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Single cell RNA sequencing of human liver reveals
distinct intrahepatic macrophage populations
Sonya A. MacParland et al.#

The liver is the largest solid organ in the body and is critical for metabolic and immune

functions. However, little is known about the cells that make up the human liver and its

immune microenvironment. Here we report a map of the cellular landscape of the human

liver using single-cell RNA sequencing. We provide the transcriptional profiles of 8444

parenchymal and non-parenchymal cells obtained from the fractionation of fresh hepatic

tissue from five human livers. Using gene expression patterns, flow cytometry, and immu-

nohistochemical examinations, we identify 20 discrete cell populations of hepatocytes,

endothelial cells, cholangiocytes, hepatic stellate cells, B cells, conventional and non-

conventional T cells, NK-like cells, and distinct intrahepatic monocyte/macrophage popula-

tions. Together, our study presents a comprehensive view of the human liver at single-cell

resolution that outlines the characteristics of resident cells in the liver, and in particular

provides a map of the human hepatic immune microenvironment.
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The liver is vital for human metabolism and immune
function. A reference map of the healthy human liver
landscape at single-cell resolution is critical to under-

standing the pathogenesis and treatment of liver disease. This
landscape has been difficult to describe1, mainly because fresh
human liver tissue access is scarce and the tissue is difficult to
fractionate without damaging fragile resident cell populations.
One approach to creating an unbiased map of the human liver
cellular landscape is to combine careful dissociation of relatively
large segments of fresh, healthy human liver with single-cell RNA
sequencing (scRNA-seq). Although scRNA-seq is a powerful tool
for describing highly heterogeneous cell populations such as those
found in whole tissue2,3, it has not yet been widely applied to
describe whole human organs, with only maps of isolated islet
cells from the human pancreas published until now4–11. At pre-
sent, the only single-cell transcriptomic map for the whole liver is
from mice12.

The current understanding of human liver cellular organiza-
tion is based on the building block of the hepatic acinus. The
acinus consists of portal triads, each comprised of a hepatic
artery, portal vein, and bile duct, hepatocytes and the biliary tree
that radiate outward and are sandwiched between a capillary
network and a central draining hepatic vein. The bulk of the
hepatic acinus consists of cords of hepatocytes arranged back to
back and sandwiched between liver sinusoidal endothelial cells
(LSECs). Running between the hepatocytes are fine biliary ducts
that drain outwards into the portal triad bile duct, while blood
drains inwards towards the central veins. Within the acinus are
parenchymal cells (hepatocytes) and non-parenchymal cells
(NPCs) (cholangiocytes, endothelial cells, Kupffer cells (KCs)),
hepatic stellate cells and liver resident, and infiltrating lympho-
cytes—including B cells, conventional, and non-conventional
T cells (including ILCs, NKT cells, and MAIT cells) and natural
killer (NK) cells. Liver immune cells are distributed in specific
patterns, though many details remain unknown in terms of cel-
lular location and cellular phenotypes. For example, there are few
direct examinations of human KCs, even though they represent
the large majority of the body’s macrophages1.

Here we apply liver tissue dissociation techniques we pre-
viously developed13,14 to perform an unbiased examination of the
cellular landscape of the normal human liver via scRNA-seq. We
identify 20 hepatic cell populations from the transcriptional
profiling of 8444 cells obtained from liver grafts of five healthy
neurologically deceased donors (NDD). By examining the most
differentially expressed (DE) genes of each cluster, and using
known landmark genes or characterizing markers known from
cell-specific gene expression, flow cytometry, or immunohisto-
chemical examinations of human liver tissue, we find distinct
populations of hepatocytes, endothelial cells, cholangiocytes,
hepatic stellate cells, KCs, B cells, conventional and non-
conventional T cells, and NK cells. These evaluations uncover
aspects of the immunobiology of the liver, including the presence
of two distinct populations of liver resident macrophages with
inflammatory and non-inflammatory/immunoregulatory func-
tions. This transcriptomic map serves as a fundamental baseline
description of the human liver.

Results
A protocol for human liver dissociation for scRNA-seq. A
central problem in liver tissue dissociation is that hepatocytes and
cholangiocytes are sensitive to cell death, and other cells activate,
in response to cell manipulation15–17. We developed a cell iso-
lation approach (Fig. 1a, b) without density gradient or column
purification, or flow cytometry. We found that cell sorting
approaches led to loss of fragile cells, particularly hepatocytes and

cholangiocytes, and the relative enrichment of more robust NPCs,
such as endothelial cells/KCs. Preliminary scRNA-seq experi-
ments showed an under-representation of NPC cell populations
in the sorted NPC-enriched fraction compared to total liver
homogenate (TLH) (Supplementary Fig. 1). Specifically, the NPC
fraction contained two endothelial cell clusters compared to three
in the TLH. Furthermore, when we targeted 6000 viable cells for
scRNA-seq from TLH and NPC fractions, the NPC fraction
yielded far fewer viable cells than the TLH (Supplementary Fig. 1)
indicating liver cell sensitivity to flow sorting.

Using our liver dissociation protocol, cell viability of the TLHs
obtained from five caudate lobes ranged from 49 to 90% viable by
trypan blue exclusion (Supplementary Fig. 2a). However, the
actual number of cells profiled per caudate after filtering for
library size and mitochondrial transcript percentage (Fig. 2a)
ranged from 1073 to 3255 cells per sample (between 17.9 and
54.3% passing quality control). The mean library size (number of
UMIs detected/cell) for TLHs was 5227 (range 3122–6043 UMIs)
and the mean number of genes detected per cell was 1313 (range
906–1537 genes) (Supplementary Figs. 2, 3). The variation in
numbers of cells profiled may be attributed to differences in
sample viability and technical differences in cell capture rates for
each scRNA-seq run. Standard scRNA-seq filtering excludes cells
with a high ratio of reads from mitochondrial genome transcripts,
indicating potential plasma membrane rupture and dissociation-
based damage18. This filter is often set at 10%, but hepatocytes
can have very high mitochondrial content19, thus we chose a
threshold of 50% to optimize keeping hepatocytes and removing
dead and dying cells. Evaluation of six mitochondrial cut-offs
ranging from 10–60% (Supplementary Figs. 4, 5) showed that all
clusters (except cluster #6 at the 10% cutoff) are identified as
unique populations in t-SNE plots at all cut-offs, indicating
that our map is robust to this threshold. As expected, hepatocytes
were most susceptible to removal by this filter (Fig. 3), while
endothelial cells, macrophages were consistently represented in all
livers profiled. Cell doublets are normally detected in scRNA-seq
experiments as cells with abnormally high library size. However,
we did not detect a natural threshold in library size per cell that
we could select to remove doublets. Further, there are naturally
occurring binucleated hepatocytes that are expected to have a
high library size, which would make it difficult to distinguish
between doublets and binucleated cells. A doublet filter set to
remove cells with the top 99.9% library size (following standard
protocols20), mostly removed hepatocyte (cluster #14) and
plasma cell (cluster #7) populations. As both binucleated
hepatocytes21 and tissue trafficking plasmablasts22 have been
previously described, we suspect that the cells identified as
“doublets” may be single biological cells containing two nuclei
and thus did not apply doublet filtering to our map (Supple-
mentary Fig. 6).

The landscape of cells in the healthy human liver. We applied
our liver single-cell dissociation protocol and scRNA-seq tech-
nology to identify resident liver cells in TLHs from NDD liver
transplant donors (donor characteristics found in Supplementary
Table 1). Importantly, NDD grafts are subjected to the systemic
inflammation that accompanies brain death and are thus them-
selves mildly inflamed23. However, we confirmed normal histo-
logical patterns in these livers (Supplementary Fig. 7). Pooling
results from all donors, we captured 8444 cells (after filtering out
low viability cells) that clustered into 20 discrete cell populations
(Fig. 2c, f, Supplementary Data 1, 2) that are described below.

