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Spatial heterogeneity of transcriptional and genetic markers 
between physically isolated biopsies of a single tumor poses 
major barriers to the identification of biomarkers and the 
development of targeted therapies that will be effective against 
the entire tumor. We analyzed the spatial heterogeneity of 
multiregional biopsies from 35 patients, using a combination of 
transcriptomic and genomic profiles. Medulloblastomas (MBs), 
but not high-grade gliomas (HGGs), demonstrated spatially 
homogeneous transcriptomes, which allowed for accurate 
subgrouping of tumors from a single biopsy. Conversely, 
somatic mutations that affect genes suitable for targeted 
therapeutics demonstrated high levels of spatial heterogeneity 
in MB, malignant glioma, and renal cell carcinoma (RCC). 
Actionable targets found in a single MB biopsy were seldom 
clonal across the entire tumor, which brings the efficacy of 
monotherapies against a single target into question. Clinical 
trials of targeted therapies for MB should first ensure the 
spatially ubiquitous nature of the target mutation.

Many cancer types show considerable intertumoral heterogeneity 
between individuals1–3. Molecular biomarkers are intended to (i) tai-
lor treatment intensities4,5, (ii) define oncogenic drivers for targeted 
therapies5–7, and (iii) identify diagnostic mutations (e.g., SMARCB1 
mutations in atypical teratoid/rhabdoid tumors)8. Currently, clinical 
diagnoses are based on single biopsies, with the assumption of spa-
tial homogeneity across tumors; however, spatial heterogeneity could 
lead to erroneous tumor classification or the selection of therapies 

against targets that are present only in a locally restricted portion of 
the tumor. These implications were recently highlighted in late-stage 
RCC9,10, with highly divergent mutational profiles affecting MTOR 
and TP53, as well as demonstrating good and poor prognostic gene 
signatures in multiregion biopsies from the same tumor10,11.

To determine the degree and clinical importance of spatial hetero-
geneity in MB, we performed multiregional biopsies and compared 
gene expression profiles, DNA copy-number alterations (CNAs), and 
somatic mutations. Our cohort included 9 primary MBs, 16 HGGs 
(10 with gene expression only12), and 10 RCCs10, with 4–11 spatially 
distinct biopsies from each (median: 6). An overview of the data types 
available for each patient is presented in Supplementary Table 1a and 
Supplementary Figure 1.

Glioblastoma13 and MB14 each comprise four distinct molecular 
subgroups that are discerned through analysis of transcriptional data. 
Unsupervised hierarchical clustering (HCL) of expression data has 
shown that MB biopsies form tight clusters apart from single sam-
ples15–20 (8/8; Fig. 1a, Supplementary Fig. 2a,b), whereas in HGGs 
(3/3) and RCCs (8/9), multiregion biopsies from single individuals 
clustered apart when combined with single samples (Supplementary  
Fig. 2c–f). Overall, on the basis of the s.d. of expression, intertumoral 
differences were greater than intratumoral heterogeneity in each 
tumor type (Fig. 1b). Subtype prediction with Predictive Analysis of 
Microarrays (PAM) showed that 21% (13/63) of glioblastoma multiregion  
samples diverged from the most commonly observed subtype for each 
patient, compared with only 2% (1/52) of MB biopsies (P = 0.003;  
Fig. 1c–e, Supplementary Figs. 3–6). When we considered only  
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biopsies with subgroup predictions of 100% confidence, we found that 
all MB tumors had concordant subgroup calls between multiple biop-
sies (9/9), compared with only 55% of glioblastomas (6/11; P = 0.038;  
Fig. 1e). We conclude that MB can be robustly and reliably sub-
grouped from only a single biopsy, but glioblastoma cannot.

We identified somatic CNAs by using a custom pipeline based on the 
TITAN algorithm21, which is robust to high levels of normal contami-
nation (Online Methods). Regions of CNA were identified in all three 
tumor types (Fig. 2a, Supplementary Figs. 7 and 8, Supplementary 
Table 1b,c), and unsupervised HCL of clonal segments showed tight 

