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Glioblastomas (GBMs) are the most aggressive and 
treatment-refractory brain tumors in adults. Treatment fail-
ure is rooted in the extensive heterogeneity observed within 

tumors and across patients1–4. Molecular stratification of GBMs into 
transcriptional subgroups5,6 (proneural, mesenchymal and classi-
cal) has not led to the development of successful targeted therapies7, 
hindered by the inability of bulk sequencing to reflect the layered 
genetic, cellular and epigenetic diversity of cell states.

Single-cell RNA-sequencing (scRNA-seq) studies have high-
lighted the complexity of GBM biology2,3,8–10, demonstrating that 
subpopulations of cells with different transcriptional subtypes and 

variable somatic genetic events (copy-number variations (CNVs) 
and mutations) coexist within a single tumor. However, the source 
of this functional intratumoral heterogeneity remains unclear and 
this has impeded the development of effective GBM treatments.

One potential source of phenotypic diversity and plasticity in 
GBMs lies within the rare self-renewing GSC fraction11–14. GSCs 
hijack developmental stem cell programs to drive and maintain 
tumor growth, as well as acquire resistance mechanisms to evade 
chemotherapy and radiotherapy15–17. However, it is still unclear how 
diversity within the GSC pool may affect the cellular composition 
and growth of GBMs.
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Glioblastomas harbor diverse cell populations, including rare glioblastoma stem cells (GSCs) that drive tumorigenesis. To char-
acterize functional diversity within this population, we performed single-cell RNA sequencing on >69,000 GSCs cultured from 
the tumors of 26 patients. We observed a high degree of inter- and intra-GSC transcriptional heterogeneity that could not be 
fully explained by DNA somatic alterations. Instead, we found that GSCs mapped along a transcriptional gradient spanning 
two cellular states reminiscent of normal neural development and inflammatory wound response. Genome-wide CRISPR–Cas9 
dropout screens independently recapitulated this observation, with each state characterized by unique essential genes. Further 
single-cell RNA sequencing of >56,000 malignant cells from primary tumors found that the majority organize along an orthog-
onal astrocyte maturation gradient yet retain expression of founder GSC transcriptional programs. We propose that glioblas-
tomas grow out of a fundamental GSC-based neural wound response transcriptional program, which is a promising target for 
new therapy development.
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Here, we applied scRNA-seq and genome-wide CRISPR–Cas9 
screening to GSCs isolated from their in vivo primary tumor niche 
to study their molecular heterogeneity and function in an unbiased 
manner. Enriching for GSCs enabled us to observe a previously 
undescribed level of diversity within the cancer stem cell fraction 
of GBMs, a signal challenging to resolve in primary patient speci-
mens due to the relative rarity of GSCs within the tumor bulk. We 
found that GSCs exist along a major transcriptional gradient between 
two cellular states, Developmental and Injury Response programs. 
Orthogonal to this GSC gradient, we identified an astrocyte matura-
tion gradient in patient tumor cells, highlighting the transcriptional 
programs implicated in differentiation of GSCs into mature tumor 
cells that comprise the bulk. Our work provides a model that explains 
the source of cellular heterogeneity in GBMs and identifies a range of 
sensitivities of this fundamental cellular program that directly inform 
the development of new therapeutic strategies targeting GBMs.

Results
Transcriptional heterogeneity within GSCs. To enrich for 
rare stem-like cells within primary tumors, we used established 
serum-free culturing methods18,19 to generate a collection of 
patient-derived GSCs capable of sustaining growth in vitro and ini-
tiating tumors in mice (Supplementary Table 1 and Supplementary 
Note 1). This method supports the growth of a diversity of clones 
that closely matches human GBM xenografts12 and excludes cells 
of hematopoietic origin. To characterize heterogeneity in the GBM 
stem cell fraction, we profiled 69,393 cells from 29 early passage 
GSC cultures (21 adherent; 8 neurosphere) derived from 26 patients 
using scRNA-seq (Supplementary Table 2).

To explore GSC heterogeneity within individual patients, we 
clustered GSCs from each sample independently using extensive 
hyperparameter optimization and validation with multiple algo-
rithms (Methods, Extended Data Fig. 1). We discovered substantial 
intra-GSC heterogeneity, uncovering two to six transcriptional sub-
populations per GSC, totaling 86 clusters across 29 samples (Fig. 
1a,b and Extended Data Fig. 1), demonstrating that in addition to 
the diverse cell states present in GBMs, rare GSC subpopulations 
within the tumor are heterogeneous themselves. For each cluster, 
we compared the top upregulated marker genes and across samples 
to identify shared subpopulations across GSCs (Supplementary 
Table 3). A subset of 14 clusters had increased similarity (mean 
Jaccard Index = 0.38 versus 0.066 for all other clusters) and shared 
upregulation of 358 core genes involved in cell cycling programs 
(Extended Data Fig. 2a–d). In addition to upregulation of canonical 
cell-cycle genes (MKI67, TOP2A, AURKA), proliferating GSC clus-
ters overexpressed genes known to promote self-renewal and pro-
genitor expansion in the neocortex20 (including ARHGAP11A and 
ARHGAP11B). Many of these shared proliferation genes (BRCA1, 
HMGB2, CDC45) are also targets of the transcription factor TLX, 
part of a regulatory network governing proliferation in adult neu-
ral stem cells21 and self-renewal in brain tumor stem cells22. GSCs 
with a larger fraction of actively cycling cells displayed increased 
aggressiveness and reduced survival upon implantation in an ortho-
topic xenograft model (Extended Data Fig. 2c). Collectively, these 
observations define a core GSC proliferation module, resembling 
aberrant neurodevelopmental programs, potentially employed by 
GSCs to sustain tumor growth.

Remaining intra-GSC clusters (72 of 86) had limited marker 
similarity (mean Jaccard Index = 0.066), suggesting a large portion 
of subpopulations within GSCs are specific to individual patients 
(Extended Data Fig. 2a). Within individual GSC samples, expres-
sion of marker genes drove divergence of transcriptionally distinct 
subpopulations. For example, G549_L consisted of two transcrip-
tional states; one cluster (C1) characterized by upregulation of 
EDN1 and ADM, both HIF-1 target genes involved in angiogenic 
signaling23, while the second cluster (C2) overexpressed ASCL1, a  

transcription factor critical for neuronal differentiation that sup-
presses tumorigenicity in GSCs24 (Extended Data Fig. 2e,f). These 
results demonstrate substantial heterogeneity both within and 
between the GSC pools of individual patients, with important 
implications for designing targeted therapies against multiple sub-
populations in the tumor-initiating fraction of GBMs.

CNVs can modulate intra-GSC heterogeneity. To evaluate whether 
the polyclonal structures observed at the transcriptional level are a 
result of somatic genome alterations, we inferred CNV profiles from 
scRNA-seq data for each intra-GSC cluster (Fig. 1c,d; Methods). 
We validated CNVs inferred from scRNA-seq with matched bulk 
whole-genome sequencing (WGS) for a subset of 20 samples. 
CNV profiles from bulk WGS were more similar to averaged 
scRNA-seq-derived profiles from all cells versus individual clusters 
(Spearman’s r = 0.68 versus r = 0.63, p < 0.001). While the aggregate 
data verifies our scRNA-seq CNV results, cluster-level profiles support 
the presence of subclonal CNVs within GSCs not detected by bulk 
approaches (Extended Data Fig. 3 and Supplementary Tables 4 and 5).