Hepatocytes. Hepatocytes are the building blocks of the liver and
play a role in detoxification, lipolysis, and gluconeogenesis24. In
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Fig. 1 ScRNA-seq profiling of parenchymal and non-parenchymal cells from the human liver. a Overview of the single-cell isolation and analysis workflow.
Workflows for b the dissociation of human caudates to single-cell homogenates, c the generation of scRNA-seq cDNA expression libraries using the
10x Genomics genomics platform and, d data analysis
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mice and human, hepatocytes have been described as having
distinct functions based on their location in the hepatic acinus,
known as their zonation12,24. We found six distinct hepatocyte
populations, comprising Clusters 1, 3, 5, 6, 14, and 15 (Figs. 2f,
4ci), that were generally less proliferative cells (Figs. 2e, 4a), and
showed enriched ALB (Albumin) expression, a hallmark of
hepatocytes.

To directly infer hepatocyte cluster zonation patterns, single-
molecule FISH (smFISH) and laser capture microdissection

studies are required, these techniques were not a part of this
study. However, a systematic comparison was carried out
examining gene expression patterns in the identified human
hepatocyte clusters with respect to the zonated gene expression
patterns previously shown in mouse12 (Supplementary Fig. 8,
Fig. 4d). This analysis revealed that gene expression patterns in
four human hepatocyte clusters correlated significantly with
zonated gene expression patterns identified in the mouse sinusoid
(Supplementary Fig. 8, Supplementary Data 3). Two clusters
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showed weak correlation, possibly due to differences in the genes
that define mouse and human zonated liver expression patterns.
Specifically, human Cluster 5 correlated with the most periportal
mouse liver layer, while human Cluster 3 correlated with the most
central venous mouse liver layer. Human Cluster 1 was correlated
with mouse layers 2 and 3 (more periportal) and Cluster 15
correlated with an interzonal mouse layer (Layer 4). Clusters 6
and 14 did not correlate significantly with any mouse layers,
possibly because the top DE genes defining these clusters were not
found in the top 94 genes which defined zonation in mouse livers.

To study the function of the human clusters, we applied
pathway analysis to identify active cellular pathways in each
cluster (Fig. 4d, Supplementary Data 4). Characteristic functional
pathways in sinusoidal zones have been well described12,24. Using
these approaches, we describe the possible zonation for human
hepatocyte clusters with the expectation that natural hepatocyte
heterogeneity will be better addressed as more human liver
samples are profiled across multiple study sites.

Zone 1 (periportal) hepatocytes have a known role in
gluconeogenesis and β-oxidation24. Cluster 5 showed enriched
expression of genes involved in lipid and cholesterol synthesis
such as SCD (Supplementary Fig. 9), HMGCS1, and ACSS2 with
enhanced expression of PCK1 (Fig. 4c.iv) and CPS1 (Supplemen-
tary Data 1, Supplementary Fig. 9), genes that are enriched in the
periportal hepatocytes of mice12, suggesting that this cluster may
represent Zone 1 hepatocytes. A further indication of a periportal
nature is enriched expression of urea cycle gene ARG1 (Fig. 4c.iii).
(Top DE genes cluster 5: SCD, HMGCS1, ACSS2, TM7SF2,
TMEM97, CP, CRP, SLPI, C2orf82, ACAT2, TM4SF5, MSMO1,
LEPR). Pathway analysis revealed that Cluster 5 was enriched for
pathways characteristic of liver periportal function including
cholesterol and sterol biosynthesis along with numerous active
immune pathways (Fig. 4d).

In mice, Zone 3 or central venous hepatocytes play a role in
drug metabolism and detoxification, constitutively expressing
high levels of cytochrome P450 enzymes12. Clusters 3 and 1 were
enriched for the expression of BCHE (butyrylcholinesterase),
involved in drug metabolism (Cluster 3 top DE genes: BCHE,
G6PC, GHR, ALDH6A1, RCAN1, AR, RP4-710M16.2,
LINC00261, PLIN1, RP11-390F4.3) (Fig. 4c.vi.). Cluster 1 also
showed enriched expression of HAMP (Fig. 4c.ii), a gene that is
enriched in mouse midzonal hepatocytes12. (Cluster 1 top DE
genes: RPP25L, HSD11B1, HAMP, GHR, APOM, APOC4-APOC2,
TKFC, G6PC, G0S2, PON3, C1orf53, TTC36, GOLT1A, RCAN1,
RP4-710M16.2, FST, MCC, AQP9, PLIN1). In the comparison
with zonated mouse liver data, Cluster 3 correlated most
significantly with the most central venous mouse sinusoid layer
(Supplementary Fig 8). Cluster 1 showed a significant correlation
with mouse layers 2 and 3, suggesting that Clusters 3 and 1 may
be more central venous. Pathway analysis revealed that the cells
making up these two clusters were active in cellular pathways
characteristic of zone 3 functions in mice and human including

P450 pathways, drug metabolism, Wnt activation, hypoxia, amino
acid biosynthesis, and glycolysis12,24 (Fig. 4d), supporting the
notion that these cells might have a central venous origin.

Cluster 15 had the smallest library size of the hepatocyte
clusters (2707 UMIs per cell) (Fig. 4b) (Top DE genes: HPR,
GSTA2, AKR1C1, MASP2, NNT, SAA4, MRPS18C, OCIAD1,
APOA5, TTR). Gene expression patterns in this cluster correlated
significantly with mouse sinusoid layer 4, suggesting that these
cells may be interzonal hepatocytes (Supplementary Fig 8). Future
work will be needed to clarify the origin and role of these cells.

Activated cellular pathways in Cluster 14 included complement
activation and immune activation, known periportal functions in
mice12,24 (Top DE genes in Cluster 14: CYP2A7, ENTPD5,
CYP3A7, CYP2A6, C4B, EID2, TP53INP2, SULT1A1, ATIC,
SERPINH1, SAMD5, GRB14) (Supplementary Data 1&2). While
this cluster is most transcriptionally similar to periportal mouse
layers (Supplementary Fig. 8), there was no significant correlation
to known layers, likely because the top DE genes (CYP2A genes)
in this cluster have different roles in mouse and human25,26 and
did not map well with the 94 genes that defined the mouse
sinusoidal layers.

Cluster 6 hepatocytes (DE genes: SEC16B, SLBP, RND3,
ABCD3, RHOB, EPB41L4B, GPAT4, SPTBN1, SDC2, PHLDA1,
WTAP, ACADM) have activated cellular pathways in immune cell
activation, fibrinolysis, and triglyceride biosynthesis, suggesting a
periportal origin. However, since this cluster did not correlate
with the mouse sinusoid regions (Supplementary Fig. 8), the
origin of this cluster requires further examination.

Our analysis may suggest new aspects of hepatic stem cell
biology. The liver displays a high regenerative capacity involving
resident stem cells. There is evidence that hepatic stem cells can
originate from niches in the canal of Herring, the terminal branch
of the intrahepatic biliary system27. These stem cells are called
hepatic progenitor cells in human and oval cells in rodents.
Alpha-fetoprotein (AFP) is described as a marker for hepatic
stem cells in human28. In our current understanding of the
zonated rodent liver, the perivenous compartment is resistant to
proliferative signals29, while the periportal region contains oval
cells30. Our study challenges this paradigm, since AFP is
expressed in all clusters of hepatocytes except Cluster 14
(Fig. 4c.v)—we were unable to identify a discrete cluster specific
to hepatic progenitor cells. We selected hepatocytes with
detectable AFP expression, and generated a ranked list of genes
DE in AFP− vs AFP+ hepatocytes (Supplementary Data 5), which
we used to examine enriched cellular pathways cells in the AFP-
expressing cells. Enriched pathways in AFP+ cells included those
for cellular division and IL-6/7 signaling (Supplementary Fig. 10,
Supplementary Data 5). This supports the notion that these cells
may be hepatic stem cells since IL-6 is a key cytokine for the
proliferation of hepatocytes31. Our findings raise the possibility of
a less localized and more heterogeneous model of hepatic
progenitor cells in the human liver.

