primitive cases was lower (mean
9.4 ± 11.4%) than the abundance (mean 53 ± 37%) of the significant
differentiated immunophenotypic clusters in the committed cases
(Supplementary Fig. 21B). Thus, the primitive cases consistently
contained populations of hematopoietic stem/progenitor-like cells
together with larger populations that mostly lacked myelomonocy-
tic differentiation and were phenotypically variable within the
group. In contrast, committed cases contained a common group of
immunophenotypic clusters that compromised larger fractions of
the leukemic population and showed advanced myelomonocytic
differentiation. Overall these observations demonstrate that leuke-
mic cells from the primitive versus committed cases of NPM1-
mutated AML exhibit significantly different immunophenotypes at
the single-cell level.

Two additional observations suggested that FLT3-ITD status
also influenced the single-cell phenotypes of NPM1-mutated
AML. First, although the abundance of immunophenotypic
cluster 17, consisting of CD34− CD38lo CD33lo CD14− CD16−

CD11clo CD56lo HLA-DRlo cells, was not significantly different
in primitive versus committed cases, it was significantly enriched
in primitive versus committed cases specifically within the FLT3
wild type subset (P= 0.05, Fisher’s exact test). Second, immuno-
phenotypic cluster 3 was more abundant in the FLT3-ITD-mutated
cases overall (Supplementary Fig. 21C), suggesting that this
mutation globally promotes accumulation of primitive CD34+

CD38lo cells in NPM1 mutated AML. Nonetheless, among FLT3-
ITD and NPM1-mutated AML, 3/5 of the differentiated immuno-
phenotypic clusters were more abundant in committed versus
primitive cases (Supplementary Fig. 21D). Thus, FLT3-ITD
mutation does not preclude myelomonocytic differentiation in
committed NPM1-mutated cases. Collectively, these data showed
that although FLT3-ITD mutation influences the abundance of
certain immunophenotypic subsets in NPM1-mutated AML cases,
the committed subgroup includes more cells with advanced
myelomonocytic differentiation independently of FLT3-ITD status.

NPM1-mutated AML subtypes are predictive of overall survi-
val. We next assessed whether the primitive and committed
subtypes were associated with patient overall survival (Fig. 5A;
Supplementary Fig. 22). We found that the primitive subtype was
associated with a significantly worse survival than the committed
subtype (Log-rank test p= 0.002). To ascertain if our clusters
were predictive beyond the established predictive factors, we also
fitted a multivariable Cox proportional hazards model, adjusting
for clinicopathological parameters, such as sex, white blood cell
count, age, karyotype, and mutations, including FLT3-ITD, FLT3-
TKD, DNMT3A, NRAS, and KRAS. This multivariate analysis
showed that the primitive and committed subtypes yielded sig-
nificant complementary prognostic values (p-value= 0.01,
Fig. 5B).

The primitive subtype predicts for increased sensitivity to
kinase Inhibitors. To identify chemical compounds that may
specifically target leukemic cells in the primitive subtype, we used
our PharmacoGx platform28,29 to mine a large cell line-based
pharmacogenomic dataset (CCLE-CTRPv2)30,31. This dataset
includes over 1000 cancer cell lines treated with up to 544 small
molecules along with 68 FDA-approved drugs. Briefly, an

ElasticNet model was trained for predicting subtype labels (pri-
mitive or committed) using patient data. Using this model, sub-
type labels for selected cell lines were predicted. Drugs were
ranked by the association between their area under the drug
dose–response curve (AUCd) values and predicted subtype labels
across cell lines (detailed methodology for drug ranking is
described in Supplementary Discussion and Supplementary
Figs. 23–26). We further filtered the drug list by focusing on FDA
approved kinase inhibitor drugs as they were ranked high in the
list (Supplementary Fig. 23 and Supplementary Data 4 for drug
ranking). From the drug ranking list, we selected five kinase
inhibitors (Ruxolitinib, Sunitinib, Sorafenib, Quizartinib, Imati-
nib with FDR < 10%) potentially effective in subtype and Dasa-
tinib as negative control (FDR > 10%) for ex vivo testing.