Amplification of chromosome 7 and deletion of chromosome 
10 were common across clusters, indicating that these are likely 
clonal, founding events involved in the malignant transforma-
tion of neural stem cells (NSCs) to GSCs (Fig. 1c), consistent with 
reported frequency and evolutionary timing in GBMs1,5,25,26. Most 
GSCs harbored transcriptional clusters with unique CNV profiles 
(n = 22 of 29 samples totaling 69 clusters), indicative of extensive 
subclonal genomic diversification within GSCs (Extended Data 
Fig. 3d). For example, in G876_L all three clusters shared clonal 
amplification of chromosome 7, in addition to private subclonal 
CNVs restricted to one transcriptional cluster. Deletion of chro-
mosome 9 was observed in 2 of the 3 clusters (C1, C2) in G876_L, 
while amplification of chromosome 12 was exclusive to a separate, 
rare cluster of cells (C3) (Fig. 1d). Furthermore, 49% of clusters 
(n = 34 of 69) had significant enrichment (P < 0.05, Fisher’s exact 
test) of marker genes within altered CNV loci, highlighting the 
potential for subclonal CNVs to modulate transcriptional pro-
grams in GSCs (Extended Data Fig. 3e). However, not every GSC 
had evidence of genomic diversity. BT67_L has two transcrip-
tional clusters presenting with identical inferred CNV profiles 
(P = 0.16, Kolmogorov–Smirnov test) (Fig. 1d). Therefore, while 
established GBM founder CNVs are common and clonal across 
GSCs, subclonal CNVs likely drive only a portion of intra-GSC 
heterogeneity observed between patients.

Characterizing GSC heterogeneity between patients. To map 
GSC transcriptional heterogeneity across patients, we used uni-
form manifold approximation and projection (UMAP) to visualize 
inter-GSC relationships (Extended Data Fig. 4a,b). Unsupervised 
clustering identified 61 transcriptional clusters, revealing striking 
patient-specific transcriptional programs, with most clusters (n = 57 
of 61) characterized by an almost entirely unique, patient-specific 
GSC transcriptional profile. To ensure patient-specific clustering 
patterns reflect true biological signals innate to cancer cells, and not 
technical batch effects, we applied three batch-correction methods 
(Extended Data Fig. 4c–e). No batch-correction algorithm was suc-
cessful in unifying clusters across all samples and were inconsistent 
with each other, supporting the conclusion that our samples dis-
play substantial inter-patient heterogeneity, as has been observed in 
tumors2,3,27–34 and malignant cell lines35–38 from a variety of human 
cancers, including GBM. Supporting this, GSCs derived from dif-
ferent geographical regions of the same tumor (G945-I,J,K and 
G946-J,K) were more similar to each other than to GSCs derived 
from different tumors (Extended Data Fig. 4b).

GSCs organize along a transcriptional gradient. To identify core 
transcriptional programs underpinning inter-GSC heterogeneity, 
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Fig. 1 | Characterizing heterogeneity within GSCs. a, t-distributed stochastic neighbor embedding (t-SNE) visualization of GSC cultures from select 
samples demonstrating intra-sample heterogeneity defined by the presence of multiple transcriptional clusters. Cells colored by transcriptional cluster. 
b, Breakdown of cluster number across 29 GSC cultures. c, Genome-wide inferred CNV profiles for 29 patient-derived GSC cultures. Columns represent 
genomic regions, ordered by genome position across all chromosomes. Rows represent CNVs averaged by intra-sample transcriptional cluster, with one 
row per cluster (Extended Data Fig. 1a). Samples ordered by increasing cluster number. d, Inferred CNV value (y axis) for select GSC cultures with (top) 
and without (bottom) CNV variation between transcriptional clusters. Lines are colored by intra-sample transcriptional cluster. Black bars represent 
regions of variable CNVs between clusters.
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we performed principal-component analysis (PCA) on the global 
scRNA-seq dataset of 69,393 cells. We removed one outlier GSC 
sample, G800_L, from downstream analysis on the basis of inflated 
PC2 signal, leaving 65,655 cells (Extended Data Fig. 5a). Re-running 
PCA without G800_L revealed a single axis of variation along PC1, 
separating cells into two prominent groups. (Fig. 2a).

Cells with high PC1 loadings were associated with elevated 
expression of mesenchymal-related genes and enrichment of path-
ways implicated in inflammation and immune cell activation, as 
well as nuclear factor (NF)-κB and STAT signaling (false discov-
ery rate (FDR) < 0.01; Fig. 2b and Extended Data Fig. 5b,c). When 
compared to cell types found in developing fetal brain39,40, mature 
adult brain41–45 and malignant cell states in GBMs2,5, these inflamed 
GSCs best resembled both the Cancer Genome Atlas (TCGA) 

Mesenchymal subtype and the mesenchymal-like cell state2 in 
GBMs, as well as neuroprotective A2 reactive astrocytes (Fig. 2c, 
Extended Data Fig. 5b and Supplementary Table 6). Interestingly, 
A2 reactive astrocytes promote neuronal survival and tissue repair 
in response to ischemic injury42,46, perhaps paralleling mechanisms 
employed by GSCs to sustain growth and self-renewal in hypoxic 
tumor microenvironments. Furthermore, upregulation of inter-
feron and wound-healing programs suggests the mesenchymal-like 
phenotype in GSCs may be the result of microenvironment-induced 
transcriptional reprogramming in response to injury.

Conversely, cells with low PC1 loadings were associated with genes 
and pathways related to gliogenesis and neural development (for 
example PTPRZ1, ASCL1, SOX2), highlighted by the expression of oli-
godendrocytic (for example OLIG1, OLIG2), astrocytic (for example 
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CLU, APOE, S100B) and neuronal (for example STMN3) lineage mark-
ers (Fig. 2b and Extended Data Fig. 5b–d). Consistently, this group of 
GSCs strongly resembled a spectrum of developing cell types, includ-
ing oligodendrocyte progenitor cells (OPCs), developing astrocytes 
and radial glia. Similarly, these developmental-like GSCs mirrored 
transcriptional profiles of multiple malignant GBM cell types, such as 
the Classical and Proneural subtypes reported by TCGA5 and recently 
reported neural precursor (NPC), astrocyte (AC) and OPC-like cell 
states2 (Fig. 2c and Extended Data Fig. 5b). This finding is indicative 
of a multipotent class of GSCs capable of differentiating into mature 
neural cell types. This result was recapitulated using Diffusion Map, an 
alternate dimensionality reduction method designed to identify gradi-
ents from scRNA-seq data47 (Extended Data Fig. 6a,b).

We conclude that GSCs exist between two major transcriptional 
programs: one reminiscent of neural development with differentia-
tion capacity, which we term ‘Developmental’ (low PC1 loadings) 
and the other with inflammatory and wound response signaling 
resembling reactive astrocytes, which we name ‘Injury Response’ 
(high PC1 loadings) (Fig. 2a).

To validate the existence of two GSC states, we profiled a 
larger cohort of 72 GSCs (38 adherent, 34 neurosphere) with bulk 
RNA-seq, a subset of which (n = 23 of 72) overlap with those pro-
filed by scRNA-seq. Using a resampling procedure, bulk GSC pro-
files separated into two stable clusters (Extended Data Fig. 6c,d). 
Consistent with our scRNA-seq data, differential gene expres-
sion and pathway enrichment analysis identified one GSC cluster 
enriched for pathways involved in neuro- and gliogenic signaling 
and development (consistent with the Developmental subtype) and 
another enriched for inflammatory response programs (consistent 
with the Injury Response subtype) (Extended Data Fig. 6e,f and 
Supplementary Table 7).

At the population level using bulk RNA-seq profiling, GSCs 
were categorized discretely as Developmental or Injury Response 
(Extended Data Fig. 6d). However, at the single-cell level, we 
observed a transcriptional gradient between the two states 
(Extended Data Fig. 7). For each patient, GSCs occupied a discrete 
range within the Developmental and Injury Response spectrum. 
(Fig. 2d,e and Extended Data Fig. 7c). Patient localization to a range 
of the gradient is not the result of technical artifacts, as the same 
gradient existed after correcting the expression matrix for batch 
by matching mutual nearest neighbors48 across samples (Extended 
Data Fig. 7d,e). Furthermore, cells from multiple patients mapped 
to overlapping regions of the Injury Response–Developmental 
gradient, supporting common cellular phenotypes across patients 
(Methods; Extended Data Fig. 7f). Thus, profiling GSCs from many 
samples is necessary to characterize the full spectrum of possible 
transcriptional states giving rise to bulk GBM.