Fig. 4 ScRNA-seq analysis of hepatocyte populations. a Distribution of hepatocytes by cell-cycle phase (G1, G2/M, S) and hepatocyte cluster (1, 3, 5, 6, 14,
15). b Box plot of library size for each hepatocyte cluster with median library size (top) and graphically denoted median (dark horizontal line). Outliers
(black dots) and interquartile range (black box) are indicated. c t-SNE plots showing the expression of general hepatocyte markers based on PCA clustering
of 8444 cells. c (i) ALB, c (ii) HAMP, c (iii) ARG1, c (iv) PCK1, c (v) AFP, c (vi) BCHE. Legend for relative expression of each marker from lowest expression
(yellow dots) to highest expression (purple dots) (top left). c (vii) t-SNE projection showing a reference map of all six hepatocyte clusters. d Pathway
enrichment analysis examining active cellular pathways in clusters 1, 3, 5, 6, 14 & 15. The size of the nodes represents the number of genes in a particular
pathway. Highly related pathways are grouped into a theme (black circle) and labeled in Cytoscape (Version 3.6.1). Intra- and inter-pathway relationships
are shown (green lines) and represent the number of genes shared between each pathway. Periportal and pericentral zones are assigned in relation to
correlation analysis between mouse and human liver in Supplementary Fig. 8. Statistical significance of the correlation between mouse liver layers and
human liver clusters (denoted under each pathway analysis) calculated using Pearson correlation. ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05. t-SNE t-distributed
stochastic neighbor embedding
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Liver endothelial cells. Our current knowledge of human LSECs
is limited to immunofluorescence, flow cytometric studies32,33,
bulk RNA-seq studies on sorted LSECs34, and functional prop-
erties assessed during brief in vitro cultures35,36. The liver vascular
endothelium, made up of LSECs and the endothelium of blood
vessels, provides a dynamic barrier between the blood and the liver
microenvironment. LSECs are defined as scavenger endothelia
that use clathrin-mediated endocytosis for the clearance of mac-
romolecules from the blood36. Recently, immunofluorescent
staining was used to describe the zonation of human LSECs and a
population of CD36hiCD32B−CD14− LYVE-1− LSECs in Zone 1
of the hepatic acinus (the periportal area). A separate LYVE-1+,
CD32Bhi, CD14+, CD54+, CD36mid-lo LSEC population was
located in Zones 2 and 332 (central venous). While this work
validates the notion of zone-specific heterogeneity within LSECs, it
remains limited by the number of tested antigens and availability
of validated immunological reagents.

We observed three endothelial cell populations (clusters 11–13;
Figs. 2f, 3a, b, f, 5; Supplementary Fig. 11), which were less
proliferative than immune cells (Figs. 2e & 5a), and expressed
CALCRL (Fig. 5c.i) and RAMP2, suggesting sensitivity to
adrenomedullin signaling37. The most abundant endothelial cell
cluster (Cluster 11) displayed enriched expression of F8,
PECAM1, with little expression of CD32B, LYVE-1, STAB2, and
CD14 (Fig. 5c, Supplementary Fig. 11). (Top DE genes: MGP,
SPARCL1, TM4SF1, CLEC14A, ID1, IGFBP7, ADIRF, CTGF,
VWF, CD9, C7, SRPX, ID3, CAV1, GNG11, AQP1, HSPG2,
EMP1, SOX18, CLDN5). In line with previous work32, we propose
that these endothelial cells are likely periportal LSECs (Zone 1).
The second most abundant endothelial cell population (Cluster
12) was characterized by the enriched expression of CD32B,
LYVE1, STAB2, with little expression of VWF (Top DE genes:
CCL14, CLEC1B, FCN2, S100A13, FCN3, CRHBP, STAB1,
GNG11, IFI27, CLEC4G, CLDN5, CCL23, OIT3, RAMP3, SGK1,
DNASE1L3, LIFR, SPARC, ADGRL4, EGFL7, PCAT19, CDKN1C)
(Fig. 5c.ii–iii). Based on prior histological examinations of LSEC
zonation32, we propose that this is an LSEC cluster that is central
venous in origin (Zone 2/3). The least abundant hepatic
endothelial cell population (Cluster 13) was characterized by
low or no expression of LSEC markers (LYVE1, STAB2, CD32B).
These cells are likely non-LSEC endothelial cells including central
vein and portal arterial and venous endothelial cells based on the
expression of ENG (protein alias CD105) and PECAM1 (protein
alias CD31) as has been described in the human liver via
immunohistochemistry32. (Top DE genes: RAMP3, INMT,
DNASE1L3, LIFR, PTGDS, C7, CTGF, TIMP3, RNASE1, ID3,
ENG, MGP, PCAT19, HSPG2, GPM6A, PTPRB, VWF, FAM167B,
SRPX, LTC4S, IFI27). To confirm our DE findings at the protein
level and to strengthen our assertions regarding LSEC zonation,
we examined the expression of CD32B by immunohistochemistry
and found that CD32B protein expression was concentrated in
the central venous (Zones 2/3) areas of the sinusoid, including the
central vein, with limited periportal staining (Fig. 5e.i–vi),
confirming previous findings32. A pairwise pathway analysis
comparing all endothelial cell clusters to each other revealed that
clusters 11 and 13, periportal LSECs and portal endothelial cells,
respectively, were functionally very similar (Supplementary
Fig. 12), with periportal LSECs having significantly enriched
pathways in vessel development, cell-cycle arrest, cell junction,
and apoptosis. Both periportal LSECs and portal endothelial cells
showed enriched pathways in translation, targeting ER, and TNF
activation in comparison to central venous LSECs (Fig. 5d,
Supplementary Fig. 13). Central venous LSECs (Cluster 12)
displayed highly enriched immune pathways, including innate
immunity, phagocytosis, leukocyte activation, bacterium defense,
in comparison to Clusters 11 and 13 (Fig. 5d, Supplementary

Fig. 13). These results present a rich marker description and
functional profile of human liver endothelial cells. However, the
characterization of endothelial cell clusters as sinusoidal, rather
than arterial or vascular endothelium, requires visualization of
fenestrations and specific scavenger receptor functions38 that are
uniquely characteristic of sinusoidal endothelial cells. These
descriptions will require optimization of LSEC culture conditions,
identification of surface markers that distinguish these popula-
tions, and confirmation of protein expression of these markers by
methods such as CITE-seq39, followed by flow sorting and
in vitro culture to visualize fenestrations.

Cholangiocytes. Cholangiocytes are epithelial cells which line bile
ducts that comprise 3–5% of the cells in the human liver and
generate 40% of the total bile volume40. Intrahepatic cholangio-
cytes originate from hepatoblasts during embryonic development.
Based on the duct diameter size, cholangiocytes are categorized as
small and large, each with different secretory functions and
sensitivity to injury20. The circumference of small bile ducts is
formed by 4–5 cholangiocytes and by 10–12 cholangiocytes in
larger ducts41. Recent studies have outlined single-cell tran-
scriptomic profiles from rodent cholangiocytes42,43, however the
transcriptional profile of human cholangiocytes has not been
described due to challenges in isolating these cells44. Using our
dissociation protocol, we were able to identify a cholangiocyte cell
cluster in all five livers profiled (Figs. 2f, 3a, b). Differentially
expressed genes in this cluster (Cluster 17) included SOX9,
EPCAM, and KRT19 (Fig. 6a, b, f), in accordance with genes that
were previously described as enriched in primary human cho-
langiocytes45. Importantly, we found a population of cells which
displayed upregulated expression of genes encoding secretory and
inflammatory pathways (Top DE genes: TFF2, SCGB3A1, FXYD2,
KRT7, DEFB1, CD24, TFF3, LCN2, KRT19, CXCL1, PIGR, TFF1,
CXCL6, LGALS2, TACSTD2, ELF3, SPP1, MUC5B, LGALS4).
This transcriptional profile of cholangiocytes can serve as a
reference point for assessing the physiological nature of human
stem cell-derived cholangiocytes.