These six candidate compounds were tested in a subset of the
UHN patient samples. For ex vivo screening, patient samples were
selected such that FLT3-ITD positive and negative samples were
represented in each of the two clusters. We investigated whether
patient samples with the primitive phenotype have increased
sensitivity to kinase inhibitors compared to the committed
phenotype. Ex vivo drug screening was performed on 20 patient
samples using predetermined dose ranges for all six candidate
compounds. Drug dose–response curves were generated and the
area under the curve (AUCd) was compared between subtypes for
each compound (Fig. 6, Supplementary Fig. 27 and Supplementary
Data 5 for individual drug dose–response curve). Ex vivo drug
screening revealed that patient samples from the primitive cluster
were more sensitive to Sorafenib, Sunitinib, and Ruxolitinib
compared to the committed subtype (Wilcoxon rank-sum test
p-value= 2E−5, 0.02, and 0.01, respectively; Fig. 6). Weak
differential responses were observed between subtypes for Quizar-
tinib, while Imatinib and Dasatinib showed no differences between
subtypes in UHN patient samples (Supplementary Fig. 27).

Next we assessed whether FLT3-ITD status and the leukemia
stem cell score (LSC17)32 predicted drug response independent of
the committed/primitive subtypes. Among the six drugs only
Dasatinib showed a weak association with FLT3-ITD status
(Wilcoxon rank-sum test p-value= 0.04; Supplementary Fig. 28).
No significant association was found between the LSC17 score
and drug response (Supplementary Fig. 29). Overall, these results
indicate that our subtyping approach can improve stratification of
targeted drug sensitivity in NPM1-mutated AML patients.

Validation of subtype association with drug response. We
sought to validate the associations between the primitive and
committed subtypes with response to kinase inhibitors using the
BeatAML33 dataset which contains ex vivo drug screening for
NPM1-mutated AML patient samples. We observed good agree-
ment between the UHN and BeatAML datasets, with samples in
the primitive cluster showing a higher sensitivity for Sorafenib
and Sunitinib (Wilcoxon rank-sum test p-value= 0.002 and
0.0004, respectively; Fig. 6). However, we did not find statistically
significant differences in sensitivity to Ruxolitinib in BeatAML
cohort (Fig. 6). Interestingly Quizartinib which had a weak dif-
ferential response in the UHN cohort, showed a statistically sig-
nificant difference in BeatAML cohort (Wilcoxon rank-sum test
p-value= 0.001 Supplementary Fig. 27).

Discussion
Mutations in the NPM1 gene are the second most common driver
genetic abnormalities in AML after lesions in the FLT3 gene. Due
to their distinct clinicopathological and molecular features,
NPM1-mutated AMLs are considered a separate entity in the
genomic classification of AML as well as by the WHO. Despite
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being well characterized, heterogeneity within NPM1-mutated
AML has been largely unexplored at the molecular level.

In this study, we characterized the transcriptomic hetero-
geneity within the NPM1-mutated AML patient samples and
highlighted the existence of two molecular subtypes across mul-
tiple RNA-sequencing datasets. Subsequent analyses revealed that
one subtype was enriched for a “primitive” phenotype while the
other subtype exhibited a “committed” phenotype. Differential
gene expression analysis across all five RNA-sequencing datasets
showed that hedgehog-interacting protein (HHIP) gene, an
important regulatory component of cell differentiation and
hedgehog signaling pathway, was upregulated in the primitive
subtype. Immunomodulatory genes such as CD163 and CD14
were upregulated in the committed subtype. Furthermore,
CyTOF immunophenotypic analysis showed that the committed
subtype exhibited more advanced myelomonocytic differentia-
tion. The primitive subtype was also enriched for the presence of
the FLT3-ITD mutation, while NRAS, and FLT3-TKD mutations
were enriched in the committed subtype. It is important to note
that, within the primitive subtype, 36% of the AML samples did
not harbor FLT3-ITD mutation, yet their transcriptomic profile
strongly resembled those of the FLT3-ITD-mutated samples. In
the committed subtype, 29% of samples showed a gene expression
pattern akin to FLT3 wild type while containing FLT3-ITD
mutation. Previous studies have shown that within the NPM1-
mutated patient group, FLT3-ITD mutations are associated with a
reduced chance of achieving remission with chemotherapy
treatment and high risk (70%) of relapse for those achieving
remission9,34. Conversely, in the absence of a FLT3-ITD muta-
tion, patients with NPM1 mutations are considered to have a
favorable outcome with standard induction chemotherapy alone.
However, within the NPM1 mutated and FLT3 wildtype group,
~40% of patients relapse. The high risk of relapse among these
patients cannot be fully explained by the presence of additional
genetic mutations. Interestingly, we have found that 37% of FLT3
wild type samples fall into a primitive subtype and have a sig-
nature similar to that of cases with a FLT3-ITD mutation. Despite
not containing the FLT3-ITD mutation, transcriptomic profiles of
these samples are very similar to FLT3-ITD-mutated samples and
exhibited a poor prognosis (Supplementary Fig. 30).