clustering of individual biopsies in the cohort across all tumor enti-
ties (Fig. 2b, Supplementary Fig. 9). CNA-derived measurements of 
spatial heterogeneity highlighted the variance between individuals for 
each tumor type (Fig. 2c). Somatic single-nucleotide variants (SNVs) 
and insertions/deletions (indels) recapitulated a similar pattern  
of spatial heterogeneity across tumors (Fig. 2d, Supplementary  
Table 1d). Overall, on the basis of the mutation and CNA data, none 
of the three tumor types comprised only homogeneous or heterogene-
ous tumors; rather, each had a repertoire of tumors residing along a 
continuum of genetic heterogeneity.
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Figure 1 Medulloblastomas, but not glioblastomas, show reliable transcriptome-based subgroup prediction. (a) Unsupervised HCL using 1,000 high-
s.d. transcripts of eight multiregion MB samples combined with single biopsies (n = 334) demonstrates tight clustering of matched multiregion  
MB samples across subgroups. (b) The top 2,000 s.d.-transcript values determined on intra- and intertumor levels in MB, HGG, and RCC samples. 
Center lines indicate data medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 
25th and 75th percentiles; outliers are represented by individual points. Intertumoral and intratumoral values are indicated by patterned and white 
boxes, respectively. (c) Principal component analysis (PCA) of 22 MB subgroup marker genes confirmed a low degree of transcriptional intratumoral 
heterogeneity, exemplified in MB3. Multiregion biopsy numbers of MB3 are indicated in the red-shaded region of the plot. PCA was conducted with  
103 single-biopsy samples analyzed by NanoString. (d) Dot plot illustrating highly similar marker-gene expression in all multiregion biopsies for MB3.  
(e) Glioblastoma (GBM) subtype and MB subgroup predictions based on PAM results. The SHH subgroup affiliation of MB3 (marked with an asterisk) 
was inferred from NanoString results. Hashed circles indicate biopsies with <100% prediction certainty.
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This genomic complexity results from a process of clonal evolu-
tion whereby the successive acquisition of mutations and CNAs gen-
erates genetically related subpopulations of cells or lineages within 
each tumor. We integrated CNA and mutational data using the 
EXPANDS algorithm22, to infer the cellular lineage composition in 
each biopsy. EXPANDS detects multiple genetically distinct coexist-
ing subpopulations of cells and allows phylogenetic reconstruction 
of their evolutionary relationships. Figure 3a, which describes the 
spatial distribution of genetically distinct subpopulations throughout 
a tumor, illustrates the clonal intermixing detected in many samples 
of the cohort (Fig. 3b–d, Supplementary Fig. 10, Supplementary 
Table 1e,f). Many tumor biopsies had a major clone (i.e., a genotype 
present in >70% of tumor cells) that was also detected in a minority 

of cells in other biopsies from the same tumor (i.e., subclonal) or that 
was absent in other biopsies (for example, biopsies 3, 5, and 6 from 
tumor RCC7 were genetically similar to some cells in biopsy 4 (4a), 
but not all cells (4b clustered separately); Fig. 3c). In some tumors, 
individual biopsies contained two or more cell lineages that inde-
pendently accumulated distinct repertoires of mutations not found 
elsewhere in the tumor (e.g., HGG2 biopsies 1 and 5; Fig. 3c). The 
presence of multiple genetically distinct cellular lineages within single 
biopsies has previously been linked to poor prognosis and treatment 
response across a variety of cancer types23.

This surprising but common pattern of major genetic clones in one 
biopsy that are subclonal or absent in spatially distinct locations in the 
same tumor prompted us to investigate observable mutation clonality 
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Figure 2 The variable intratumoral heterogeneity of somatic alterations in all tumor entities. Genome-wide analysis of CNAs did not recapitulate the 
striking expression-based spatial homogeneity of MBs. (a) Copy-number (CN) segments of gain (red) and loss (blue) across the genomes of three 
individual patients for each biopsy. (b) Unsupervised HCL of copy-number segments shows tight clustering of individual biopsies across all tumors in 
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across biopsies, as clonality is a key requirement of clinically action-
able therapeutic targets24. We classified mutations into clonal and sub-
clonal populations (Supplementary Fig. 11, Supplementary Table 1g)  
and determined whether the status of the subset of damaging clonal 
mutations changed between spatially separated tumor biopsies.  
In nearly all tumors we found a predominance of clonal mutations 
that were subclonal or completely absent in additional biopsies 
(Fig. 4a, Supplementary Fig. 12; validation set of seven mutations 
with a 96% validation rate across biopsies; Supplementary Fig. 13, 
Supplementary Table 1h). This observation held when we consid-
ered only driver events25–28 (Fig. 4b, Supplementary Table 1i–k).  
We predict that monotherapies against a single target identified in a 
single biopsy are unlikely to show dramatic clinical effects, as targets 
are not ubiquitous; this would leave untargeted clones in unsampled 
portions of the tumor free to survive and repopulate the tumor.

When the goal of a cancer therapy is improved patient treatment, 
the clinically relevant question is whether the observed level of 
genomic spatial heterogeneity affects actionable or driver alterations. 
As proof of concept, we focused on a set of genes with known roles in 
cancer initiation and/or progression29, or with defined drug interac-
tions30. These genes are enriched in relevant or actionable targets in a 

manner that is unbiased toward either of the cancer types we included 
(Supplementary Table 1l,m). When we investigated the spectrum of 
SNVs, indels, and CNAs affecting these genes (Supplementary Figs. 14  
and 15), we found a remarkable variety of patterns across tumors, 
including cases with only a small set of shared alterations across biop-
sies but with many events present in single biopsies (e.g., MET ampli-
fication in HGG4); homogeneous tumors with many shared actionable 
events (e.g., HGG3); cases without ubiquitous actionable targets, 
which may require multiagent targeted therapeutics (e.g., MB6);  
tumors that lacked vulnerability to any of the considered actionable 
targets in a subset of biopsies (e.g., MB7); and tumors with alterations 
that may predict resistance (e.g., TP53 compound loss and somatic 
mutation in RCC7).