Hepatic stellate cells. Hepatic stellate cells (HSCs) are found in
the subendothelial space of the liver sinusoid, known as the space
of Disse46. HSCs are the main storage site for Vitamin A and are
major contributors to tissue fibrosis. Upon activation, human
HSCs express α-smooth muscle actin (ACTA2) and begin to lay
down extracellular matrix, which is composed of collagen (e.g.,
COL1A1, COL1A2). Cluster 20 was identified as HSCs based on
the expression of ACTA2, COL1A1, TAGLN, COL1A2, COL3A1,
SPARC, and the expression of retinol binding protein 1 (RBP1), a
vitamin A-associated transcript (Figs. 2f, 7). These genes have
been previously described as being upregulated during hepatic
stellate cell activation in human liver46. Additional genes specific
to this cluster include DCN, MYL9 (Fig. 7h–i), TPM2, MEG3,
BGN, IGFBP7, IGFBP3, CYR61, OLFML3, IGFBP6, CCL2,
COLEC11, CTGF, HGF (Top DE genes). Thus, our data confirms
and extends the human HSC transcriptional signature.

Zonation of human hepatic tissue: the cellular basis for zone-
specific gene signatures. Recently, the zonation of human hepatic
tissue was examined by laser capture microdissection and RNA
profiling of uninvolved liver tissue, obtained during hepatectomy
for metastatic tumors to the liver24. In that study, gene expression
patterns were described for each zone of the liver lobule. The
limitation of such a study is in not knowing the cellular origin of
the genes identified: our study is thus complementary and
determines the cellular origins of the zonal gene expression sig-
natures. Among the genes previously found to be upregulated in

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06318-7

8 NATURE COMMUNICATIONS |  (2018) 9:4383 | DOI: 10.1038/s41467-018-06318-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


zone 1 (periportal area)24, we show enriched expression of CRP,
SLPI, LEPR, A2M, CHI3L1, HAL in Cluster 5 (which correlates
with mouse periportal zones); C7, MGP, ID1, LDB2, CD9, AQP1,
SOX18 in portal endothelial cells and zone 1 LSECs (Clusters 11
&13); and KRT7, KRT19, CXCL6, SFRP5, CLDN10, BICC1,
AQP1, ERICH5 in cholangiocytes (known to be enriched in the
periportal areas). Among the zone 3 genes previously identified24,

RELN was enriched in zone 2/3 LSECs and CYP3A4 and ADIRF
were enriched in Cluster 15 (Supplementary Data 1, 2).

Intrahepatic immune cells. Increasing evidence shows that the
liver possesses complex immunological properties1,47–49. How-
ever, the identity, frequency, and phenotype of hepatic immune
cells is largely unknown due to the challenges in extracting
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immune cells from human liver tissue in a non-biased and viable
manner48. In mice, a population of KCs has been identified by
scRNA-seq12, but additional immune cell populations were not
described. Using our gentle fractionation methods and scRNA-
seq analysis, one key goal of our study was to overcome prior
challenges and expand the current knowledge of intrahepatic
immune cell populations.

Intrahepatic monocytes/macrophages. The liver is the solid
organ in the body with the largest population of tissue resident
macrophages1,50. Tissue resident macrophages have been descri-
bed as the immunological sentinels of the liver51, but because they
are difficult to isolate from humans and have a complex onto-
geny52 they are poorly understood47. Traditionally, macrophages
are classified as having inflammatory or immunoregulatory
properties, as determined by their surface marker phenotype or
cellular functions53. We previously employed flow cytometry to
quantify expression of traditional inflammatory or regulatory
macrophage surface markers and found a spectrum of expression
in freshly isolated human KCs13. Surprisingly, our scRNA-seq
analysis consistently revealed the presence of two distinct popu-
lations of intrahepatic CD68+ macrophages (Figs. 2f, 3a, b,
Supplementary Fig. 14) in all livers studied. CD68+ macrophage
population 1 (Cluster 4; Fig. 2f), was characterized by enriched
expression of LYZ, CSTA, CD7454, suggesting that this cluster
represents inflammatory macrophages (Top DE genes: S100A8,
LYZ, S100A9, HLA-DPB1, S100A12, RP11-1143G9.4, EVI2A,
HLA-DPA1, VCAN, S100A6, CXCL8, HLA-DRA, MNDA, TYR-
OBP, HLA-DRB1, FCN1, HLA-DQA1, IL18, C1QC, CD74, HLA-
DRB5).

CD68+ macrophage population 2 (Cluster 10; Fig. 2f) was
characterized by enriched expression of CD5L, MARCO, VSIG4,
CPVL, CD163, CCDC88A, C5AR1, LIPA, LILRB5, MAF, CTSB,
MS4A7, VMO1, RAB31, SLC31A2, TTYH3, VCAM1, KLF4,
HMOX1, AIF1l, TMIGD3 (top DE genes). The DE genes in this
cluster suggest that these macrophages have a tolerogenic
function. For example, VSIG4 is a co-inhibitory ligand and, in
mice, is required to maintain an intrahepatic tolerogenic milieu55.
Similarly, HMOX1 (hemoxygenase) knockdown in mice leads to
hepatic inflammation56. Confirming the unique functionality of
the KC populations, pathway analysis revealed that KCs in cluster
10 were enriched for pathways related to tolerance while KCs in
cluster 4 were enriched for inflammatory pathways (Fig. 8c).

A key finding of our study is the presence of two distinct
populations of human liver macrophages, seeming to segregate
into pro-inflammatory and immunoregulatory phenotypes. Our
gene list identifies several markers that are unique to one or the
other population (for example, MARCO (MAcrophage Receptor
with COllagenous structure) is only expressed in non-
inflammatory KCs), a finding that can be exploited in tissue-

based studies. Using flow cytometry, we observed a subpopulation
of macrophages which expressed MARCO on the cell surface
(Fig. 8d, Supplementary Fig. 15). By immunohistochemistry
staining for MARCO, MARCO+ cells are concentrated in the
periportal areas (Fig. 8e, f; Supplementary Figs. 16, 17). We then
examined the human macrophage expression profiles that
characterize both CD68+ populations in the context of the
mouse macrophage ontogeny literature. Human CD68+ MARCO
+ cells appear to be transcriptionally similar to long-lived, sessile,
liver resident KCs identified in mouse57–59, with these cells
expressing high levels of VCAM160, CD5L60, HMOX1, MRC161,
CD16360, M4SA7, and VSIG458,60. CD68+ MARCO−macro-
phages have a similar transcriptional profile to inflammatory,
recently recruited macrophages including decreased expression of
CD16358 and increased expression of PLBD157. To further
examine this point using functional assays, we stimulated both
populations of macrophages in vitro and examined cytokine
secretion via intracellular cytokine staining. We found that
MARCO-positive macrophages secreted less TNF-α in response
to LPS/ IFN-γ stimulation than MARCO-negative CD68+

macrophages, suggesting that CD68+MARCO- cells are more
pro-inflammatory (Fig. 8d, Supplementary Fig. 15). The expres-
sion of MARCO in the tumor microenvironment has been linked
to poorer outcomes in human breast cancer62. MARCO has also
been examined in preclinical mouse colon cancer models with the
observation that MARCO expression defined a subtype of
suppressive tumor-associated macrophages (TAMs). These
TAMs could be polarized to an inflammatory phenotype by
anti-MARCO antibody which promoted tumor immunogeni-
city63. These findings provide a point of reference for examining
the role of intrahepatic monocyte/macrophage subsets in the
establishment and progression of liver disease.

Liver resident T cells. The human intrahepatic T cell phenotype
has been examined via flow cytometry evaluations of enzymati-
cally and mechanically dispersed biopsies taken after reperfusion
of donor organs during transplantation64. In this study, the fre-
quency and phenotype of intrahepatic T cells differed from that of
peripheral circulating T cells. In our study, we expand on these
findings by examining the gene expression patterns that char-
acterize T cell populations in the flushed human liver using cells
obtained from a segment of liver tissue obtained prior to
reperfusion.