Developmental and Injury Response GSC states have functional 
differences and exhibit plasticity. We functionally validated the 

presence of the two GSC transcriptomic states using core cancer 
stem cell assays. Using in vitro limiting dilution assays as a readout 
of self-renewal, we found that Developmental GSCs had higher rates 
of sphere-forming cells (SFCs) compared to Injury Response GSCs 
(P = 0.044, Student’s t-test) (Fig. 3b). Furthermore, Developmental 
gene signature scores were correlated with the proportion of SFCs 
(Spearman’s r = 0.30, P = 0.027), whereas Injury Response gene 
signature scores were negatively correlated (Spearman’s r = −0.32, 
P = 0.018), demonstrating that GSC functional properties vary 
along the transcriptional gradient.

To assess disease aggressiveness and tumorigenic potential 
between the two GSC states, we engrafted 37 GSC lines intracra-
nially into immunocompromised mice. In line with stratification 
of patients with GBMs into transcriptional subgroups5, we did 
not observe a difference in survival between Developmental and 
Injury Response GSCs in an orthotopic xenograft model (P = 0.28, 
log-rank test), suggesting that both GSC states give rise to equally 
aggressive tumors (Fig. 3a). However, we did observe a difference 
in tumorigenicity. Developmental GSCs (n = 23 of 23) had signifi-
cantly higher rates of tumor formation compared to Injury Response 
GSCs (n = 11 of 14; P = 0.047, Fisher’s exact test), perhaps highlight-
ing the requirement of the tumor microenvironment to perpetu-
ate the Injury Response GSC phenotype. Collectively, these assays 
demonstrate that functional properties governing GSC phenotype 
are associated with the gradient of transcriptional states.

Given the continuous nature of GSC phenotypes along the 
transcriptional gradient, we investigated the possibility of plastic-
ity between Developmental and Injury Response states. We treated 
a Developmental GSC (G523_L) with an inflammatory cytokine 
cocktail (C1q, tumor necrosis factor (TNF)-α and IL-1α) and 
assessed the expression of Injury Response gene markers (CD44, 
SERPINE1 and TNFRSF1A) by quantitative PCR with reverse 
transcription (RT–qPCR) (Fig. 3c). The cytokine cocktail induced 
expression of Injury Response genes after 48 h, demonstrating the 
potential for microenvironment-induced conversion of GSCs from 
a Developmental to Injury Response state. These assays mimic con-
ditions in the tumor microenvironment to inform the potential of 
plasticity between GSC states and the origins of inflammatory sig-
nals we observed in vitro. These results suggest that inflammatory 
cytokines previously found to be secreted by microglia to induce the 
formation of reactive astrocytes42, may also induce the expression of 
Injury Response genes in Developmental subgroup GSCs.

Functional dependencies identified by genome-wide CRISPR 
screens reflect Developmental–Injury Response gradient posi-
tion. To identify functional dependencies and potential therapeutic 
targets underpinning the Developmental–Injury Response gradi-
ent, we performed genome-wide CRISPR–Cas9 dropout screens 
using the 70-k TKOv3 library49 (70,948 guides targeting 18,053 
protein-coding genes) in 11 GSCs, a subset of which overlapped 

Fig. 4 | Genome-wide CRISPR screens identify essential regulators of the transcriptional gradient in GSCs. a, Pearson correlation between CRISPR 
screens (n = 11 GSC cultures), ordered by hierarchical clustering. Columns annotated with gene set variation analysis (GSVA) gene signature scores 
from matched bulk RNA-seq. n.d. denotes no bulk RNA-seq data available for sample. b, Rank order plot depicting differential fitness scores between 
Developmental (n = 4) and Injury Response (n = 5) GSC screens. Rank is according to differential fitness z scores (average qBF for Injury Response GSC 
screens, average qBF for Developmental GSC screens). Top ten hits per group are labeled. c, Heat map of quantile normalized gene fitness qBF scores for 
the top ten differentially essential genes between Developmental and Injury Response GSCs. Rows ordered by position on the transcriptional gradient 
(related to Fig. 2d). Rows are annotated with GSVA gene signature scores from matched bulk RNA-seq. d, Validation of state-specific fitness genes 
identified in CRISPR–Cas9 screens. Cas9-expressing Developmental (G523_L and G472_L; white) and Injury Response (G564_L and G691_L; gray) GSCs 
were transduced with lentivirally expressed gRNAs targeting indicated genes. gRNA-infected cells were grown in competitive proliferation assays against 
control cells expressing AAVS1 targeting gRNAs for 14 d, at which point relative cell number was assessed by flow cytometry. P values were calculated 
using Welch’s t-test (two-sided) comparing pooled Injury Response and Developmental replicates. Bars represents mean ± s.e.m. Data points represent 
independent biological replicates from n = 2–5 independent experiments per gRNA. e, Line plot depicting the proportion of Injury Response (gray line) 
and Developmental (red line) fitness genes (as defined in Fig. 4b) that are essential in each GSC. Samples are ordered by position on the transcriptional 
gradient (related to Fig. 2d) and annotated with GSVA gene signature scores from matched bulk RNA-seq.
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those profiled by bulk (n = 9 of 11) and scRNA-seq (n = 6 of 11). We 
used the BAGEL algorithm50,51 to normalize gRNA reads for sample 
sequencing depth, calculate fold change for each guide RNA from 
the T0 baseline and compute a quantile normalized Bayes factor 
(qBF) for each gene, representing a confidence measure that knock-
out of a specific gene reduced fitness (Supplementary Table 8). 
Notably, unsupervised clustering of variable essential genes (1,345 

genes; qBF > 10 in 3–9 of 11 screens) recapitulated Developmental 
and Injury Response groups, consistent with observations from 
bulk and scRNA-seq (Fig. 4a and Extended Data Fig. 8). These data 
emphasize the fundamental role of the GSC gradient in governing 
essential cellular phenotypes.

Next, we calculated the difference in qBF scores between 
Developmental and Injury Response GSCs to identify differentially 
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essential genes (Supplementary Table 9). Examination of top dif-
ferential fitness genes (z score cutoff of >2 or <−2) in each respec-
tive GSC state identified dependencies resembling gene expression 
markers and biological processes identified in the transcriptomics 
data (Fig. 4b). Injury Response GSCs were dependent on genes 
related to inflammation and integrin signaling (for example ITGB1, 
ILK) for their proliferation, whereas Developmental GSCs were 
dependent on genes implicated in neurodevelopment (for example 
OLIG2, SOX2, ASCL1) (Fig. 4c).

Using competitive cell proliferation assays, we validated three 
hits each from Developmental (CCND2, SOX2, IRS2) and Injury 
Response (ILK, ITGB1, WWTR1) GSC states by testing individual 
gene knockouts (two gRNAs per gene) in a panel of four GSC lines 
(two Developmental and two Injury Response) (Fig. 4d). GSCs were 
preferentially sensitive to knockdown of gene hits from their respec-
tive transcriptional state. Injury Response GSCs were sensitive to 
knockdown of Injury Response gene hits, but not Developmental 
hits and vice versa, demonstrating that GSC states have unique and 
specific functional dependencies underpinning cellular growth.

Pathway analysis on differentially essential genes revealed Injury 
Response GSCs were more sensitive to perturbations in basic cel-
lular functions such as cell cycle, splicing and DNA repair, as well 
as immune related signaling pathways (Extended Data Fig. 8e). 
Interestingly, Developmental GSCs relied on aerobic respiration, 
whereas Injury Response GSCs were more dependent on glycolysis. 
Under hypoxic conditions, tumor-initiating cells in GBMs upregu-
late glycolysis to promote drug resistance and stemness52, suggesting 
that GSC fitness is influenced by their microenvironmental niche. 

This is consistent with our expression data showing upregulation 
of transcriptional programs related to hypoxia and angiogenesis in 
Injury Response GSCs (Extended Data Figs. 5d and 6e) and dem-
onstrates GSC functional dependencies are reflective of their tran-
scriptional programming.