Considering the full set of identified actionable mutations per 
tumor across all biopsies, we calculate that in each tumor entity, an 
average of at least five biopsies is required to provide an 80% chance 
of identifying at least 80% of these alterations. If these measures were 
reduced to 50%, sampling of at least two biopsies would be required, 
or as many as four for highly heterogeneous tumors (Fig. 5a). This is 
probably an underestimation, as the detection of actionable mutations 
does not plateau in most patients (Supplementary Fig. 16).
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Figure 4 Genetically distinct clonal lineages yield ON/OFF mutation patterns between spatially separated biopsies. (a) Nonsynonymous mutations 
binned into five categories: clonal in all biopsies (clonal); clonal in some biopsies and subclonal in others (clonal/subclonal); clonal in some biopsies 
and completely absent in others (clonal/absent); clonal in some biopsies, and subclonal or absent in others (clonal/subclonal/absent); and never 
detected as clonal (non-clonal). Top, illustration of the most favorable clinical scenario, in which most mutations are clonal across all biopsies (left), 
and the worst-case scenario, in which mutations are clonal in some biopsies but absent in others (right). Bottom, mutation patterns follow a worst-case 
scenario across tumor types. Tumor-specific polygons on radial plots indicate the proportion of mutations on each of the five axes, with polygon centers 
marked by black circles. (b) The proportion of driver mutations/indels (top) or CNAs (bottom) that are found in every biopsy of a given tumor (i.e., trunk 
events) when both clonal and subclonal or only clonal driver events are considered. The absolute numbers are shown above the bars.
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Up-front profiling of numerous tumor regions to identify the full 
repertoire of actionable targets is neither practical nor likely, given 
the amount of sequencing required; thus we focused on maximizing 
the information derived from a minimal set of biopsies. Specifically, 
we wanted to determine how well we could predict the frequency of 
individual mutations across a tumor with an increasing number of 
biopsies, noting that prediction accuracy for mutations identified in a 
single fraction would be high only in very homogeneous tumors. We 
empirically determined the frequency of each alteration, considering 
all possible pairs of an increasing number of biopsies, and compared 
this observed quantity to the known frequency of the alteration in all 
biopsies; the difference between these values was the inference error 
of mutation frequency resulting from an insufficient number of biop-
sies from genetically heterogeneous tumors (Supplementary Fig. 17). 
Using a 10% error rate as an acceptable threshold, we calculated for 
each tumor the number of observed mutation frequencies that fell 
within this range (i.e., accuracy). As expected, we found that accuracy 
improved with increasing numbers of biopsies, and also that brain 
tumors fall into two patterns. The first comprises more homogeneous 
tumors, which have fairly high prediction accuracy even with a low 
number of biopsies, and the second comprises more heterogeneous 
tumors for which multiple biopsies are required to ensure an accurate 

determination of mutation frequency (Fig. 5b). In our cohort of MBs 
and glioblastomas, considering just two biopsies per tumor enabled 
the distinction of tumors with high versus low genetic heterogene-
ity, with high specificity especially for highly heterogeneous tumors  
(Fig. 5c, Supplementary Fig. 18).

Although spatial heterogeneity is clearly a barrier to highly  
effective therapeutics against an entire primary tumor, the extent 
of heterogeneity between primary and recurrent MB31 is many fold 
greater (Fig. 6a, Supplementary Fig. 19). This vast discordance  
at relapse is therefore unlikely to be secondary solely to inadequate 
spatial sampling of the therapeutically naive primary tumor. In glio-
mas32, the recurrent disease resembles the primary tumor more 
closely, and only in rare cases diverges to the extent seen in MB, pos-
sibly as a result of less complete success in the resection of this more 
diffuse and infiltrating tumor. MB is known to recur from very rare 
populations of cells31; thus, therapeutic approaches that can eradi-
cate such cellular lineages despite their low prevalence in the primary 
tumor are severely needed.

Targeted cancer immunotherapy is based on the presence of  
tumor-specific cell-surface antigens, as opposed to cell-autonomous 
somatic mutations. We examined the expression of the antigens/genes 
for which chimeric antigen receptor T cells or monoclonal antibodies  
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Figure 5 Quantification of variable genetic heterogeneity across tumor entities. (a) Our analysis of all mutated genes (from the list of actionable targets) 
identified in each tumor across all biopsies suggests that an average of five biopsies of an individual tumor is required to provide an 80% likelihood of 
recovering 80% of the known mutated genes (left). At least two biopsies are required to achieve a 50% likelihood of recovering 50% of mutated genes 
(right). (b) The likelihood of correctly inferring the frequency of a mutation in a whole tumor depends on the number of biopsies sampled, and whether 
the tumor is more or less genetically homogeneous. The accuracy of frequency prediction for brain tumors shows a bimodal pattern, with low-genetic-
variance tumors having higher accuracy (>0.6) even with few biopsies, whereas at least five biopsies are required to achieve the same confidence in 
high-genetic-variance tumors (HGG and MB). RCCs additionally show an intermediate pattern. Accuracy was measured as the proportion of times that a 
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proportion of mutated genes (from the actionable target list) present in both biopsies. Patients with genetically heterogeneous tumors had median values 
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already exist33–43, and we observed remarkable consistency of expres-
sion across multiregional biopsies, which contrasts sharply with  
the heterogeneity of somatic mutations across fractions in the same 
set of tumors. This was the case in all MBs examined, including  
those with high levels of genetic heterogeneity and for which  
targeted therapy would be problematic33–43 (Fig. 6b, Supplementary 
Fig. 20). The homogeneity of the transcriptome versus the heteroge-
neity of somatic mutations in our MB cohort suggests that targeted 
immunotherapeutic approaches could potentially overcome the  
hurdle of spatial genetic heterogeneity.