The T cell repertoire within the human liver can be categorized
into two broad groups: conventional and unconventional.
Conventional T cells consist of CD8+ and CD4+ cells expressing
αβ-chain TCRs that recognize antigen in the context of MHC
class I and class II molecules respectively. Conventional T cells
comprise up to 86% of all CD3+ T cells within the human liver64.
Unconventional T cells can express either αβ or γδ TCRs but are

Fig. 5 ScRNA-seq analysis of LSEC populations. a Distribution of LSECs by cell-cycle phase (G1, G2/M, S) and LSEC cluster (11, 12, 13). b Box plot of library
size for each LSEC cluster with median library size (top) and graphically denoted median (dark horizontal line). Outliers (black dots) and interquartile range
(black box) are indicated. c t-SNE projection of the expression of established LSEC markers in the three identified clusters. c (i) CALCRL c (ii) CD32B, and
c (iii) VWF. d Pairwise pathway enrichment analysis of genes DE between clusters 11 and 12 defined in Fig 2f. Pathways enriched in periportal LSECs
(Cluster 11) are labeled in red and pathways enriched in central venous LSECs (Cluster 12) are indicated in blue. Colored circles (nodes) represent
pathways, sized by number of genes they contain. Green lines depict intra- and inter-pathway relationships according to the number of genes shared
between each pathway. Black circles group related pathways into themes that are labeled. e (i) Immunofluorescence of CD32B distribution in liver zone 1
(portal vein - PV), and 2/3 (central vein - CV). CD32B stains mainly LSEC cluster 12 and CK19 stains periportal ductal cells. e (ii, iii, iv, v) are magnified
sections corresponding to the indicated roman numerals (white) in (e (i)). e (i) Scale bar represents 200 μm, e (v) scale bar represents 20 μm. Staining
was performed on HIER (10mM Citrate pH 6.0, 95 °C,15 min) treated slides visualized using the matching donkey anti-host antibody and counterstained
with DAPI. Slides were scanned and lobules defined as in Supplementary Fig. 10. e (vi) Quantification of percent CD32B positive cells in liver zones 1–3.
Error bars show the standard error of the mean for at least 10 replicates. Statistical significance evaluated using a one-way analysis of variance (ANOVA)
with a Bonferroni post-test ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05. t-SNE: t-distributed stochastic neighbor embedding
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not restricted by MHC and do not recognize classical peptide
antigens65. In mice, the microbial antigens that enter the liver by
the portal vein following digestion have been found to sustain γδ
T cell homeostasis and activation66. The relative abundance of
subsets of unconventional T cells within the human liver remains
to be defined.

In our five healthy NDD livers, we identified three clusters of
CD3+ T cells. The most abundant population of T cells (Cluster
2) was characterized by the expression of CD2, CD3D, TRAC,
GZMK, CCL5, CCL4L2, PYHIN1, TRBC1, TRBC2, GZMA, CD3E,
JUNB, CD69, IL7R, DUSP2, IFNG, LTB, IL32, CD52 (Top DE
genes) (Fig. 9a, Supplementary Data 1, 2). These appear to be αβ
T cells due to their expression of CD3 and αβ-chain TCRs.

Within this population, cells show enriched expression of CD69
and CD8A (Supplementary Data 1, 2). CD69 is a marker for
recently activated T cells, and is enriched in tissue resident
memory T cells when compared to circulating memory
T cells67,68. However, multiple studies have shown that CD69+

CD45RA− tissue resident memory T cells do not express
activation markers such as CD25 (IL2RA) or CD38, indicating
that the predominant cell in this cluster likely represents tissue
resident memory T cells instead of newly activated T cells67.
Furthermore, CD69 antagonizes the function and downregulates
S1PR1, which is needed for T cell egress from tissues47,48. Since
we observed no enrichment of expression of S1PR1, CD38, or
IL2RA, all genes characteristic of newly activated non-memory
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T cells, this further supports our identification of these cells as
tissue resident memory T cells. The second cluster of CD3+ cells
(Cluster 9), was a population of CD3D expressing cells with
enriched expression of TBX21 (aka T-bet), KLRB1 (protein alias
CD161), FCGR3A (CD16), NKG7, and GNLY (NKG5) with
enriched expression of the TCR delta chain TRDC and the TCR

gamma chain TRGC1. The expression profile of these cells
suggests that the predominant population in this cluster may be
unconventional γδ T cells65 (top DE genes: GNLY, PTGDS,
GZMB, S100B, FGFBP2, NKG7, PRF1, KLRF1, HOPX, CST7,
KLRD1, CTSW, SPON2, IFITM1, GZMA, CD247, CLIC3, CD7,
ADGRG1, CCL5, TRDC). A third cluster of T cells (Cluster 18)
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was identified as having enriched expression of CD3, little CD4
and CD8 expression with enriched expression of TRDC
(Supplementary Data 1&2). The most highly DE gene in this
cluster was STMN1, which is expressed on proliferating cells of
various lineages69. Cell-cycle analysis revealed that 79% of the
cells in this cluster were in G2M (Fig. 2e, Supplementary Fig. 18).
MKI67 was also upregulated as a further indication that the cells
in this cluster are dividing. Other highly expressed genes in this
cluster were GNLY, NKG2A, TYMS, and TOP2A, suggesting that
these cells might be phosphoantigen-reactive γδ T cells due to
shared enriched genes previously identified in phosphoantigen-
reactive γδ T cells isolated from human PBMCs70 (top DE genes
STMN1, HMGB2, TYMS, KIAA0101, MKI67, UBE2C, TUBA1B,
TRDC, ASPM, CENPA, TOP2A, GNLY, PCNA, AURKB, BIRC5,
NUSAP1, TROAP, TUBB, H2AFX, CENPF, CCNB1, H2AFZ).

NK-like cells. Recently, three populations of innate-like lym-
phocytes, ILC1, ILC2, and ILC3 were described71. ILC1 cells
include NK cells and other ILCs characterized by expression of T-
bet and production of IFN-γ. ILC 2 include cells that express
GATA3, BCL11B, and GFI1 and produce IL-4, IL-5, IL-13, and
amphiregulin (AREG). ILC3 are thought to include lymphoid
tissue inducer (LTi) cells and cells that are positive or negative for
the natural cytotoxicity receptors (NCRs) NKp44; they are
defined by the expression of RORγt and the production of IL-
17A, IL-17F, and IL-22. In studies of human liver cells obtained
by flow-based cell sorting of enzymatically and mechanically
dissociated hepatic resection tissue, perforin, and granzyme
staining revealed that human liver NK cells rapidly respond to
antigens and malignant cells by quickly releasing lytic granules36.
By flow cytometry, CD16− NK cells make up to 50% of NK cells
in the human liver36. We found a population of NK-like cells
(Cluster 8) characterized by enriched expression of CD7, C–type
lectin receptor KLRD1 (CD94), GZMK (Granzyme K), NCR1
(NKp46), and NCAM1 (CD56), without upregulated expression
of FCGR3A (CD16) or ITGA1 (CD49a) (Supplementary
Data 1&2). This population also showed enriched expression of
EOMES, suggesting that the predominant population in this
cluster may correlate with the long-lived NK cell population
previously described in human liver biopsies by flow cytometry72.
The top DE genes of Cluster 8 are: CD7, CMC1, XCL2, KLRB1,
XCL1, KLRC1, KLRF1, IL2RB, CD160, CCL3, KLRD1, NKG7,
TXK, ALOX5AP, TRDC, CD69, TMIGD2, CLIC3, GZMK, DUSP2,
MATK, IFITM1, CCL4, CD247. Along with conventional T cells,
γδ T cells, and NK-like cells, it is known that NKT cells,
MAIT cells and atypical T cells populations are found in the
liver73,74. In our initial analysis, we identified clusters that cor-
responded to T and NK-like cells, but our data does not currently
have the resolution to characterize the less-frequent immune cell
populations from the TLH analysis and we suggest that these
clusters are likely multiple cell populations. MAIT cells in