Pathway enrichment analysis revealed that the TLR-signaling
pathway is upregulated in the committed subtype; this finding
likely reflects the more advanced myelomonocytic differentiation.
Comparison of stem and bulk cells with differentiated cells have
shown that immune-mediated signaling pathways such as TLR
are associated with cell differentiation35. Specifically, the
increased activity of the TLR signaling pathway has been asso-
ciated with hematopoietic and AML differentiation36,37. Acti-
vating TLRs using agonists represents a promising avenue for
cancer immunotherapy and there is accumulating evidence sup-
porting a potential role for such agonists in the treatment of
AML38,39. The differential activity of the TLR pathway among the
subtypes might present an opportunity for TLR agonist-based
therapy. One possible application would be for patients with the
differentiated form of NPM1 mutant AML who have evidence of
residual disease following induction chemotherapy or as main-
tenance following chemotherapy.

The cis-regulatory landscape of the AML samples strongly
concurs with the molecular subtypes defined from gene expres-
sion profiles. This is supported by the clustering on the ATAC-
seq profiles resulting in 17 out of 18 (94%) of the samples being
classified identical to gene expression profiles. The ATAC-seq
profiling also reveals that promoter regions are highly enriched in
the primitive subtype while intergenic regions are enriched in the
committed subtype.

Immunophenotypic profiling showed that in primitive cases
two significant immunophenotypic clusters (3 and 8) comprised a
much lower fraction of leukemic cells than the non-significant
immunophenotypic clusters. In contrast, the significant immu-
nophenotypic clusters in committed cases exhibited clear mye-
lomonocytic differentiation and compromise a much larger
fraction of the total. This observation is consistent with the leu-
kemia stem cell paradigm, supported by many studies from our
group40,41 and independently42,43, positing that some myeloid
leukemias are initiated by rare stem cell-like cells that retain some
capacity to generate more leukemic blasts arrested at a later dif-
ferentiation stage. These myeloid leukemias retain some aspects
of the normal hematopoietic hierarchy, with primitive stem-like
cells being much less abundant than their more differentiated
progeny. Our finding that the primitive gene expression signature

Fig. 5 Primitive and committed subtypes are associated with patient survival. A Kaplan–Meier estimates of overall survival shows significant differences
(log-rank test p= 0.002) between primitive and committed subtypes. B Forest plot for Cox proportional hazards model-based multivariable analyses of
overall survival. In the model, sex, white blood count, age, karyotype status, transplant status, and mutation status of FLT3, DNMT3A KRAS, and NRAS genes
are included as covariates.
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of NPM1-mutated AML cases was enriched for stem/progenitor
genes supports the idea that the significant immunophenotypic
clusters in primitive cases may be enriched for leukemia stem
cells. These data highlight that while other genetic lesions can
interact with NPM1 mutations to influence the differentiation
status of AML, FLT3-ITD status does not override the distinction
between primitive and committed cases. The high concordance
between RNA- and ATAC-based subtypes together with their

distinct immunophenotypic profiles indicate strong biological
differences between the primitive and committed subtypes.

To analyze whether subtypes show differential response
towards drugs, we conducted ex vivo drug testing using patient
samples. The primitive cluster showed higher sensitivity for four
different kinase inhibitors. This pattern of differential drug
response was also observed in an external dataset, where three
drugs (Sorafenib, Sunitinib, and Quizartinib) showed differential

Fig. 6 Primitive subtype is more sensitive to kinase inhibitors. Activity of three different kinases inhibitors Sorafenib, Sunitinib, and Ruxolitinib is shown in
UHN and BeatAML datasets. Inhibitors were assessed against samples from primitive and committed subtype in patient derived cells (ex vivo drug
screening). Top panel shows drug-dose response curves for individual patient samples (in dotted lines) and average across subtypes (in solid line) in the
UHN cohort. Lines in red color indicate primitive subtype and blue color indicate committed subtype. The second and third panels show AUC values for
ex vivo drug screening in the UHN and BeatAML cohort, respectively. Boxplots in red indicate primitive and in blue indicate committed subtype. Wilcoxon
rank-sum test-based p-values are indicated on the top of box plots. Samples within the primitive subtype show higher sensitivity (two-sided Wilcoxon
rank-sum test p < 0.05) against inhibitors Sorafenib, Sunitinib, and Ruxolitinib in the UHN dataset. In the validation cohort (BeatAML), the primitive
subtype shows higher sensitivity against Sorafenib and Sunitinib (two-sided Wilcoxon rank-sum test p < 0.05).
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response across molecular subtypes. These drugs are potent
receptor and intracellular tyrosine kinase inhibitors designed to
block tumor cell growth. Sorafenib is known to be effective in
samples with FLT3-ITD mutations44. Furthermore, our results
match those observed in earlier studies. Samples with the FLT3-
ITD mutation show higher sensitivity towards Sorafenib and
Sunitinib (Supplementary Fig. 31). However, it is of note that
cases within the FLT3-ITD mutant group showed a statistically
significant difference in drug sensitivity regardless of whether
they were from the primitive or committed subgroups (Supple-
mentary Fig. 31, Wilcoxon rank-sum test p-value < 0.05 for Sor-
afenib and Sunitinib).