Furthermore, we observed that GSCs organize along an essenti-
ality gradient, mirroring the transcriptional gradient (Fig. 4e). The 
most Developmental GSCs, as defined by expression data (G523_L), 
were dependent on the greatest fraction of Developmental fitness 
genes. The same observation was true in Injury Response GSCs. 
GSCs located at the center of the gradient (for example, G809_L and 
G361_L), potentially representing mixed Developmental/Injury 
Response phenotypes, were the most reliant on fitness genes from 
both GSC states. Regardless of position on the gradient, all GSCs 
possessed essential genes from both ends of the spectrum, suggest-
ing that combinatorial targeting of essential genes implicated in core 
Developmental and Injury Response processes could have general 
therapeutic benefit across patients.

Position on GSC gradient is associated with specific copy-number 
variants. Next, we hypothesized that specific CNVs may be prefer-
entially enriched within Developmental and Injury Response GSC 
subtypes. Using gene signature scoring, we categorized cells into 
Developmental or Injury Response subtypes and compared the fre-
quency and signal of CNVs across chromosome arms within these 
two groups (Fig. 5). To obtain a pure view of genetic heterogeneity 
within states, we excluded hybrid or unknown cells (2,733 of 65,655 
cells; 4%) from the analysis, defined as cells classified into both  
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Fig. 5 | Genetic alterations influence GSC state. a, Frequency of amplifications (red) and deletions (blue) across chromosomal arms within cells classified 
as being Developmental (left) or Injury Response-like (right). Regions variably altered between states are denoted by asterisks. b, Comparison of InferCNV 
scores between Developmental (n = 25,292 cells) and Injury Response (n = 37,630 cells) GSCs across chromosome arms. Bar plot of effect size calculated 
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A two-sided Wilcoxon test was used for statistical analysis to compare means.
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subtypes and neither subtype, respectively. Generally, Developmental 
and Injury Response GSCs shared similar CNV profiles (Fig. 5a). 
Full or partial gain of chromosome 7 (79% Developmental, 64% 
Injury Response) and loss of chromosome 10 (42% Developmental, 
38% Injury Response) occurred at similar, high frequencies in both 
GSC subtypes, consistent with reports that place these CNVs at the 
apex of GBM somatic evolution25.

In contrast, to established founder CNVs, we identified three 
chromosome arms, 6q, 9p and 19p, as being differentially altered 
between Developmental and Injury Response GSCs. Chromosome 
arm 6q was frequently amplified in Injury Response cells (23% 
versus 1%) and deleted in Developmental cells (28% versus 8%) 
(effect size = 0.99) (Fig. 5b). This chromosomal region encodes 
potential regulators of the Injury Response phenotype, includ-
ing TNFAIP3, involved in TNF signaling and cytokine-mediated 
inflammatory responses. Chromosome arm 19p was more fre-
quently deleted in Injury Response cells (46% versus 2%) and ampli-
fied in Developmental cells (36% versus 3%) (effect size = 1.81). 
Deletion of chromosome arm 9p, encompassing the CDKN2A/B 
locus, was exclusive to the Injury Response state (30% versus 1%) 
(effect size = 1.66) and is implicated in GBM initiation25. Both 
Developmental and Injury Response marker genes were enriched in 
state-specific altered regions of the genome (P < 0.0001, chi-squared 
test), suggesting that somatic CNVs can affect position in the GSC 
gradient.

Heterogeneity in GBMs is defined by two transcriptional axes. To 
determine where the Developmental–Injury Response GSC gradi-
ent lies within the cellular architecture of GBMs, we profiled 44,712 
cells from seven GBM tumors using scRNA-seq. Using a combina-
tion of unbiased clustering, cell-type marker expression and CNV 
inference, we determined that 14,207 of 30,505 cells were malig-
nant tumor cells (Fig. 6). We performed PCA on the combined 
79,862 cancer cell dataset (65,655 GSCs and 14,207 tumor cells) to 
identify shared transcriptional programs between GSCs and GBM 
tumor cells. The first two principal components defined two core 
axes of variation explaining the genesis of heterogeneity in GBMs 
(Fig. 7a). The first, a differentiation trajectory between stem-like 
GSCs and differentiated tumor cells and the second recapitulating 
the Developmental–Injury Response gradient that we observed in 
GSCs alone (Fig. 7a). To investigate transitional dynamics between 
GSCs and differentiated tumor cells, we ran RNA velocity in com-
bination with Diffusion Map on a subset of cells (n = 20,343 cells; 
Methods; Fig. 7b). In general, the vector field points from the root of 
GSCs (DM1-high) to the tail of tumor cells (DM1-low), indicating 
directional flow from a stem-like phenotype to differentiated tumor 
cell and further supporting the gradients that we identified by PCA.

Separation between GSCs and tumor cells along the differentia-
tion trajectory underscores the presence of distinct transcriptional 
programs involved in the transition from stem-like initiating cells 
to mature differentiated tumor cells in GBMs (Fig. 7a). Tumor cells 
most distant from GSCs, at the end of the differentiation trajectory, 
resemble mature nonproliferative astrocytes41,53, expressing canoni-
cal markers such as GFAP, AQP4 and APOE (Fig. 7c,d and Extended 

Data Fig. 9a). Conversely, the GSC pool was enriched for gene sig-
natures related to progenitor cells, such as NPCs and young astro-
cytes, as well as elevated expression of H2FAZ, a gene involved in 
regulating gliogenesis in neural precursor cells54. The second tran-
scriptional gradient was correlated with the Developmental–Injury 
Response gradient that we observed in GSCs. Both tumor cells and 
GSCs expressed markers of Developmental (for example OLIG1, 
OLIG2) and Injury Response (for example CD44) states (Fig. 7c,d).

We further interpreted our two gradients in the context of previ-
ously described cell types in adult and pediatric GBM2. We projected 
GSCs and tumor cells onto a cellular state map consisting of NPC, 
OPC, astrocyte-like and mesenchymal-like quadrants (Extended 
Data Fig. 9b). GSCs were capable of recapitulating all four cell states 
found in patient tumors. Developmental GSCs commonly mapped 
to astrocyte-like/OPC/NPC cell states, whereas Injury Response 
GSCs mapped predominantly to a mesenchymal-like state. Patient 
tumor cells were predominantly astrocyte-like, confirming the phe-
notypes observed in our differentiation trajectory (Extended Data 
Fig. 9c). Together these findings demonstrate that, despite culture 
conditions and lack of microenvironment, GSCs mirror cell types 
found in primary tumors and represent a major transcriptional axis 
underpinning GBMs.

GSC gradient between Developmental and Injury Response 
is recapitulated in primary tumors. Although discovered in 
GSCs, primary tumor cells also organize along the transcriptional 
gradient (Fig. 8a). Tumor cells resembled the Developmental 
state more often, however Injury Response-like tumor cells 
were visible in every tumor (Fig. 8b–d). To validate the pres-
ence of rare Injury Response GSCs in a larger cohort, we pro-
filed an additional ten patient tumors (42,334 of 53,853 nuclei 
were malignant) using single-nuclei RNA-seq (snRNA-seq) 
(Fig. 8a and Extended Data Fig. 9d–f) and analyzed four public 
GBM sc/snRNA-seq datasets2,8–10 (52 tumors; 49,018 malignant 
cells per nuclei) (Supplementary Table 10; Methods). Across all 
datasets, Developmental and Injury Response programs were 
anti-correlated (mean Pearson’s r = −0.70; Fig. 8e), mirror-
ing patterns observed in our original discovery cohort. Tumor 
cells spanned the complete range of phenotypes discovered in 
our GSCs, including rare Injury Response-like tumor cells (Fig. 
8a,e). The presence of fewer Injury Response-like cells relative to 
Developmental-like cells in primary tumors could be the result of 
hindered differentiation capacity, limiting contribution of cells to 
the tumor bulk24. Thus, our panel of GSC lines successfully acts 
as a model to help explain global expression patterns in GBMs, 
including rare tumor-initiating cell types.