The vast majority of patients with brain tumors have their tumor 
classified from a single tumor biopsy, which is potentially adequate for 
MB, but not for glioblastoma. The extent of the spatial heterogeneity 
of somatic mutations observed in our cohort suggests that clinical tri-
als of molecularly targeted therapy should first assess the ubiquitous 
distribution of the target. The lack of clonal actionable driver mutations 
that are ubiquitously present across all regions of a given brain tumor 
suggests that monotherapies that target a single gene from a single 
biopsy are unlikely to have dramatic effects in terms of improving the 
lives of patients with brain tumors.

URLs. Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/; 
European Genome-phenome Archive, https://www.ebi.ac.uk/ega/.

MetHodS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 6 Genetic heterogeneity at recurrence greatly exceeds spatial heterogeneity in MB. (a) The genetic concordance of pre- versus post-therapy 
biopsies (data from ref. 31) was an order of magnitude lower than the up-front genetic spatial heterogeneity in MB samples (P < 10−16, Welch two-
sample t-test; n = 14 primary (Pri)–recurrence (Rec) pairs; n = 158 spatial comparisons from seven tumors). HGGs in our cohort showed a similar 
overall distribution of spatial heterogeneity (n = 92 comparisons from four tumors), and were not dramatically different compared with the low 
concordance of low-grade gliomas (LGGs) to HGGs post-therapy41 (n = 23 glioma primary–recurrence pairs; data from ref. 32). One LGG relapse to 
HGG exhibited post-therapeutic genetic concordance values on par with those for MBs (P < 10−4, Welch two-sample t-test; n = 12 primary–recurrence 
comparisons from patient 17 of ref. 32; n = 9 spatial comparisons). Concordance was measured as the proportion of clonal somatic mutations in 
common between a pair of biopsies, given the total number of clonal somatic mutations in the two samples. The width of the bean plots scales with the 
number of measurements with a similar y-value, showing data distribution. Thin horizontal lines indicate individual observations; multiple observations 
with the same value were added together to form wider lines. Thick horizontal bars indicate averages. (b) Low expression variance was observed across 
multiregion biopsies of cell-surface molecules with immunotherapies currently in clinical trials. This indicates that tumors with high genetic spatial 
heterogeneity may respond well to chimeric antigen receptor T cell or antibody-based therapy. Green points mark the expression of target genes in 
individual biopsies; horizontal lines indicate the median expression and the 25th and 75th percentiles of expression per tumor.
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oNLINe MetHodS
Patients and samples. Multiregion tumor biopsies and clinical data were 
gathered for 35 tumors (9 primary medulloblastomas, 16 high-grade gliomas  
(10 with gene expression only12), and 10 renal cell carcinomas10); peripheral 
blood samples were included as germline controls for all cases with exome 
sequencing. All multiregion biopsies for unpublished cases were obtained  
in situ during tumor resection, by mimicking the previous sample-preparation 
conditions of published cases to the best of our knowledge. Medulloblastoma 
tumors are similar in size to glioblastomas, with an average diameter of 
8–12 cm; biopsies were taken from regions as far apart as possible by the 
surgeon. Owing to their localization in the abdomen, renal cancers may be 
larger in size. Detailed information on multiregion tumor samples is pro-
vided in Supplementary Table 1a and Supplementary Figure 1. All patient 
material and clinical information was obtained after informed consent had 
been received and was approved by the institutional review boards of the 
contributing institutions. DNA and RNA extractions were performed as previ-
ously described16. RNA quality was assessed on a 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA). Only high-quality RNA (RNA integrity 
number ≥ 7) was included for further study.