We discovered that the primitive subtype of NPM1-mutated
AML is more sensitive to the multikinase inhibitors Sorafenib and
Sunitinib compared to committed subtype samples. While the
reasons for the increased sensitivity will need further study, gene
and pathway level analysis provide potential mechanistic insights
that may explain the distinct drug response between the subtypes.
The target genes of both Sorafenib and Sunitinib, such as PDGFRβ
and KIT45–47 were found to be enriched in the primitive subtype,
suggesting the sensitivity of the kinase inhibitors in this subtype. We
also observed higher expression of Sorafenib and Sunitinib effector
genes such as CASP3, MYCN, and MMP2 in the primitive
subtype45,48,49. Conversely, the committed subtype is enriched in
genes and pathways that are implicated in drug resistance. For
example, anti-apoptotic MCL1, as well as the interleukin signalling
pathway and associated markers IL-6 and IL-8 are associated with
resistance to Sunitinib50,51 and their expression is increased in the
committed subtype. Thus, while further experiments are required,
our data suggest that differences in gene expression between the
subtypes may explain the differential sensitivity to kinase inhibitors.

The identification of new molecular subtypes within NPM1-
mutated AML patients is relevant in the prediction of treatment
response and outcome. Currently, most patients with a NPM1
mutation and without a FLT3-ITD mutation, are treated with
conventional induction and consolidation chemotherapy. These
patients usually do not receive allogeneic hematopoietic stem cell
transplant (allo-HSCT) due to their “better” chance of long-term
survival and yet a significant proportion of these patients will
relapse. Patients with the FLT3-ITD mutation, on the other hand
receive induction chemotherapy, including FLT3 inhibitors, fol-
lowed by stem cell transplant (if other clinical parameters per-
mit), due to their very high relapse rates. The primitive and
committed phenotypes identified in this study may provide new
parameters for making treatment decisions, as the primitive
phenotype contains patients with FLT3-ITD negative disease but
show a FLT3-ITD like transcriptomic profile. As demonstrated in
this study, this difference in the transcriptomic profile has pre-
dictive implications, with the primitive phenotype showing sig-
nificantly lower overall survival due to disease recurrence at 5
years compared to the committed phenotype. Given the FLT3-
ITD phenotype and the survival difference compared to patients
without a primitive phenotype, it would be interesting to consider
if these patients would benefit from allo-HSCT at first remission,
in the same way that is done for patients with FLT3-ITD. Fur-
thermore, our study highlights the differential sensitivity of the
identified phenotypes to certain kinase inhibitors, which warrants
investigation into the potential benefit of including these kinase
inhibitors in the NPM1 treatment regimen or as maintenance
therapy, for patients with the identified phenotype.

In conclusion, the present study provides evidence that the
NPM1-mutated AML can be stratified into primitive and com-
mitted subtypes that have different 5-year survival and drug
sensitivity to agents targeting signaling pathways. The tran-
scriptomic, ATAC-seq, and immunophenotypic profiles identi-
fied in this study have implications in predicting response to

therapy and potential changes in treatment decisions. This
includes the consideration of stem cell transplant after first
remission for the primitive subset of NPM1-mutated AML cases
whose tumor cells lack a FLT3-ITD mutation. We also con-
template the possibility of adding kinase inhibitors to the current
NPM1-mutated AML treatment regimen for selected cases with a
primitive pattern of gene expression or TLR-targeted
immunotherapy.