particular are a subset of T cells with an αβ TCR characterized by
a semi-invariant TCR alpha (TCRα) chain and CD161 expression.
These cells likely fall within Cluster 2, for example CD161
(KLRB1) is expressed on 52% of cells in Cluster 2 (Supplementary
Data 1, 2). In the future, we will employ TCR clonotyping to
examine the transcriptional signature of CD161+ αβ TCR+ cells
expressing the known semi-invariant TCRs characteristic of
MAIT cells (TRAV1-2/TRAJ12/20/3). As well, in cluster 8 (NK-
like), 23% of the cells express NKp46 (NCR1) and 18% express
CD56 (NCAM1)(Supplementary Data 1&2). This suggests that
additional cell populations are clustering with CD56+ NKp46+

cells due to similarities in gene expression. To address this issue,
we focused on the T and NK cell populations and carried out a
sub-analysis comparing clusters 2, 8, 9, and 18 to one another.
This analysis yielded nine populations of conventional and
unconventional T cells and NK-like cells that comprise cells with
inflammatory or immunoregulatory properties (Supplementary
Data 2, 6 and Supplementary Fig. 19). These results provide a
description of baseline T and NK cell transcriptomes in the
human liver. Further characterization of these cell populations
will require a more cells and additional single-cell analysis tools,
including surface protein labeling (CITE-seq)39 and simultaneous
characterization of the T cell receptor clonotype using single-cell
V(d)J sequencing [https://www.10xgenomics.com/solutions/vdj/].
These approaches will improve our ability to detect and identify
these important cell populations in future analyses.

B cells. The frequency and role of hepatic B cells remains a topic
of debate48. Flow cytometric analyses of human liver tissue
indicated that CD19+ B cells account for up to 8% of all lym-
phocytes64, while B cells have been found to make up as much as
37.5% of the mouse intrahepatic immune cell population75.
Information on the phenotype and function of these B cells is
limited due to their small number and the difficulty in isolating
and analyzing hepatic B cells48. Recently, IgA-producing plasma
cells of GALT (gut-associated lymphoid tissue) origin were found
to be enriched in human liver periportal areas by histology76.
Using scRNA-seq we were able to identify distinct populations of
B cells with different stages of development. We found two
populations of liver resident B cells which appeared to be plasma
cells and antigen inexperienced B cells (Figs. 2f, 3a, b, 9d i–iv, e
i–iv). Cluster 16 identified a subset of cells that were enriched for
the expression of IGHD, CD19, MS4A1 (protein alias CD20),
CD22, CD52 without expression of either CD27 or CD138 which
suggest that this cluster is comprised of mature antigen inex-
perienced B cells77,78 (top DE genes: MS4A1, LTB, CD37, CD79B,
CD52, HLA-DQB1, TNFRSF13C, TCL1A, LINC00926, STAG3,
IGHD, BANK1, IRF8, BIRC3, P2RX5, RP11-693J15.5, RP5-
887A10.1, VPREB3, CD22, CD74, SELL).

Plasma cells are terminally differentiated B cells that reside in
tissue and continuously synthesize and secrete antibodies directed

Fig. 8 ScRNA-seq identifies two distinct populations of human liver resident macrophages/monocytes. a, b t-SNE projection of 8444 liver cells, with each
cell colored based on expression of a CD68 and b MARCO. c Pairwise pathway enrichment analysis comparing gene expression in the two CD68+

macrophage clusters defined in Fig 2f. Pathways enriched in non-inflammatory KCs are labeled in blue and pathways enriched in inflammatory KCs are
indicated in red. Colored circles (nodes) represent pathways, sized by number of genes they contain. Green lines depict intra- and inter-pathway
relationships according to the number of genes shared between each pathway. Black circles group related pathways into themes that are labeled. d Flow
cytometry data showing the response of monocytes/macrophages in total liver homogenate cell suspensions to stimulation with 1 μg/ml LPS and 25 ng/ml
IFN-γ. Cells were stained with anti-human CD45 (clone: HI30), anti-CD68 (clone: Y1/82 A), anti-MARCO (polyclonal; Invitrogen, PA5-26888, goat anti-
rabbit secondary antibody), and anti-TNF-α antibodies. Full gating strategy and controls shown in Supplementary Fig. 15. e, f Distribution of MARCO-
positive cells in liver zones 1–3. Scale bar represents 500 μm. Staining was performed on 5–7 μM slices cut from formalin-fixed, paraffin-embedded
resected liver tissue. Using anti-MARCO (clone: Invitrogen, PA5-26888) and anti-CD68 (clone: PG-M1) at ×40 magnification. f Quantification of percent
MARCO-positive cells in liver zones 1 to 3. Error bars show the standard error of the mean for at least seven replicates. Statistical significance evaluated
using a one-way analysis of variance (ANOVA) with a Bonferroni post-test ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05
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against specific antigens79. The cells of Cluster 7 were enriched
for the expression of immunoglobulin heavy and light chains,
CD27, CD3878, and had reduced expression of MS4A1(CD20)80,
suggesting that this cluster is comprised of plasma cells (top DE
genes: IGLC2, IGHG1, IGKC, IGHG2, IGHG3, IGHGP, IGLC3,
JCHAIN, IGHA1, IGHG4, IGHA2, IGHM, IGLV3-1, IGLC7,
MZB1, CD79A, SSR4, IL16). Our baseline description of B cell
transcriptional profiles in the human liver will be useful in any
examination of liver diseases modulated by B cells, such as
alcohol-induced hepatitis76.

Discussion
A key problem hindering the study of the human liver is difficulty
in accessing fresh tissue. Single-cell genomics-based studies of
liver tissue can maximize the unbiased information we can extract
from these limited samples. Previous approaches to under-
standing the cellular makeup of the liver via tissue-wide genomics
studies have clear limitations. In particular, they can obscure the
critical contributions of individual cell populations. Our single-
cell description of tissue resident hepatic cells (Figs. 2f & 10,
Supplementary Figs. 20–24) adds to our understanding of the
cellular landscape of human organs6,9, and provides a map of the
baseline liver cellular network.

Our human liver single-cell transcriptional profile includes
more discrete cellular populations than did a previous scRNA-seq
examination of the mouse liver12. In the mouse study, scRNA-seq
and smFISH were employed to spatially reconstruct the mouse
liver central vein to portal node based on expression levels of
landmark genes. The authors were able to identify three clusters
of hepatic cells (hepatocytes, endothelial cells, and KCs). They
found that 50% of the hepatocyte genes displayed restricted
expression based on their zonation profiles. Importantly, they
suggested a key role for the mid lobule in the expression of bile
acid synthesis genes. Their paper challenges the classical classi-
fication of liver zonation of periportal vs. central venous by
identifying the mid-lobule layers as key players in metabolism.
The mouse KC population was predominantly pro-inflammatory,
expressing IRF7, SPIC, and CLEC4F, while endothelial cells were
also pro-inflammatory, expressing IL1A. We attribute the dif-
ferences in the number of cell populations detected in our study
to biological differences between livers from laboratory mice and
humans, differences in dissociation methods, and the fact that we
did not employ sorting to remove dead or low viability cells.

Our data is the first description of distinct macrophage
populations in the human liver with unique functional pathways
identified. How specific macrophage populations contribute to
liver regeneration and the development of liver disease is a topic
of ongoing discussion and it has been shown that macrophage
subpopulations predominate during liver diseases (i.e., transplant
liver graft rejection and liver cancer)81. Thus, the characterization
of these macrophage populations in human provides a valuable
framework for examining the role of macrophage subpopulations
in liver disease.

An important conclusion from our work is that liver tissue
preparation methodology and bulk liver homogenate viability has
a significant impact on the ability to transcriptionally profile
hepatic cell populations. Hepatocyte populations are particularly
susceptible to dissociation effects. Furthermore, due to the het-
erogeneity of morphologies of the cells that comprise the liver, it
is reasonable to suspect that not all cell types are captured with
equal efficiency. Thus, our map identifies populations, but not
necessarily their actual frequency within the original liver tissue.
This is a caveat that should be considered in any interpretation of
scRNA-seq results.