Gene expression profiling. We carried out expression profiling on eight MB 
and three HGG multiregion biopsies, with a total of 72 biopsies and a median 
number of 6 multiregion biopsies per primary tumor (range: 4–9). We used 
Affymetrix HU133 Plus 2.0 microarrays for HGG samples, and Affymetrix 
Gene 1.1 ST arrays (Affymetrix, Santa Clara, CA) for MB samples, to ensure 
that these multiregion biopsies could be compared to published data sets15–17,20.  
Microarrays were processed according to the manufacturer’s guidelines. Raw 
data were normalized with a transcript-level robust multi-array average (RMA) 
algorithm44, and subsequently clustered by unsupervised HCL (Pearson’s  
dissimilarity – average linkage) in Partek Genomics Suite. The molecular clas-
sification of the multiregion biopsy samples was done with the class-prediction 
algorithm PAM45, as implemented in the pamr package (v. 1.51). Markers for 
glioblastoma (GBM) subtypes were obtained from the Verhaak classifier13. We 
note that classification was done for the GBM samples only, thus excluding 
HGG1. Subgroup-specific markers for MB were identified on the basis of one-
way analysis of variance with multiple hypothesis correction by the Bonferroni 
method in previously published data sets with known subgroup affiliation46. 
On the basis of the misclassification error values in core GBM13 and MB15–17 
training data sets (Supplementary Fig. 6), we chose threshold values of 1.75 
and 1 for multiregion samples from published12 and unpublished GBM and 
MB patient data, respectively. The published GBM data set12 was quantile-
normalized with Partek Genomics Suite. Predicted subtypes or subgroups with 
confidence probabilities higher than established thresholds46 were considered 
bona fide subgroup assignments. Samples with less than 500 ng of remain-
ing RNA were analyzed with NanoString as previously described46. MB3 was 
analyzed exclusively with NanoString, as only limited amounts of RNA were 
available for all multiregion biopsies. NanoString counts were normalized 
to the three housekeeping genes (GAPDH, ACTB and LDHA). We prepared 
dot plots and principal component analyses based on normalized NanoString 
calls using the R statistical environment (v2.15.1). Pearson correlation was 
used to determine the correlation of marker gene expression for each biopsy 
per patient (intratumor comparison) and between each biopsy and all others 
samples from different patients of the same subgroups (intertumor compari-
son). The Wilcoxon rank-sum test was used to infer differences in intra- and 
intertumor marker gene expression in a subgroup-specific fashion.

A previously published data set of nine multiregion RCC samples9 profiled 
with the Affymetrix Human Gene 1.0 ST array was included in the analysis, as 
well as two RCC data sets18,19 with 53 and 29 single RCC samples, respectively. 
The RCC expression data sets were processed together in R (v3.1.1) with the 
oligo package (rma normalization), and the combat package was used for 
batch-effect correction. Unsupervised HCL (Pearson’s dissimilarity – average 
linkage) was carried out with the Partek Genomics Suite.

Whole-exome sequencing. DNA libraries (MB1–5) from multiregion samples 
were exome-captured with Agilent SureSelect V5+UTR probes and subjected 
to eight cycles of PCR, and then paired-end 75-base reads were sequenced over 
two lanes on an Illumina HiSeq 2000 instrument per pool of six libraries. Reads 

were aligned to the human reference genome hg19a with Burrows–Wheeler 
Aligner (BWA) (version 0.5.7)47. Two lanes were merged with duplicates 
marked with Picard Tools (version 1.71). Additional samples (MB6–7 and 
HGG1–5) were subjected to paired-end library construction using Illumina’s 
Nextera Rapid Capture Exome kit. Captured exome DNA sequences were then 
sequenced with Illumina HiSeq 2000 (rapid-run mode) for 100-bp paired-end 
reads. We used the FASTX toolkit to remove adaptor sequences and to trim 
low-quality reads. Quality trimmed reads were then aligned to the human 
reference genome (hg19) using BWA (version 0.5.9)47. We used Genome 
Analysis Toolkit (GATK)48 for indel realignment. We marked duplicate reads 
with Picard so we could exclude them further in our analysis.

Somatic SNV detection and filtering. SNVs were called exome-wide with 
SAMtools mpileup (v0.1.7), and indels were called with VarScan. We carried 
out stringent filtering requiring no reads in the germline sample supporting 
an SNV to ensure conservative selection of somatic events. Variants with suffi-
cient coverage (≥10) were further annotated with Annovar49 (table_annovar.pl;  
RefSeq gene annotations, amino acid change annotation, SIFT, PolyPhen, LRT, 
and MutationTaster scores, PhyloP and GERP++ conservation scores, dbSNP 
identifiers, 1000 Genomes Project allele frequencies, NHLBI-ESP 6500 exome 
project allele frequencies).

Mutation validation. We validated a subset of somatic mutations using 
PCR amplification from all tumor biopsies, matched germline, and a healthy 
control sample. We amplified regions of interest from genomic DNA with 
primers flanking each SNV (Supplementary Table 1h,n), using Q5 High-
Fidelity DNA polymerase (NEB). PCR specificity was determined by agar-
ose gel electrophoresis followed by gel extraction of specific bands using a 
Gel Extraction/PCR clean-up kit (Qiagen) according to the manufacturer’s 
instructions. Purified amplicons were sequenced by Sanger sequencing, and 
traces were reviewed manually for the expected presence or absence of the 
mutated base.

Droplet digital PCR. For the validation and quantification of the frequency 
of the PIK3CA SNV detected in MB3, we used droplet digital PCR (ddPCR),  
as Sanger traces were of poor quality in the region of interest. We used genomic 
DNA from six spatially distinct biopsies from MB3, as well as matched  
germline and a healthy donor control, in the assay. We validated the PIK3CA 
mutation (chr 3:178936091 G>A) by using the PrimePCR ddPCR mutation 
assay kit, PIK3CA p.E545K, human (Bio-Rad; dHsaCP2000075 (mutant, 
FAM) and dHsaCP2000076 (wild-type, VIC)), according to the manufacturer’s 
instructions. Fluorescence measurement with a QX100 ddPCR droplet reader 
(Bio-Rad) was used to detect the presence of mutant and wild-type alleles. 
QuantaSoft Analysis software (Bio-Rad) was used in the quantification.