Methods
AML cohorts. In this study, we used five different AML patient cohorts. The UHN
cohort consists of 77 NPM1-mutated AML patients and was used as a discovery
cohort (data available at European Genome-Phenome Archive accession id
EGAD00001006669). A written informed consent was obtained in accordance with
the Declaration of Helsinki and University Health Network (UHN) institutional
review board. The studies protocol was approved by the ethics board of University
Health Network, Toronto Canada. For validation of clustering and pathway ana-
lysis results, the TCGA-LAML52, Karolinska Institutet (KI)53, BeatAML33 and
Leucegene54 patient cohorts were used. The TCGA, KI, BeatAML, and Leucegene
cohorts consist of 48, 79, and 77 and 97 NPM1-mutated AML patients, respec-
tively. We performed transcriptomic RNA sequencing on the UHN cohort (details
below). For the TCGA cohort, raw RNAseq and mutational data was retrieved
from the data portal of TCGA (https://portal.gdc.cancer.gov/projects/TCGA-
LAML). Transcriptomic RNA sequencing, somatic mutation panel, and bioinfor-
matics analysis of the KI AML cohort was performed at Karolinska Institutet,
Sweden (data available at https://doi.org/10.5281/zenodo.292986. Raw tran-
scriptomic profiling and somatic mutation data for the BeatAML33 cohort was
obtained from https://doi.org/10.1038/s41586-018-0623-z. Leucegene54 cohort data
was obtained from the NCBI-GEO ids GSE49642, GSE52656, GSE62190,
GSE66917, GSE67039.

RNA extraction and preparation. For the UHN cohort, fresh bone marrow or
peripheral blood cells were collected from AML patients at diagnosis according to
the protocol approved by the University Health Network institutional review
board. RNA was extracted from 77 NPM1=mutated samples. As a normal control,
RNA was obtained from discarded mobilized peripheral blood CD34+ mono-
nuclear cells. These samples were obtained following separate REB approval. RNA
from OCI-AML2 (NPM1 wild type) and OCI-AML3 (NPM1 mutant) cell lines was
also obtained for comparison. RNA was extracted from (1 × 107) cells using the
RNeasy Plus Mini Kit (74134, Qiagen Sciences), and was quantified using the
Quant-iT RNA Assay Kit, Broad Range (Q10213, Invitrogen). Library preparation
was prioritized based on RNA quality, as judged by RNA electrophoresis on a 1%
agarose gel. The gel was run at 60 V for 1.5 h or until the dye was half way down
the gel. Quality of RNA was analyzed based on the presence of two rRNA bands
and an mRNA smear on the gel.

Library preparation and sequencing and data processing. Libraries were pre-
pared for Illumina Sequencing using the Illumina TruSeq RNA Sample Preparation
Kit v2 (RA-122-2001, Illumina). Up to eight samples were processed at a time in a
96-well plate. DNA libraries were quantified using the Quant-iT dsDNA Assay Kit,
Broad Range (Q33130, Invitrogen), with fluorescence values measured at excita-
tion/emission maxima of 485/538 nm. Library quality check was performed by
Bioanalyzer at The Centre for Applied Genomics (TCAG) at Sickkids Research
Institute using the DNA1000 kit (Agilent Technologies). The following equation
was used to calculate nanomolar (nM) concentrations so that libraries could be
diluted to 4 nM:

nM concentration ¼ 106 ´ ðng=μl concentrationÞ
ð660 ´ average fragment length in basepairsÞ ð1Þ

Samples were pooled such that 2 μL of the 4 nM dilution was combined for each
of 12 libraries with unique barcoding indexes. Seven pools of 12 libraries were sent
to the University of British Columbia (UBC) Sequencing Centre, where they were
re-quantified using the Qubit dsDNA BR Assay Kit (Q32850, Invitrogen). This
reading was used to further dilute pools, accounting for any discrepancies in
quantification methods. Sequencing was performed at UBC Sequencing Centre in
paired-end reads of 100 bp on the Illumina HiSeq 2500. Primary data analysis was
performed at the Centre for Computational Medicine (CCM) at SickKids Research
Institute.

Filtered reads were aligned to Ensembl human reference genome GRCh37. Raw
reads were counted using HTSeq count version 0.6.155. Expression levels from
RNAseq data were obtained using Kallisto version 0.45.056. Features which have a
read count equal to zero in more than 10% of samples were removed.