To determine whether tumor cells harbor CNVs of their matched 
GSC states, we categorized tumor cells as Developmental or Injury 
Response-like based on the upper quartile of respective transcrip-
tional program scores (Extended Data Fig. 10a). Next, we identi-
fied tumor cells harboring at least one Developmental (chr6q−, 
chr9p+, chr19p+) or one Injury Response (chr6q+, chr9p−, chr19p−) 
CNV. Developmental and Injury Response-like tumor cells were 
significantly enriched for their corresponding state-specific 

Fig. 6 | Classification of malignant cells in GBM tumors. a, Gene signature scoring and classification of cells into broad brain and immune lineages. 
Distribution of AUCell scores across cells. Vertical red line represents the classification threshold. Cells with an AUC value greater than the threshold were 
determined to be active for a given gene signature (left). UMAP visualization of cells colored by AUC (middle) and whether they are active (black) for a 
given gene signature (right) (n = 44,412 cells from seven tumors). b, UMAP subsetted by cells classified as being of brain origin. Cells colored by scaled 
posterior probability from CONICS single-cell CNV inference tool for select chromosome arms. Higher probability (red) represents a cell likely belonging 
to the Gaussian mixture model component with a higher expression mean (n = 44,412 cells from seven tumors; same as in a). c, Expression of pan-immune 
(PTPRC/CD45), macrophage (ITGAM/CD11B, FCGR3A/CD16A, CD14), microglia (TMEM119), T-cell (CD2, CD3D), oligodendrocyte (MOG, MAG) and 
putative tumor cell (EGFR) markers (n = 44,412 cells from seven tumors; same as in a). d, Clustering of 44,712 cells from patient GBM tumors. Cells are 
colored by patient and annotated by cell type (left). Re-clustering of malignant cells only (right; n = 14,207 cells), colored by patient. e, Quantification of 
malignant cells across patients, totaling 14,207 cells.
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CNVs compared to tumor cells with lower transcriptional 
scores (Developmental P < 0.0001, Injury Response P < 0.0001; 
chi-squared test). Individual tumor cells rarely harbored CNVs 
from both Developmental and Injury Response states (n = 658 of 

14,207 cells; 4.6%), suggesting that these may be mutually exclusive 
events and that, in addition to transcriptional programs, tumor cells 
inherit genetic alterations of their founder GSCs (Extended Data 
Fig. 10b). These results further support the potential for CNVs to 
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influence GSC and subsequent tumor cell transcriptional state, 
although further validation is needed beyond the seven patients’ 
tumors available in this cohort.

A fraction of primary tumor cells resembling GSCs were evident 
at the intersection of the Developmental–Injury Response and dif-
ferentiation gradients. To characterize candidate stem-like cells 
within patient tumors more precisely, we trained a logistic regres-
sion classifier to find GSC-like tumor cells (Extended Data Fig. 10c; 
Methods). In agreement with the PCA, 2,062 GSC-like tumor cells 
were found in the overlapping region between GSCs and tumor cells. 
Every tumor contained a fraction of cells resembling GSCs (median 
14%) (Extended Data Fig. 10d). Notably, the tumor with the highest 
proportion of GSC-like cells was the only IDH1 mutant (p.R100Q, 
G620_T) in the cohort (Fig. 8d). IDH1 mutations promote con-
vergence toward a proneural phenotype55, similar to what we term 
‘Developmental’, potentially explaining the increased overlap with 
Developmental GSCs. Compared to the differentiated tumor bulk, 
GSC-like tumor cells have upregulated expression of stemness genes 
(for example SOX4, SOX11, STMN1) that overlap with markers of our 
GSC gradient (Extended Data Fig. 10e–j). These data demonstrate 
that substantial overlap exists between GSCs cultured from patient 
tumors and GSCs found directly within surgical GBM samples.

Discussion
Single-cell profiling of adult and pediatric GBMs has characterized 
the diverse landscape of cellular states and genetic abnormalities 
present across and within individual tumors2,3,8–10. However, the 
fundamental source of this heterogeneity remains unclear. In this 
study, we comprehensively characterized cellular phenotypes of 
purified GSCs at the root of gliomagenesis using a combination of 
scRNA-seq and genome-wide CRISPR screening. We verified these 
phenotypes using sc/snRNA-seq of primary tumors and defined the 
relationship between GSCs and bulk progeny tumor cells.

While GSCs from each patient were composed of multiple tran-
scriptionally and genetically distinct subpopulations, all GSCs 
converged on a single biological axis, spanning two recurrent cell 
states defined by neurodevelopmental and inflammatory programs. 
Previously, GSC subtypes have been interpreted using the proneural 
and mesenchymal classifications derived from bulk RNA-seq of GBM 
tumors5,6,56,57 or based on similarity to neural subtypes found in nor-
mal or fetal brain development10. In contrast, our analyses suggest that 
both neural developmental and wound response programs account 
for a large portion of heterogeneity in GSCs and that plasticity could 
be mediated, in part, through cytokine signaling. Our results support 
a model centered around brain tumor stem cell development where 
transcriptional heterogeneity in GBMs can be explained by a combi-
nation of phenotypic gradients; a GSC gradient between regenerative 
and wound response programs and a bulk GBM gradient between 
stem-like and astrocyte-like differentiated cells.

In response to invasive brain injuries, such as stab wounding or 
ischemia, astrocytes are known to increase proliferation and reac-
tivate stem cell potential as a part of reactive astrogliosis58,59. The 
strong correlation between reactive astrocyte expression signa-
tures and the Injury Response phenotype suggests that these GSCs 
may arise under similar conditions as reactive astrogliosis, such as 

hypoxia or neuroinflammation, both common features of the tumor 
microenvironment in GBMs. We demonstrated that Developmental 
GSCs can be converted to a more Injury Response-like phenotype 
following exposure to inflammatory cytokines. Although initially 
discovered in our in vitro model of GSCs, the Injury Response 
state was also observed in primary tumors, suggesting that this 
state could arise via interactions with activated microglia42 and act 
as a neurodevelopmental driver via growth factor based cell–cell 
communication. We cannot, at this stage, exclude whether Injury 
Response programs could arise autonomously in cells and further 
understanding of deviation from a Developmental state requires 
additional experiments.

The presence of GSC state-specific CNVs suggests that the posi-
tion on the Developmental–Injury Response gradient may be influ-
enced by early somatic alterations. Established founder somatic 
copy-number alterations (chromosomes 7 and 10) may be respon-
sible for the malignant transformation of astrocyte-like NSCs to 
GSCs25,26 with less-prevalent CNVs (19p, 6q, 9p) influencing the 
Developmental–Injury Response gradient position at which each 
GSC begins generation of bulk tumor. This creates a framework to 
further explore the influence of somatic variants and mutations on 
cellular states in the stem-like compartment of GBM and resultant 
heterogeneity in patient tumors. One model could be the acquisi-
tion of somatic alterations in pre-GSC development cells that lie 
dormant until subject to injury, thereby triggering differentiation 
toward an Injury Response state that is redirected toward genera-
tion of abnormal, bulk cancer cells.

In conclusion, our observations have two important conse-
quences. First, we may be able to explain GBMs across patients by a 
single biological model that involves combined mixtures of inflam-
matory wound-healing cells and NPC/OPC-like cells that cause aber-
rant neural growth. We hypothesize that GBM forms as a response to 
neural tissue wounding in the context of a mutated genomic back-
ground and that the output of this process is the dual generation of 
a brain growth and repair response that is derived from genetically 
abnormal brain precursor cells. This tissue regeneration-oriented 
interpretation contrasts with previous2,10 studies and the traditional 
cancer stem cell discourse that emphasizes cancer stem cell roots 
solely in a developmental stem cell paradigm. Second, the hetero-
geneity we have discovered at the GSC level suggests that therapies 
must be developed to simultaneously target both developmental and 
inflammatory processes observed in GBMs and GSCs. Further, our 
CRISPR screens directly identify a range of targetable sensitivities 
within this GBM-generating biological program. This paradigm may 
help identify new approaches to treating GBMs.

Methods
Patient samples and derivation of GSC cultures. All samples were obtained 
following informed consent from patients. All experimental procedures were 
performed in accordance with the Research Ethics Board at The Hospital for Sick 
Children (REB1000025582, REB0020010404), the University Health Network, the 
University of Calgary Ethics Review Board and the Health Research Ethics Board 
of Alberta, Cancer Committee and Arnie Charbonneau Cancer Institute Research 
Ethics Board (REB HREBA-CC-160762).