Copy-number analysis. TITAN21 estimates the cellular prevalence of tumor 
cell populations (lineages) on the basis of a user-defined number of clonal 
clusters, and user-defined ploidy estimation. Thus, we carried out 20 runs of 
TITAN for each exome, with cluster numbers 1–10 (representing one clonal 
lineage through to ten coexisting clonal lineages with distinct genotypes), 
and ploidy set to either 2 or 4. Copy-number segments from the 20 parameter 
combinations were analyzed and merged into larger segments if they were on 
the same chromosome arm, were <10 Mb apart, and had the same state (loss 
or gain). We compared merged results from each of the 20 parameter combi-
nations for each biopsy in order to select the optimal parameter combination 
as the highest-scoring, considering the following criteria:

# maximize the largest contig size
# maximize the median contig size
# minimize the number of contigs
# minimize the number of clonal clusters

The parameter combination with the largest x value was selected as optimal: 

x L M M T C M= +∗ ∗(( * ) * ( / ) ( / ) ( /( ) ))/ /2 9 2 910 1 1 1 10

where L is the largest contig size (Gb), M is the median contig size (Gb), T is 
the total number of contigs, and C is the number of clonal clusters.
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We next assessed the prevalence of copy-number segments (loss or gain) 
identified in the best parameter combination of a unique biopsy (i.e., target 
segments), using either all segments or clonal segments only (logratio ≥ |0.2|). 
A target segment was considered as found in another biopsy from the same 
tumor if any of the 20 parameter combinations contained a segment with the 
same state (loss or gain), and whose span had a minimum reciprocal overlap 
of at least 70% with the target segment.

Concordance of driver regions of loss and gain in the RCC tumor cohort 
was performed for our calls and the published data9. With our computational 
approach, we achieved 97% concordance compared with the manual cura-
tion performed previously9, indicating that this method is specific and sen-
sitive despite the high level of normal cell contamination in these tumors. 
Conversely, compared to our results for the subset of copy-number gains and 
losses identified in ref. 9, the manual curation showed 89% concordance to the 
TITAN pipeline, indicating that our approach is more sensitive, and that the 
homogeneity of certain copy-number driver events may be greater than previ-
ously estimated (Supplementary Table 1c). Finally, our approach is applicable 
genome-wide and across tumor types in a highly parallel fashion.

SNV classification using mclust. We classified variant allele frequencies 
(VAFs) of somatic SNVs into distinct clusters using the R package mclust50, 
which uses finite mixture estimation via iterative expectation maximization 
steps and the Bayesian information criterion. Each cluster is manually catego-
rized as ‘homozygous’, ‘clonal’, or ‘subclonal’, depending on the cluster VAF and 
the uncertainty separating it from the next cluster, and taking into account 
the biopsy tumor cell content value reported by TITAN. Multiple subclonal 
populations are numbered sequentially, starting with the most highly prevalent 
population. Clonal and subclonal mutation details per biopsy are summarized 
in Supplementary Table 1d,g.

Phylogenetic reconstruction from combined SNV and CNA data. We com-
bined copy number and loss-of-heterozygosity (LOH) information derived 
from TITAN (including the clonal and subclonal events identified in the best 
parameter combination run for each biopsy), as well as somatic mutations and 
SNPs in areas of LOH, to infer tumor phylogenies using EXPANDS22. We ran 
EXPANDS v1.7.2 with the runExPANdS function. All parameters were set to 
default, with the exception of maxScore, which was lowered to 1.5 to reduce 
the false positive rate of subpopulation detection. Only subpopulations with 
a minimum size (cellular frequency) of 0.1 were considered. Mutations that 
could not be assigned to a high-confidence subpopulation were discarded, 
so that no ambiguous assignments were made. In addition, ambiguous sub-
populations (i.e., groups of mutations and copy-number events) were dropped 
from the analysis. Mutations were assigned to all nested subpopulations (i.e., 
if a mutation was found in a subpopulation of cells at a high frequency of 0.8, 
it was also assigned to ‘daughter’ subpopulations of, for instance, frequency 
0.5), to report the assignment of every mutation to all detected subpopulations 
in all biopsies of the tumor (assuming that the mutation could be assigned 
unambiguously as mentioned above; Supplementary Table 1f).

Phylogenetic relationships between the subpopulations inferred by the 
EXPANDS algorithm in all biopsies per patient were generated using both SNV 
and copy-number segments. The Manhattan distance metric was used to calculate 
pairwise distances between all pairs of biopsies on the basis of these data, and a 
complete linkage HCL was performed to generate phylogenies. Germline-rooted 
trees were generated with the as.phylo R function from the ape package.