Confounding factors to be considered when interpreting the
data in this study are that while the caudate lobes obtained were
from clinically acceptable, healthy liver grafts, these NDD liver
grafts are mildly inflamed23. Furthermore, this study was limited
by viable cell numbers and as such, deeper evaluations may
uncover additional populations of intrahepatic immune cells.
While our comparison of human to murine hepatocyte tran-
scriptional profiles supports a correlation between individual
hepatocyte clusters and sinusoidal zonation, the origin and
identity of human hepatocytes will require additional examina-
tion. Future scRNA-seq/immunohistochemistry studies with lar-
ger numbers of samples that have a smaller variability in pre-
analysis viability will be better able to definitively comment on the
frequency of these populations, and their sinusoidal zonation. We
will complement our approach with simultaneous measurement
of cell-surface protein expression by CITE-seq39 and assessment
of the T cell clonotype82. We intend to fully examine the
impact of the dissociation protocol on the transcriptomic faith-
fulness of single-cell profiles by comparing scRNA-seq to
single nucleus RNA-seq (sNuc-seq)83 from frozen tissue
samples. This will enable us to avoid proteolytic treatment and
minimize gene expression changes resulting from dissociation
procedures and may improve our ability to profile particularly
dissociation–sensitive cell types.

Taken together, our transcriptional map of the human liver
microenvironment provides a framework for understanding the
cellular basis of human liver function and disease and provides a
benchmark for the development new cell-based and immuno-
modulatory therapies to treat and prevent liver disease.

Methods
Human liver tissue dissociation. Human liver tissue was obtained from livers
procured from deceased donors deemed acceptable for liver transplantation.
Samples were collected with appropriate institutional ethics approval from the
University Health Network (REB# 14-7425-AE) and processed as described pre-
viously13,14 and detailed below. In all cases, patient demographics were collected
and stored securely in an anonymized fashion.

During organ retrieval, donor liver grafts were perfused in situ with cold (HTK)
solution (Methapharm) to thoroughly flush circulating cells, leaving only tissue
resident cells that are then used to prepare a single-cell suspension for scRNA-seq
analysis. At our institute, the caudate lobe (segment 1) of the liver is often removed
in preparation of the organ for implantation. The removed caudate lobe was then
dissociated using the protocol as fully described in [https://doi.org/10.17504/
protocols.io.m9sc96e] and detailed below.

Briefly, the caudate lobe was cannulated with two or three 1.2–2 mm diameter
irrigation cannulae with olive tips, which were inserted into exposed vessels in the
cut surface if the liver lobe (cannulae manufacturer: Ernst Kratz GmbH cat no:
1464LL, 1465LL). The lobe was flushed with HBS+ EGTA at 4 °C (perfusion rate
of 10 mL/min/cannulae), which removed any residual non-liver resident cells.
Single-cell isolation from the resected caudate liver lobe was performed with a
modified two-step collagenase procedure13 (Fig. 1b). Collagenase perfusion was
carried out for 15–30 min to limit cellular activation resulting from prolonged
enzymatic digestion15. This step takes advantage of the Glisson’s capsule, the liver’s
enveloping sheath of connective tissue, which holds the cells together during the
collagenase step. Following collagenase treatment, the capsule was cut and the
dissociated single cells were collected. All solutions were oxygenated with 95% O2

and 5% CO2 prior to perfusion to limit cellular stress. A red cell lysis step was not
employed as the caudate lobes were flushed prior to dissociation and red blood cells
were not evident in the cell pellets. A small fraction (1.1%, cluster 19) of the cells
profiled showed the expression of HBB and erythrocyte specific genes SLC25A37,
CA1, ALAS2 confirming that our retrieval and isolation protocols result in the
elimination of the majority of circulating blood cells (Fig. 2f, Supplementary
Data 1, 2). We have modified conventional liver perfusion protocols to maintain
the tissue at 4 °C for all steps apart from the collagenase perfusion step, which was
carried out at 37 °C. Eight to twelve million viable cells were recovered per gram of
tissue as determined by Beckman Vi-Cell trypan blue exclusion. Viability for TLHs
by trypan blue exclusion varied between 50–90% viable for the five livers profiled.
Caudate lobes weighed on average 30.2 g+ /−SD of 8.367 g (Supplementary
Table 1). TLHs were taken directly after dissociation for scRNA-seq. In certain
cases, scRNA-seq was employed to compare TLH to an NPC-enriched fraction
(enrichment performed by a 50× g centrifugation followed by two wash steps).
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Fig. 10 Summary map of the human liver. The main “building block” of the liver is the hepatic lobule, which includes a portal triad, hepatocytes aligned
between a capillary network, and a central vein. The portal triad is made up of the hepatic artery, the portal vein and the bile duct. Found between the liver
sinusoids are parenchymal cells (hepatocytes) and non-parenchymal cells (endothelial cells, cholangiocytes, macrophages, hepatic stellate cells, and liver
infiltrating lymphocytes- including B cells, αβ and γδ, T cells, and NK cells). Non-inflammatory macrophages are labeled ∗Kupffer cells based on their
transcriptional similarity to mouse KC. The location of B cells, plasma cells, T cells, and NK cells has yet to be confirmed by immunohistochemical staining
of these populations in situ so their location in this schematic is not representative of their zonated distribution. The zonation of hepatocytes was not
confirmed by immunohistochemical staining and is inferred as a result of pathway analysis and transcriptional similarity to the zonated gene expression
patterns previously shown in mice (Halpern et al.12)
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10x sample processing and cDNA library preparation. Samples were prepared
as outlined by the 10x Genomics Single Cell 3′ v2 Reagent Kit user guide. Briefly,
the samples were washed twice in PBS (Life Technologies)+ 0.04% BSA (Sigma)
and re-suspended in PBS+ 0.04% BSA. Sample viability was assessed via Trypan
Blue (Thermo Fisher) and using a haemocytometer (Thermo Fisher). Following
counting, the appropriate volume for each sample was calculated for a target
capture of 6000 cells. Samples below the required cell concentration as defined by
the user guide (i.e., <400 cells/µl) were pelleted and re-suspended in a reduced
volume and counted again using a haemocytometer prior to loading onto the 10x
Genomics single-cell-A chip. After droplet generation, samples were transferred
onto a pre-chilled 96-well plate (Eppendorf), heat-sealed and reverse transcription
was performed using a Veriti 96-well thermal cycler (Thermo Fisher). After the
reverse transcription, cDNA was recovered using Recovery Agent provided by 10x
followed by a Silane DynaBead clean-up (Thermo Fisher) as outlined in the user
guide. Purified cDNA was amplified for 12 cycles before being cleaned up using
SPRIselect beads (Beckman). Samples were diluted 4:1 (elution buffer (Qiagen):
cDNA) and run on a Bioanalyzer (Agilent Technologies) to determine cDNA
concentration. cDNA libraries were prepared as outlined by the Single Cell 3′
Reagent Kits v2 user guide with appropriate modifications to the PCR cycles based
on the calculated cDNA concentration (as recommended by 10X Genomics).

Sequencing. The molarity of each library was calculated based on library size as
measured using a bioanalyzer (Agilent Technologies) and qPCR amplification
data (Kappa/Roche). Samples were pooled and normalized to 10 nM, then
diluted to 2 nM using elution buffer (Qiagen) with 0.1% Tween20 (Sigma). Each
2 nM pool was denatured using 0.1 N NaOH at equal volumes for 5 min at room
temperature. Library pools were further diluted to 20 pM using HT-1 (Illumina)
before being diluted to a final loading concentration of 14 pM. 150 μl from the
14 pM pool was loaded into each well of an 8-well strip tube and loaded onto a
cBot (Illumina) for cluster generation. Samples were sequenced on a HiSeq 2500
with the following run parameters: Read 1—26 cycles, read 2—98 cycles, index 1
—8 cycles. A median sequencing depth of 60,000 reads/cell was targeted for each
sample. 10x Genomics web summaries for each liver profiled are found in
Supplementary Fig. 25–29.