Clustering analysis. Detailed description of method employed for clustering and
subtype annotation is provided in Supplementary Methods. A consensus
clustering-based unsupervised learning approach was applied to all five gene
expression datasets independently57. The consensus clustering approach performs
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repeated clustering on the randomly selected part of the data and aggregates the
results to discover robust clusters. At each round of clustering 80% of samples and
80% of the features were selected and the K-medoids clustering algorithm was
applied on the selected data, where the value of k (number of clusters) varies from
two to eight clusters. In the first step, the K-medoids clustering algorithm randomly
selects k data-points and uses them as medoids of the clusters. The algorithm
assigns each sample to a cluster such that the distance from the medoid to the
sample is minimal. In the next step, the algorithm recalculates medoids for newly
formed clusters and reassigns the samples to the clusters based on the distance. The
algorithm repeats these steps until it converges. We repeated this clustering pro-
cedure 100 times and created consensus matrices by aggregation of the results.
Final clustering was performed on the consensus matrices. The optimal number of
clusters was discovered using silhouette distance which is a measure of how close
each point in a cluster is to points in the neighboring clusters. Thus a higher
silhouette value for a sample indicates that the sample is very near to the cluster it
is assigned to and far away from its neighboring cluster. We applied the same
clustering approach to all four datasets independently.

Finding robust clusters across several datasets is challenging as first batch
correction techniques need to be applied to remove dataset-specific noise.
However, such transformation of data can potentially smooth out true signaling
patterns. To overcome this challenge, we applied the CoINcIDE framework12

which requires no between-dataset transformations. Using the CoINcIDE
approach, we computed similarities between clusters from different datasets. First
centroids of every cluster within a dataset are derived. Then these centroids
were compared to the centroid of the cluster from other datasets. For distance
measure between cluster centroids the Pearson correlation coefficient was used.
The distance between clusters originating from different datasets was represented
as a network. Labels propagation-based community detection algorithm was
applied on this network to detect the groups that consist of densely connected
nodes. Network analysis was done using igraph R package (version 1.2.4.2).

Differential gene expression and pathway analysis. Differentially expressed
genes between the clusters were determined using the DESeq2 package (version
1.18.1) in R/Bioconductor58 in each cohort independently. For each gene, a meta
estimate was obtained by combining log fold change values from all four cohorts.
For meta estimate calculation we used the combine.est function in the survcomp
package (version 1.28.5)59. Using the meta estimate value, pathway enrichment
analysis was performed. Overrepresentation of pathways was tested using the
hypergeometric model. The pathways were defined using the Reactome pathway
database. Analysis was performed using the R Piano package (version 1.20.1).
Cellular composition deconvolution was performed using PERT deconvolution
method13 and batch-corrected linear RMA-normalized data from the GSE24759
(DMAP) were used as the reference profile. The vector theta from the PERT output
was used to estimate the percentage of reference populations.

ATAC-seq and CORE analysis. A subset of patient samples (n= 20) was analyzed
using ATAC-seq (data available at European Genome-Phenome accession id
EGAD00001006670). Library preparation was performed on 30,000 blast cells
(CD45+CD33+CD3−CD19−), sorted from patient samples, using the Nextera
DNA samples Preparation kit (FC-121-1030, Illumina) according to previously
reported protocol60. Libraries were sequenced with HiSeq 2500 System (Illumina)
to generate single-end 50 bp reads. Raw single-end reads were aligned to hg19
using BWA (version 0.7.17) with default parameters. Any reads mapping to the
mitochondrial chromosome, or to a set of hg19 blacklisted regions were removed.
Any reads with a quality score Q < 30 were also removed and duplicate reads were
marked. MACS2 was used to identify peaks of enriched chromatin accessibility at a
q-value ≼ 0.05, using default parameters plus -SPMR, -nomodel, and The CREAM
R package (version 1.1.1)26 was used to call clusters of cis-regulatory elements
(COREs) using the ATAC-seq profiles of the AML samples. Overlap of the COREs
between the AML samples were used to identify the jaccard index for similarity of
each pair of samples. We then used the jaccard index to cluster the samples.
Function assignChromosomeRegion from R library ChIPpeakAnno was used in
combination with R library TxDb.Hsapiens.UCSC.hg19.knownGene to determine
the genomic distribution of COREs. The categories considered were Promoters,
immediate Downstream, 5′UTRs, 3′UTRs, Exons, and Introns. Genes within 10 kb
proximity of COREs are considered as the genes associated with COREs.

We identified 1569 COREs found only in primitive subtypes, and shared across
at least two primitive samples. 2578 COREs were also determined only in
committed subtype, and shared across at least two committed samples. Then, using
findMotifsGenome.pl from HOMER v4.761, we detected transcription factor-
binding site (TFBS) motifs enriched in COREs exclusively accessible in primitive
and committed subtypes. Regions exclusively accessible in each subtype were used
as the background set when identifying enrichments of TFBS motifs in the other
subtype. The top 10 TFs were selected if DNA recognition site motifs were enriched in
each subtype at FDR <5%. We filtered out the motifs if they were present ≤2% of the
target sequences. Fold enrichment of the TFBS motif was calculated by taking the log2
ratio of percentage of the target sequences with motif to the percentage of the
background sequences with motif.