Error inference of actionable genetic alterations. In order to analyze genetic 
heterogeneity affecting actionable and putative driver genes in a way that was 
unbiased toward any of the tumor types, we opted to use general lists of known 
cancer drivers and druggable targets. Sets of genes known to be drivers in 
GBM, MB, and RCC tumors come from studies of different cohort sizes, with 
sometimes unknown subgroup affiliations, and thus are not equally compre-
hensive. To overcome this, we used a list of genes of interest that included 
putative driver genes found in the Cancer Gene Census database29 (n = 572) 
and actionable genes from the Drug-Gene Interaction Database30 (n = 426 
genes) (Supplementary Table 1l,m).

Oncoprint plots (R package ComplexHeatmap v1.6.0) were built for the 
combination list of these genes for all tumors, using (a) clonal mutations and 

indels and (b) clonal mutations and indels plus high-level CNAs (>4 copies 
gained; homozygous loss). A manual review of the results showed that the 
absence of clonal somatic mutations in subsets of biopsies is not explained 
by concordant copy-number loss. Because not all biopsies had copy-number 
data, we carried out further analyses using results from strategy (a) in order 
to maximize the number of usable biopsies per tumor.

Driver event lists. The MB CNA driver events listed in Supplementary  
Table 1i,j and Figure 4b were taken mainly from Shih et al.27, with a subset of 
the mostly highly recurrent genes listed in Northcott et al.25. The HGG chro-
mosome arm and recurrent driver gene events were retrieved from Tables 1  
and 2 of ref. 26. RCC chromosome arm and gene-level driver events were 
retrieved from Supplementary Figure 2 (threshold FDR q-value < 10−15) and 
Table S4 (q-value threshold: 0.05) of the ccRCC TCGA paper28. The cancer cell 
fraction values presented in Supplementary Figure 10b for driver mutations 
were calculated as previously described51: 

CCF VAF*(1/Purity)(CN*Purity +2(1 Purity))= −

where CCF is the cancer cell fraction, VAF is the variant allele frequency, 
CN is the copy number at the mutation, and Purity is the tumor purity as 
calculated by EXPANDS.

Accuracy of mutation-frequency detection. We calculated the inferred error 
of the prevalence of each mutation across biopsies by using a subsampling 
approach. In each tumor, given a subset of biopsies from 1 to n (where n is 
the total number of biopsies per tumor), we calculated the frequency of each 
identified mutation in the biopsies sampled as fo. We subtracted this value 
from the ‘ground truth’ expected frequency for that mutation across all n 
biopsies (fe). When the observed and expected values were identical, then the 
inferred error (fe – fo) was 0. In the majority of tumors, there is a predomi-
nance of genes with mutations in single biopsies, leading to negative values of 
error for many genes, as the frequency of the mutation is often overestimated 
(Supplementary Fig. 17). In contrast, genes that are present in all but one or 
two biopsies will often have an error value greater than 0, as their frequency 
can be underestimated.

The likelihood of being within ±0.1 of 0 (i.e., close to perfect accuracy, given 
the data from all biopsies) is calculated as the proportion of genes at each 
sampling of 1:n biopsies where the error rate was within those bounds. For 
instance, we sampled all possible combinations of a certain number of biopsies 
from the total number of biopsies, and in each case calculated the inferred 
error of each detected mutation’s prevalence. The proportion of the total set 
of error values < |0.1| represented the likelihood of a correct interpretation of 
mutation frequency given that number of biopsies (Fig. 5b).

Estimation of genetic heterogeneity from two biopsies. To address the prac-
tical issue of estimating genetic heterogeneity from a minimum number of 
informative biopsies, we implemented a simple metric of the proportion of 
mutated genes in a set of two biopsies that was ubiquitous (i.e., present in 
two of two biopsies). The mean value of all pairs of biopsies from a total of 
n biopsies per tumor showed a strong divergence in HGG and MB tumors, 
with high- versus low-variability tumors well separated (Fig. 5c). These were 
the same tumors that scored as high versus low variability on the basis of the 
accuracy metric described above.

We also observed clear separation of these two classes with the R pack-
age mclust (Supplementary Fig. 18a), which models univariate mixtures of 
Gaussian distributions (i.e., corresponding to a mixture of high- and low-
genetic-variance brain tumors) via expectation maximization and the Bayesian 
information criterion50. Using two thresholds from the mclust density peaks 
(low, 0.55; high, 0.75), we calculated the accuracy of the classification of high-
variance versus low-variance tumors on the basis of a single pair of biopsies, 
and observed that high-variance tumors in particular had high true positive 
and low false positive classification rates (Supplementary Fig. 18b). On the 
basis of this metric, the vast majority of pairs of biopsies from tumors with 
high genetic heterogeneity have a low percentage of gene mutations found in 
both biopsies, such that they are always classified as heterogeneous tumors, 
and almost never as homogeneous tumors.
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Expression analysis of immunotherapeutic targets in MB tumors. 
Microarray expression data from the Affymetrix Gene 1.1 ST array (Affymetrix,  
Santa Clara, CA) for the MB samples were analyzed in the R environment 
(v3.1.1). We used the affy package (v1.44.0) and the custom CDF hugene11sth-
sensgcdf (v19.0.0) to summarize the expression of 21,641 Ensembl (ENSG) 
genes and process the data. Expression data were normalized via the  
rma method.