Patient-derived GSC primary cell lines were derived as either adherent 
(denoted ‘G###_L’) or free-floating sphere (denoted ‘BT###_L’) cultures from 

Fig. 7 | Heterogeneity in GBMs is defined by two transcriptional axes. a, PCA of 79,862 cells highlights overlap between GSCs (blue; n = 65,655 cells) and 
malignant GBM tumor cells (black; n = 14,207 cells) (left). GSCs (middle) and tumor cells (right) are colored by expression of Developmental (red) and 
Injury Response programs (blue). The GSC transcriptional gradient is represented by a yellow arrow and the astrocyte maturation gradient is represented 
by a red arrow. b, Velocity field superimposed on Diffusion Map embeddings of a subset of 20,343 cells from Fig. 7a (maximum 500 cells per sample, 
randomly selected). Cells are colored by cell type (left) and difference in Developmental and Injury Response scores (right). c, Visualization of top-scoring 
cell-type signatures that are most descriptive of GSC or tumor cell populations. PCA plots binned into hexagons (hexbins). Hexbins represent median AUC 
score of all overlapping cells within a given coordinate. Contour lines represent an outline of GSC (blue) and tumor cell (black) data points on the PCA 
plot. d, Visualization of select top- and bottom-loading PC1 and PC2 genes. Hexbins represent median normalized gene expression of all overlapping cells 
within a given coordinate. Contour lines represent an outline of GSC (blue) and tumor cell (black) data points on the PCA plot.
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tumor suspensions. GSCs were cultured in serum-free self-renewal medium. 
Detailed culture conditions are described in Supplementary Note 1. All assays were 
completed with cultures between passage P8–P12.

Proliferation assays. Cells were plated in equal numbers in a 24-well plate: 
triplicate wells for technical replicates and in four biological replicates of each 
technical triplicate. Each set of technical triplicates was lifted and absolute cell 
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number was quantified at several discrete time points over culture. Population 
doubling time was calculated over exponential phase of growth using the 
calculation: (t2 − t1) / 3.32 × (log n2 − log n1), where t = time and n = number of 
cells.

Intracranial GSC xenografts. Six- to 16-week-old female NOD/scid gamma or 
CB17/SCID mice (Charles River Laboratories) were orthotopically transplanted 
with GSCs for survival studies. A total of 100,000 cells dissociated to a single-cell 
suspension were transplanted into the right striatum or at the following 
coordinates: 1 mm anterior of bregma, 2 mm to the right of the midline and 3 mm 
deep. Mice were housed in groups of three to five and maintained on a 12 h light–
dark schedule with a temperature of 22 ± 1 °C and relative humidity of 50 ± 5%. 
Food and water were available ad libitum. All attempts were made to minimize 
handling time during surgery and treatment so as not to unduly stress the animals. 
Animals were observed daily after surgery to ensure there were no unexpected 
complications. All animal protocols described in this study were approved by the 
Animal Care Committee at the Hospital for Sick Children and the University of 
Calgary, operating under the Guidelines of the Canadian Council on Animal Care. 
All animal work procedures were in accordance with the Guide to the Care and 
Use of Experimental Animals published by the Canadian Council on Animal Care 
and the Guide for the Care and Use of Laboratory Animals issued by the National 
Institutes of Health.

Limiting dilution assays. GSCs grown adherently were plated as serial dilutions on 
nonadherent 96-well plates with the highest density at 2,000 cells per well and the 
lowest at 2 cells per well. Each cell dose was plated in six technical replicates. GSCs 
grown as neurospheres were seeded in 100 μl of medium into the inner 60 wells of 
a 96-well plate at ten cell densities, as serial dilutions from 512 cells to 1 cell per 
well, with six replicate wells per cell density. Each LDA plate was counted as one 
technical replicate. After plating, LDA plates were incubated at 37 °C and 5% CO2 
for 14 or 21 d when all wells were scored for the presence or absence of spheres. 
The SFC was calculated using Extreme Limiting Dilution Analysis software61. 
Three biological replicates from each GSC culture were plated.

Cytokine treatment and RT–qPCR. GSCs were seeded at a density of 350,000 
cells per well into six-well plates coated with poly-l-ornithine and laminin. After 
24 h in NS medium, fresh medium containing vehicle or cytokines was added, 
with final concentrations as follows: TNF-α (30 ng μl−1), C1q (400 ng μl−1) and 
IL-1α (3 ng μl−1). Cell pellets were collected after 48 h of treatment and stored at 
−80 °C until RNA extraction. RNA was extracted from cells using RNeasy Mini kit 
(QIAGEN). The Transcriptor First Strand cDNA Synthesis kit (Roche) was used 
to reverse transcribe 1 µg of RNA. Quantitative PCR was performed using SsoFast 
EvaGreen Supermix (BioRad) and the CFX Connect Real-Time PCR detection 
system (BioRad). Primers are listed in Supplementary Table 11.

Single-cell and single-nuclei RNA-seq. Generation of single cell and nuclei 
suspensions. We generated single-cell suspensions from viably cryopreserved, 
dissociated GSC lines by thawing and resuspending in a solution of PBS and BSA. 
For patient GBM tumors, high-quality single-cell suspensions were generated 
by dissociating biopsied tissues in accutase and DNase. Post-dissociation red 
blood cells (RBC lysis solution, Miltenyi) and cellular debris from damaged 
cells (Miltenyi) were removed. We generated single-nuclei suspensions from 
snap-frozen tumors. Tissues were minced on dry ice and dissolved in lysis buffer 
(0.32 M sucrose, 5 mM CaCl2, 3 mM Mg(Ac)2, 20 mM Tris-HCl (pH 7.5), 0.1% 
Triton-X-100, 0.1 mM EDTA (pH 8.0)), followed by homogenization with a pellet 
pestle. Nuclei integrity and quantity was assessed with SYBR Green II RNA Gel 
stain (Thermo Fisher Scientific). Nuclei were filtered through a 40-µm cell strainer 
and sorted for intact nuclei using DAPI (Sigma-Aldrich) on a BD Influx FACS 
sorter. Using a hemocytometer, nuclei or cells were re-suspended according to 10X 
Genomics concentration guidelines to obtain a target of 2,000–6,000 nuclei per 
sample. Cells had a minimum final viability of 70%.

Library preparation and sequencing. Library preparation was carried out as per the 
10X Genomics Chromium single-cell protocol using the v2 chemistry reagent kit. 
Cell or nuclei suspensions were loaded onto individual channels of a Chromium 
Single-Cell Chip along with reverse transcription master mix and single cell 3′ 
gel beads. Complementary DNA underwent a two-stage purification process with 
Dynal MyONE Silane beads (Thermo Fisher Scientific), followed by SPRISelect 
beads (Beckman Coulter). Libraries were sequenced on an Illumina 2500 in High 
Output mode using the 10X Genomics recommended sequencing parameters. 
Samples were quantified by KAPA Library Quantification kit (Roche) and 
normalized to achieve the desired median read depth per cell (target mean 60,000 
reads per cell).

Single-cell and single-nuclei RNA-seq data pre-processing. We used the 10X 
Genomics CellRanger software pipeline (v.2) to demultiplex cell barcodes and 
map reads to the GRCh38 human reference transcriptome using STAR aligner. 
snRNA-seq data were aligned to a custom GRCh38 pre-mRNA reference 
transcriptome that included intron sequences to accurately quantify nuclear 

unspliced messenger RNA. We calculated the number of reads per cell barcode 
using the BamTagHistogram function in the Drop-seq Alignment Cookbook62. We 
determined the number of cells per sample using the cumulative fraction of reads 
corresponding to cell barcode in a library. Cell barcodes were sorted in decreasing 
order and the inflection point was identified using the R package Dropbead63 
(v.0.3.1) to distinguish between empty droplets and droplets containing a cell. The 
raw matrix of gene counts versus cells from CellRanger (v.2) output was filtered 
by the list of true cell barcodes from Dropbead. We processed the resultant unique 
molecular identifier (UMI) count matrix using the R package Seurat64,65 (v.2.3.4) as 
described below and defined detected genes as those with >0 UMIs.