Computational drug prioritization. Comprehensive method for drug prioritiza-
tion is described in Supplementary Discussion and Supplementary Figs. S23–S26.
First, using the gene expression data from the UHN dataset as features, we trained
Elastic Net-based supervised machine learning models. The labels from consensus
clustering-based unsupervised learning were used as the target. On the UHN
dataset, ten fold cross validation was performed and Elastic Net parameters (alpha
and lambda) were optimized. To divide the data into training and test sets, we
applied a random but class balanced split approach. Other patient datasets, TCGA,
KI, Leucegene, and BeatAML were used as independent external test sets. Per-
formance of the models was assessed in terms of accuracy to predict subtype labels.
The best performing model was used to classify each cell-line into the CCLE-
CTRPv2 dataset. Along with the class label, the Elastic Net model also provides
class probability. Using the R PharmacoGx package (version 3.8)28, we computed
the concordance index (CI) between the predicted cell-line labels and area under
the drug dose–response curve (AUC), for each drug. The value of CI is used to rank
and prioritize compounds for ex vivo testing (Supplementary Fig. 26).

Drug sensitivity testing and validation. A subset of patient samples (n= 20) from
the UHN cohort were selected for drug sensitivity testing, using parameters of clus-
tering robustness and FLT3-ITD status. Kinase inhibitors were chosen to cover a
range of targets, including FLT3, and were obtained as powder from SelleckChem or
Sigma-Aldrich, from which stock solutions were prepared in dimethyl sulfoxide
(DMSO). Patient samples were prepared in a 1:10 ratio of sample to thawing solution
(5mL XVIVO10 Media, 5ML fetal calf serum (FCS), and 200 μL of (1mg/mL)
DNase). Pelleted patient cells were resuspended in Iscove’s modified Dulbecco’s
medium (IMDM) and transferred to Long-Term Culture Media (Myelocult H5100
media supplemented with 1% penicillin/streptomycin, 10–6M hydrocortisone
sodium succinate, and the following 7 cytokines: SCF, IL-7, IL-6, IL-3, FLT3-L, G-
CSF, and CM-CSF) for plating. Optimal dose concentration ranges were selected such
that at least 80% viability was achieved at the lowest dose and ~0% viability was
achieved at the highest dose when tested in NPM1 wild type OCI-AML2 cells. Ten
dose concentrations of Sorafenib, Ruxolitinib, Sunitinib, Quizartinib, Imatinib, and
Dasatinib were tested, in triplicate, in each of the selected patient samples, and cell
viability was measured with the Cell-Titer Fluor Assay (G6082, Promega) after 72 h
incubation. The drug dose response data was processed in the R PharmacoGx package
(version 3.8)28. For the validation of drug response, BeatAML data was obtained from
the publication33. Raw drug dose-response curves were processed using a similar
pipeline as to UHN drug-response data. To compute AUC, all dose–response curves
were fitted to the following Hill equation:

y ¼ 1=ð1þ x=EC50ð ÞHÞ ð2Þ

where EC50 is the half-maximal effective concentration and H is the Hill coefficient.
Drug AUC values were computed using the computeAUC function of the Pharma-
coGx package (version 3.8)28.

Cell staining for mass cytometry analysis. Cryopreserved diagnostic AML patient
samples were thawed and washed twice in pre-warmed complete (c) RPMI (RPMI,
10% FBS, 25mM Hepes, 55 μM β-mercaptoethanol, 0.1mM non-essential amino
acids, 1 mM sodium pyruvate, 2 mM L-glutamine) containing Benzonase (Millipore
Sigma, Catalog # E1014) and MgCl2. Cells (2 × 106 cells/ml) were rested in cRPMI in
a humidified 5% CO2 incubator for 85min at 37 °C, prior to distributing to cluster
tubes. Cells were then stained with 3 μM Cisplatin (BioVision Inc., USA) for 5min
prior to fixing with 1.6% ultra-pure formaldehyde (Analychem Corp. Catalog #
18814-20) for 10min at room temperature (RT). Cells were then washed thrice with a
staining buffer (PBS+ 1% BSA) prior to barcoding with the Cell-ID 20-Plex Pd
Barcoding Kit (Fluidigm, Catalog: 201060) according to the manufacturer’s instruc-
tions. Six to seven bar-coded samples were then combined into single 15ml poly-
propylene tubes for multiplexed staining with a panel of 12 metal-tagged antibodies
specific for cell surface markers (Supplementary Table 4) as previously described62.
After a final wash, cells were resuspended in PBS containing 0.3% saponin, 1.6%
formaldehyde, and 100 nM 191/193Iridium (Fluidigm, Catalog #201192B) to stain
nuclear DNA for up to 48 h at 4 °C. Prior to analyzing stained cells on the Helios, they
were washed and re-suspended in Maxpar Cell Acquisition Solution (Fluidigm,
Markham ON, Canada) at 2–5 × 105/ml followed by addition of five-element EQ
normalization beads (Fluidigm, Markham ON, Canada) according to the manu-
facturer’s instructions. Samples were acquired on a Helios with a wide-bore injector
according to Fluidigm’s protocols. CD45-89Y was purchased conjugated from Flui-
digm. The remaining antibodies were purchased and metal-tagged in-house (CJG lab)
using Fluidigm Maxpar Metal Conjugation Kits according to the manufacturer’s
instructions. Details of the antibody panel can be found in Supplementary Data File 7.