Spatial genetic variance versus post-treatment clonal evolution. To directly 
measure the relative contributions of spatial heterogeneity and clonal evolution 
induced by treatment, we used our previously published cohort of matched 
pre- and post-therapeutic MB samples31. This comparison showed that in MB, 
the amount of divergence observed between primary and relapse compart-
ments far exceeded the spatial genetic variance in the primary tumor.

To assess whether the observed divergence between primary and recurrent 
MB is greater than the observed divergence between intratumoral biopsies, we 
reanalyzed the 14 primary–relapse tumor whole-genome sequencing (WGS) 
samples with matched germline, using the same pipeline as presented above. 
Briefly, mutations were called using SAMtools mpileup, filtered stringently 
against the germline, and shortlisted to those mutations with at least ten-
reads coverage in both primary and recurrent samples, and are in areas of 
normal copy number and LOH. Because the samples in this work were exomes, 
we restricted the analysis of the primary–relapse samples to the same exonic 
regions. After removing the major analysis pipeline differences, we addressed 
differences in depth of coverage. The exome libraries were sequenced to an 
average of 60×, and the WGS samples were sequenced to 30× coverage. Thus, 
our ability to assess the similarity between regions in the exome libraries was 
more sensitive to subclonal events present at low levels (and therefore pref-
erentially detectable by exome sequencing, and not by WGS). We addressed 
this bias by restricting the analysis to clonal events in the exomes, as clonal 
mutations are detectable in both exomes and genomes. To verify that this was 
a reasonable assumption, we compared the VAF of mutations found in the 
exomes to those found in matched WGS data generated from the same sam-
ples, but sequenced at 30× coverage. Matched WGS samples were available for 
biopsy 1 in each MB tumor with multiregional profiling. In all cases, we found 
that >75% of mutations with a VAF < 0.18 in the MB exomes were not found 
in the matched genomes sequenced from the same samples, which indicates 
that subclonal events are typically not well profiled at the shallower depths 
of a genomic library. Therefore, we restricted our analysis to clonal events in 
both exomes and genomes.

Focusing on the clonal and homozygous events detectable in both exome 
and genome data, we hypothesized that any differences between primary  
and relapse samples that were greater than the differences expected from dif-
ferent biopsies in a primary tumor would be largely attributable to clonal 
evolution as a consequence of therapy. To see whether the data supported 
this conclusion, we used the mutations in each biopsy to measure the pair-
wise concordance between all biopsies of individual tumors. Concordance 
was measured as the number of mutations in common between two biop-
sies, as a fraction of the total number of mutations present in both. In paral-
lel, we used the mutations in the primary and relapse samples to measure 
pairwise concordance values between disease compartments. As a positive 
control, we compared the interbiopsy and intercompartmental concordance 
values of an adult GBM sample with multiple biopsies profiled before and  
after therapy (patient 17 from ref. 32).

In MB samples we found a mean pairwise concordance of 0.3903 between 
biopsies of the same tumor—nearly an order of magnitude higher than the 
mean concordance (0.03852) observed between disease compartments 
(Wilcoxon rank-sum test P value < 2.2 × 10−16). One sample stood out as an 
outlier (MB-REC-04), and we note that in that case the tumor was a group 4 
local recurrence. This unusual pattern of recurrence for a group 4 tumor may 
indicate that the primary mass was sub-totally resected rather than grossly 
resected, thus explaining the higher similarity of the recurrent compartment 
to the primary.

In the case of the adult GBM patient (patient 17) with multiregionally sam-
pled primary (three regions; low-grade glioma) and recurrent disease (four 
regions; high-grade glioma), we found the same trend: the primary–relapse 
mean concordance of 0.01506 was an order of magnitude smaller than the 
mean intrabiopsy concordance of 0.5036 (Wilcoxon rank-sum test P value = 
0.0001406). There was no significant difference between the primary–relapse 
MB concordance and the primary–relapse GBM concordance observed in 
patient 17 (Wilcoxon rank-sum test P value = 0.5458). Similarly, there was 
no significant difference between the regional biopsies in GBM versus MB 
(Wilcoxon rank-sum test P value = 0.09926).

Finally, the primary–relapse divergence calculated from reprocessed data 
from patient 17 was on par with that initially presented in the glioma paper41; 
thus we included, for visual comparison, all the primary–relapse values for 
the glioma cohort in Figure 6a (middle panel; values directly derived from 
Supplementary Table 4 of ref. 32).

Statistical analysis. All statistical analyses were performed in the R statistical 
environment. Comparisons of categorical variables between entity types were 
done by two-sided Fisher’s exact test. Comparisons of distributions were done 
by Welch two-sample t-test (parametric) or Wilcoxon rank-sum test (nonpara-
metric). P values < 0.05 were considered statistically significant.

Data availability. The Gene Expression Omnibus accession codes for the pre-
viously unpublished gene expression data are GSE62802 (HGG samples) and 
GSE62803 (MB samples). The Toronto whole-exome sequencing data sets have 
been deposited in the European Genome-phenome Archive under accession 
codes EGAD00001000723 and EGAS00001001014.
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