Data filtration. We discarded cells with >4 median absolute deviations, up 
to a maximum of 40%, of UMI counts belonging to expressed mitochondrial 
genome genes, potentially indicative of damaged cells with compromised cellular 
membranes. Probable cell multiplets were removed if log-library size or log-genes 
detected were more than 3 median absolute deviations above the median. 
Low-quality cells with fewer than 350 genes detected were also removed. We 
removed lowly expressed genes detected in fewer than 1% of cells in a sample. 
Quality control metrics are outlined in Supplementary Table 2.

Data normalization. Expression normalization was performed using the 
LogNormalize() function in Seurat. To adjust for differences in library size and 
cell cycle, we regressed on the number of UMIs, mitochondrial content and 
cell-cycle difference (described below) using a linear model during gene scaling 
and centering. Expression values were scaled across all samples and cells in a given 
dataset. Scaled z score residuals (‘relative expression’) were used for dimensionality 
reduction and clustering. For visualizations, we clipped relative expression to the 
range (−2.5, 2.5) to prevent outliers from dominating the scale.

Adjusting for cell-cycle signal. To preserve biological signal separating cycling 
and noncycling cells, while removing uninteresting differences in cell cycle, we 
used the ‘Alternate Workflow’ in Seurat. (https://satijalab.org/seurat/v2.4/cell_
cycle_vignette.html; Supplementary Note 1). First, we assigned cell-cycle scores 
to individual cells on the basis of expression of previously published G2/M and 
S-phase gene signatures33, using the CellCycleScoring() function. Cells expressing 
neither G2/M nor S-phase marker genes were assigned to G1. Next, we calculated 
the difference between S-phase and G2M-phase scores for each cell to give a 
‘Cell Cycle Difference Score’ and regressed the difference in phases with a linear 
regression model as described above.

Dimensionality reduction. PCA was conducted on all expressed genes, excluding 
ribosomal transcripts. Significant principal components, as determined 
by the inflection point in a scree plot, were used as inputs for nonlinear 
dimensionality reduction techniques (t-SNE and UMAP), as well as cell clustering. 
Diffusion Map66 was performed on the same subset of genes as PCA using the 
RunDiffusion() implementation in Seurat. Due to memory constraints, Diffusion 
Map was run on a subset of cells by randomly downsampling each sample to a 
maximum of 500 cells.

Clustering and visualization. To identify intra-GSC and inter-GSC clusters, 
we performed iterative SNN-Cliq-inspired clustering on significant principal 
components using a smart local moving algorithm as implemented in Seurat with 
a range of resolutions from 0.1 to 1. The R package scClustViz67 (v.1.2.1) was used 
to perform differential expression testing (Wilcoxon rank-sum test, FDR < 0.05) 
between clusters for all resolutions to assess the biological relevance of each cluster 
solution. Genes with a detection rate difference between clusters of 0.15 or greater 
were included in differential testing. To select the optimal resolution, we selected 
the clustering solution with the greatest silhouette value from all solutions with a 
median of >20 DE genes per cluster. We performed benchmarking against four 
other clustering algorithms to assess reproducibility of our clustering solutions 
(details in Supplementary Note 1). Clusters were visualized using t-SNE and 
UMAP.

RNA velocity. Briefly, sorted BAM files were run through Velocyto68 (v.0.17.13) 
to generate spliced and unspliced counts. Counts for cells with Diffusion Map 
coordinates were filtered, normalized and log-transformed using scvelo69 (v.0.2.2), 
and visualizations were generated in scvelo. Further details are provided in 
Supplementary Note 1.

Single-cell gene signature scoring and pathway analysis. Gene signature activity in 
single cells, with the exception of cell-cycle stage, was quantified using AUCell70 
(v.1.4.1). Gene signatures were curated from the literature and derived from 
differentially expressed genes between the Injury Response and Developmental 
clusters identified by bulk RNA-seq (Supplementary Table 7 and Supplementary 
Note 1). When directly comparing the difference of AUCell scores between two 
gene signatures, such as in Fig. 7a, AUCell scores were normalized between (0,1) 
by subtracting the minimum and dividing by the range.

Marker genes and principal component top/bottom-loading gene lists were 
annotated using over-representation analysis in clusterProfiler71 (v.3.10.1), with a 
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q-value cutoff of 0.01 after multiple comparison adjustment with the Benjamini–
Hochberg procedure (Supplementary Note 1). The enrichment map was generated 
using genes ranked by the negative of PC1 loadings as described in Supplementary 
Note 1 (Extended Data Fig. 6d).

Single-cell CNV analysis. CNVs were called from scRNA-seq data using inferCNV 
(v.0.3, https://github.com/broadinstitute/infercnv). CNVs were estimated by 
sorting expressed genes by genomic location and averaging relative expression 
of genetically adjacent genes using a sliding window of 100 genes. Resultant 
expression levels were compared to a reference panel of 600 normal, diploid 
oligodendrocyte cells from six primary tumors. Individual CNV scores were 
averaged across intra-GSC clusters to visualize transcriptional clusters with unique 
CNV profiles in Fig. 2b. To validate the accuracy of our single-cell CNV calls, 
we compared inferCNV scores and WGS CNV log2 ratios at the gene level for a 
cohort of 20 GSCs profiled with both technologies. Discrete inferCNV cutoffs that 
define single copy gain (0.17) or loss (−0.15) were determined using the median 
inferCNV score of genes deleted or gained by GISTIC72 (v.2.0.23) on matched WGS 
data (Extended Data Fig. 3a–c).

CNV enrichment analysis. To assess how inferred CNVs may influence marker 
gene profiles of GSC clusters, we first identified GSCs with variable CNVs across 
chromosome arms by binning loci into deletion, neutral and gain bins using 
inferCNV score cutoffs as described in Extended Data Fig. 3d. We then assessed the 
proportion and enrichment of cluster marker genes that reside within CNV loci that 
are variable between clusters using a Fisher’s exact test (Extended  
Data Fig. 3e).

To identify CNVs specific to Developmental versus Injury Response-like 
GSCs, we averaged CNV signals of all genes across chromosome arms for each cell. 
Chromosome arms with <50 expressed genes were excluded. Next, we classified 
cells as being either Developmental-like or Injury Response-like using gene signature 
scoring. We excluded hybrid cells, defined as cells scoring as positive or negative for 
both states. We then compared the intensity of CNV signal, represented by inferCNV 
scores, between Developmental-like or Injury Response-like cells across chromosome 
arms. Variably altered regions between GSC subtypes were identified using effect size 
(large magnitude, Hedge’s g ≥ 0.8; Fig. 5b).

Identification of malignant cells in patient GBMs. To discern tumor cells from 
normal cells, we used a three-step approach involving unbiased clustering, CNVs 
and expression of cell-type specific marker genes. First, we used UMAP to visualize 
all cells in the same transcriptional space. Second, we classified cells as being of 
‘brain’ or ‘immune’ origin using gene signature scoring (Supplementary Note 1). 
We identified malignant tumor cells within the brain fraction using single-cell 
CNV inference (Supplementary Note 1). Finally, we validated our cell-type 
annotations with expression of canonical cell-type marker genes for immune, 
macrophage, microglial, T-cell, oligodendrocyte and putative tumor cells (Fig. 6).

Re-analyzing public sc/snRNA-seq datasets. Whenever possible, we used cell 
annotations provided in the publications to label cells (for example, tumor, 
immune, oligodendrocytes). In the absence of annotations, we re-processed the 
data using our clustering pipeline as described above. Malignant cells were then 
identified using a combination of unbiased clustering, marker gene expression 
and scaled expression of genes on chromosome 7 and 10 as a proxy for CNVs. 
Normalized gene expression matrices were used for gene signature scoring.