CyTOF data analysis. Raw CyToF FCS data and protocol information are avail-
able at FlowRepository accession ID: FR-FCM-Z36E. The Helios software
(v6.7.1014) was used to generate and normalize FCS 3.0 datafiles which were then
uploaded into Cytobank (Santa Clara, CA). After Arcsinh transformation of each
parameter (scale argument= 5), FCS files were de-barcoded using an open-source
algorithm63. Two samples were omitted from further analysis due to high cell
death. The de-barocded FCS 3.0 files were then re-uploaded to Cytobank to gate
out doublets and dead cells. FCS 3.0 files containing 42,054 live single cells were
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exported and the diffcyt package (version 1.8.6)27 in R version 3.1.1 was used to
assess differences in single cells between the primitive and committed groups.
Within the diffcyt workflow we first used FlowSom64 (K= 25) and the cell type
markers CD45, CD19, CD3, CD4, CD11c, HLA-DR, CD33, CD56, CD34, CD16,
CD38, and CD14 (Arcsinh transformation of each parameter (scale argument= 5))
to define immunophenotypic clusters of cells with similar high-dimensional phe-
notypes. We used FlowFrame from the ‘flowCore’ Bioconductor R package (version
2.0.1) to create new FCS files that include the FlowSOM immunophenotypic cluster
ID for each cell. These modified FCS 3.0 files were then uploaded to Cytobank to
perform t-SNE dimensionality reduction using the cell type markers and FlowSom
immunophenotypic cluster IDs with the following run parameters: iterations: 4000,
perplexity: 30, theta: 0.5. Finally, we used diffcyt-DA-edgeR27 to identify differ-
entially abundant immunophenotypic clusters (false discovery rate (FDR) < 0.05).
Out of 13 differentially abundant immunophenotypic clusters, we excluded #15
from further analysis since it represented <0.5% of total cells in all samples. Prism
v8.2.0 was used to generate boxplots and compute statistics comparing FlowSOM
immunophenotypic cluster abundance.

The stacked barplot visualization of FlowSom immunophenotypic cluster
abundance was generated using the ggplot2 package in R version 3.1.1. Median
metal intensity by each immunophenotypic cluster was calculated using the diffcyt
R package. Arcsinh ratios were calculated in R and the heatmap.2 function from
the gplots package was used to generate the heatmap. The Arcsinh ratio represents
the Arcsinh (scale argument= 5) transformed ratio of the median marker intensity
in each cluster divided by the median marker intensity of the sample with the
lowest expression in the group.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw RNA-seq and ATAC-seq data generated from the UHN AML patient cohort
have been deposited at the European Genome-Phenome Archive under the accession id
EGAD00001006669 for RNAseq and EGAD00001006670 for ATACseq data. Access to
these data can be obtained through applying to the Data Access Committee for the
dataset. Information on how to apply for access is available at each EGA dataset link.
CyToF FCS files, other related data and protocol information are available at
FlowRepository ID: FR-FCM-Z36E. Published datasets used in this manuscript are
available through the following websites or accession numbers: (1) TCGA-LAML;
(2) BeatAML https://doi.org/10.1038/s41586-018-0623-z; (3) KI https://doi.org/10.5281/
zenodo.292986; (4) Leucegene NCBI-GEO accession ids GSE49642, GSE52656,
GSE62190, GSE66917, GSE67039. Source data are provided with this paper and as a
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other data supporting the findings of this study are available within the article and its
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data are provided with this paper.
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