Cell clustering, differential expression, and pathway analysis. Raw sequencing
data (bcl files) were converted to fastq files with Illumina bcl2fastq, version 2.19.1
and aligned to the human genome reference sequence [http://cf.10xgenomics.com/
supp/cell-exp/refdata-cellranger-GRCh38-1.2.0.tar.gz]. The CellRanger (10X
Genomics) analysis pipeline was used to generate a digital gene expression matrix
from this data. The raw digital gene expression matrix (UMI counts per gene per
cell) was filtered, normalized, and clustered using R [https://www.R-project.org/].
Cell and gene filtering was performed as follows: Cells with a very small library size
(<1500) and a very high (>0.5) mitochondrial genome transcript ratio were
removed. Genes detected (UMI count > 0) in less than three cells were removed.

Normalization was performed in the scran R package using the default
implementation of their pool and deconvolute normalization algorithm84,85.
Briefly, this normalization method proceeds as follows: hierarchical clustering
using a distance metric derived from Spearman’s correlation is performed to subset
the data into more homogenous groups. Within each group, cell-wise scaling
factors are determined, and then normalization is performed between groups.
Scaling factors per cell were determined by pooling random subsets of cells,
summing their library sizes, and comparing to average library size across all cells in
the group. This is iteratively performed, and the cell-wise scaling factors can be
deconvolved from the set of pool-wise scaling factors. This method is robust to the
sparsity of the data and respects the assumption of minimal differential gene
expression common to most normalization methods.

After normalization, clustering is performed using standard Seurat package
procedures86. Briefly, principal component analysis was used to reduce the
number of dimensions representing each cell. The number of components used
was determined based on the elbow of a scree plot. A shared nearest neighbor
graph was built from distances computed in principal component space. A
smart local moving algorithm was used to identify communities in the graph.
Selection of a biologically relevant number of clusters was based on differential
expression between neighboring clusters. Differential expression between
clusters was calculated using a likelihood-ratio test for single-cell gene
expression implemented in Seurat at a family-wise error rate of 5%. Neighboring
clusters in principal component space were identified as the next-nearest cluster
to each cell after the cell’s assigned cluster. Clusters were visualized using t-
distributed Stochastic Neighbor Embedding of the principal components
(spectral t-SNE) as implemented in Seurat. Cell-cycle phases were predicted
using a function included in Seurat that scores each cell based on expression of
canonical marker genes for S and G2/M phases (Fig. 2e, Supplementary Data 7).
The cell-type identities for each cluster were determined manually using a
compiled panel of available known hepatocyte/immune cell transcripts.
Pathways enriched in specific clusters in Figs. 5d, 8c and Supplementary
Figs. 10, 12, 13 were elucidated via a pairwise analysis using the Gene Set
Enrichment Analysis (GSEA) software from the Broad Institute (software.
broadinstitute.org/GSEA)(version 3.0). Pathway enrichment analysis examining
active cellular pathways in hepatocyte clusters in Fig. 4d was performed using

Gene Set Variation Analysis (GSVA)87 software from Bioconductor (version
1.28). Human_GOBP_AllPathways_no_GO_iea_November_01_2017_symbol.
gmt from [http://baderlab.org/GeneSets] was used to identify enriched cellular
pathways in GSVA and GSEA analysis. Highly related pathways were grouped
into a theme and labeled by AutoAnnotate (version 1.2) in Cytoscape (Version
3.6.1). GSEA and GSVA results were visualized using the Enrichment Map
app88 (Version 3.1) in Cytoscape (Version 3.6.1). R scripts for the data processes
and all GSEA raw data (Figs. 5d, 8c and Supplementary Figs. 10, 12, 13 found at:
[https://github.com/BaderLab/singleLiverCells].

Human/mouse correlation analysis. Human-mouse one-to-one orthologous
genes were identified from the Ensembl database89. Using the significantly (p < 1 ×
10−25) and DE genes identified by the Halpern et al. study12 for nine layers of
mouse liver cells, we selected 94 genes detected in both human and mouse for
correlation analysis. Expression values of each gene among the six clusters of
human hepatocytes and nine layers of mouse liver cells were scaled and centered
(separately in human and mouse) by z-scores. Finally, Pearson correlation was
calculated using z-scores across all 94 genes to compare the six human hepatocytes
clusters with the nine layers of mouse liver cells.

Flow cytometry/intracellular cytokine staining. Cell suspensions from TLH
were stained as before13,14 with live/dead aqua to assess viable cells and
fluorophore-conjugated monoclonal antibodies to the following human cell-
surface markers: anti-CD45-BV650 (Biolegend Clone: HI30, 1:20), anti-CD68-
PE (Biolegend Clone: Y1/82 A, 1:20), anti-HLADR-AF700 (Biolegend Clone:
L243, 1:20), and anti-MARCO (rabbit anti-human polyclonal) (Thermofisher:
PA5-26888, 1:10); secondary donkey anti-rabbit-FITC (Invitrogen). Singlets
were defined as having similar area and height measurements in forward scatter
(FSC-A vs FSC-H). Gating strategy for cell-surface markers was set based on
background auto-fluorescence measured in unstained controls (Supplementary
Fig. 9). Intracellular cytokine staining. To examine functional differences in
CD68+ cells that were either MARCO+ and MARCO−, cell suspensions (2 × 106

cells) from the NPC fraction were stimulated in 24-well plates with either 1 mg/
ml LPS plus 25 ng/ml IFN-γ or 100 ng/ml LPS plus 25 ng/ml IL-1β for 18 h in the
presence of BFA/monensin and intracellular secretion of TNF-α (detected with
anti-human TNF-α antibodies; clone: MAb11, 1:20) was examined as previously
described13.

Immunohistochemistry and immunofluorescence. Human liver tissue was cut
into 4 mm × 4mm× 4mm blocks and fixed in 10% formalin. 5–7 μM slides were
cut from PFA or formalin-fixed, paraffin-embedded liver tissue resected from
neurologically brain-dead donors. MARCO (Invitrogen, PA5-26888, 1:300) and
CD68 (DAKO, PG-M1, 1:600) staining was performed on sequentially cut slides by
the Toronto Pathology Research Program (Toronto General Hospital) using
standard methods. Staining was performed with LT TE9 treated slides and donkey
anti-rabbit secondary antibody conjugated to horseradish peroxidase. CD32B
(Abcam, AB110076, 1:100) and CK19 (DAKO, MO888, 1:10) staining was per-
formed on HIER (10 mM Citrate pH 6.0, 95 °C, 15 min) treated slides visualized by
donkey anti-host (goat-AF488, mouse-AF555) secondaries and DAPI. Slides were
scanned using the ScanScope AT2 (Lecia) at ×40 magnification by the Advanced
Optical Microscopy Facility (AOMF) in Toronto. Lobules were defined by drawing
a continuous line between portal triads around a single central vein using Halo
software (Indica Labs, version). Each lobule was then concentrically partitioned
into 10 layers between outer portal vein (layer 1) towards the central vein (layer
10). The positively stained area within each layer of the lobule (10 layers/lobule)
was quantified and normalized to the area of the layer and presented as % positive
stain. Ten or more individual lobules were defined. Representative partitioning of a
lobule is shown in Supplementary Fig. 17. Lobule annotation were confirmed by a
liver pathologist (O. Adeyi).

Statistical analysis. Statistical analysis for zonation figures was performed using
GraphPad Prism v5.0. The utilized statistical test is listed in each figure caption.
Statistical significance was evaluated using a one-way analysis of variance
(ANOVA) with a Bonferroni post-test ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05, ns= not
significance (P > 0.05).

Code availability. GSEA Raw Data/ R Scripts for data process is available through
https://github.com/BaderLab/singleLiverCells.

Data availability
Sequence data that support the findings of this study (all Figures) is available through the
NCBI GEO accession GSE115469. The analysed data is also available for viewing
interactively as the R package HumanLiver, available at https://github.com/BaderLab/
HumanLiver. The rest of the data is available from the authors upon reasonable request.
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