Projection onto GBM cell-state map. The two-dimensional cell-state representation 
map was created as described by Neftel et al.2 (Extended Data Fig. 9b). Cells 
were scored for cell-state gene signatures using the AddModuleScore() 
function in Seurat. NPC1/2 and MES1/2 scores were averaged to represent 
one score each for NPC and mesenchymal states. Cells were then separated 
into OPC/NPC and astrocyte/mesenchymal lineages by the sign of 
D = max(SCOPC,SCNPC) − max(SCAC,SCMES); where SC represents the transcriptional 
program score, D represents the y axis value, AC represents astrocytes and MES 
represents mesenchymal cells. Next, for OPC/NPC cells (D > 0), the x axis value 
was computed as log2(SCOPC − SCNPC + 1) and for astrocyte/mesenchymal cells 
(D < 0), the x axis was computed as log2(SCAC − SCMES + 1).

Identification of GSC-like tumor cells with a logistic regression classifier. The 
scRNA-seq dataset consisting of all tumor and cultured GSC cells minus all 
G800_L cells was split into an 80% training set and a 20% test set, with the split 
stratified by the two classes (tumor and GSC). The first two principal components 
(Fig. 7a) were used as inputs to be mapped to labels. Hyperparameter optimization, 
model selection and final class predictions were performed as described in 
Supplementary Note 1.

Bulk RNA-seq. Library preparation and sequencing. RNA was extracted from 
frozen cell pellets using the AllPrep DNA/RNA Universal kit (QIAGEN). 
Strand-specific sequencing libraries were prepared from 500 ng total RNA using 
poly(A) capture of transcripts with the NEBNext Poly(A) mRNA Magnetic 
Isolation Module (E7490L, NEB). Libraries were quantified with the Qubit dsDNA 

HS Assay kit (Thermo Fisher Scientific). Clusters were generated on the Illumina 
cluster station and sequence was run on the Illumina HiSeq2500 (indexed lane 
using V4 chemistry) platform following the manufacturer’s instructions.

Data pre-processing and clustering. Strand-specific 75-bp paired-end reads were 
aligned to hg38 reference using STAR73 (v.2.4.2a) and annotated with University 
of California Santa Cruz (UCSC) source from the Illumina iGenome reference. 
The ‘ReadsPerGene’ raw counts from STAR were used for downstream analysis. 
Genes were filtered for those with at least five counts across all samples. DESeq2 
(ref. 74) (v.1.22.2) was used to calculate size factors for each sample and perform 
variance stabilizing transformation. Batch correction was performed to incorporate 
technical and biologically relevant features into the model (Supplementary Note 1).

Variance stabilizing-transformed bulk RNA-seq data for 72 GSC lines were 
used as inputs for clustering. We assessed the similarity of clusters obtained on 
random subsamples of data to a full data clustering solution across a range of 
clusters (k = 2–4 clusters) using an adjusted Rand index and spectral clustering 
(Supplementary Note 1).

Differential gene expression and pathway analysis. Differential gene expression 
analysis was carried out on count data using DESeq2 (ref. 74) incorporating batch 
status as a covariate in the expression model. Developmental and Injury Response 
signatures were defined as upregulated genes (FDR < 0.05, two-sided Wald test) in 
the corresponding clusters identified above (Supplementary Table 7 and Extended 
Data Fig. 5c,d). GSVA75 (v.1.30.0) was used to assess the activity of gene signatures 
across samples. Gene set enrichment analysis (GSEA)76 (v.3.0) was performed on 
genes ranked by differential expression. Full details on GSEA analysis and data 
visualization with EnrichmentMap are provided in Supplementary Note 1.

Whole-genome sequencing. DNA was extracted from frozen cell pellets using 
the AllPrep DNA/RNA Universal kit (QIAGEN) and whole blood samples using 
the QiaAmp DNA Blood Midi kit (QIAGEN). Illumina-compatible sequencing 
libraries were constructed from 500 ng gDNA using TruSeq DNA PCR-free kits 
(New England Biolabs) and sequenced with paired-end 150-base reads on the 
Illumina HiSeqX platform to a median depth of 60× for GSCs and blood normals. 
Sequence data quality checks were performed with FastQC (v.0.11.5) and aligned 
to the human reference genome hg38 with bwa77 (v.0.7.15). A detailed description 
of additional pre-processing, quality control and copy-number calling is provided 
in Supplementary Note 1.

Genome-wide CRISPR–Cas9 screens. We performed CRISPR–Cas9 screens using 
the 70-k TKOv3 library49 (Addgene, 90294) using previously established protocols51 
with cells cultured as described above. A minimum of 8 × 107 cells were transduced 
with gRNA library-expressing lentivirus in the presence of 0.8 µg polybrene at a 
multiplicity of infection of 0.3. At 24 h after transduction, lentiviral medium was 
removed and cells were cultured with 2 µg ml−1 puromycin for 48–72 h to select for 
integration of lentiviral cassette. After selection, surviving cells were pooled and 
T0 samples of a minimum of 1.5 × 107 cells were collected and frozen at −80 °C 
for gDNA extraction. The remaining cells were then divided into 2–3 replicates of 
1.5 × 107 cells and cultured for 14-cell doublings under standard culture conditions, 
maintaining a minimum of 1.5 × 107 cells per replicate at all times (~200-fold 
library coverage). At time points of approximately 10- and 14-cell doublings, 
we collected cell pellets of 1.5 × 107 cells and stored them at −80 °C for gDNA 
extraction. A detailed description of gDNA extraction, library preparation and 
sequencing is provided in Supplementary Note 1.

Analysis of genome-wide screen data. DNA sequencing reads for each CRISPR screen 
were mapped to TKOv3 library gRNAs and normalized for sample sequencing depth. 
We calculated the fold change for each gRNA from the T0 baseline and computed 
a qBF for each gene representing a confidence score that gene knockout produces a 
fitness defect (Supplementary Table 8). Additional details regarding quality control 
and gRNA complexity are provided in Supplementary Note 1.

To identify differentially essential genes, the difference in average qBF scores 
between Injury Response and Developmental GSC screens was calculated for each 
gene. The resulting differences were transformed into z scores and a cutoff of >|2| 
was used to identify essential genes in each respective GSC state (Supplementary 
Table 9). Pathway analysis was performed on the ranked gene list generated by 
calculating the difference in average qBF scores between Injury Response and 
Developmental GSC screens and visualized with EnrichmentMap as described in 
the Supplementary Note 1.

Competitive proliferation assays. For validation of gene knockouts producing 
fitness defects, Cas9-expressing GSCs were first engineered via lentiviral 
transduction as previously described51. Cas9-expressing GSCs were then 
transduced with either Lentiguide-gRNA-NLS-eGFP-2A-PURO targeting specific 
genes of interest or Lentiguide-gRNA-NLS-mCherry-2A-PURO constructs 
targeting the AAVS1 locus. Each gene was targeted with two unique gRNAs. At 
24 h after transduction, cells were selected with 2 µg ml−1 puromycin for 48–72 h. 
Co-culture competitive proliferation assays were set up by mixing approximately 
50,000 red cells (nls-mCherry gRNA-AAVS1) and 50,000 green cells (nls-eGFP 
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gRNA-gene of interest). One half of this mixture was seeded in a six-well plate 
and the other half was subjected to flow cytometry using a CytoFlex S (Beckman 
Coulter) to assess the relative proportion of red and green cells at the start of the 
experiment. Cells were cultured for 14 d at which point they were collected and 
subjected to flow cytometry as above to assess the relative proportion of red and 
green cells. Relative cell fitness was calculated as the percentage of green cells 
at T14 divided by the percentage of green cells at T0, with normalization to an 
AAVS1 versus AAVS1 competition assay. The following gRNAs were used for gene 
knockout in competition assays (Supplementary Table 11).

Statistics and reproducibility. No statistical method was used to predetermine 
sample size. Cells with insufficient library complexity were excluded from the 
analyses as described in the methods. G800_L was removed as an outlier based on 
PCA (Extended Data Fig. 5a). Investigators were not blinded to the study of human 
sequencing data. Plotting and statistical analysis was performed in the R statistical 
environment (v.3.5.0 and v.3.6.1) and GraphPad Prism (v.8).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Bulk RNA-seq (EGAS00001003070 and EGAS00001004395), WGS 
(EGAS00001004395), sc and snRNA-seq (EGAS00001004656) datasets generated 
and analyzed in this study are available through the European Genome-Phenome 
Archive repository in the form of FASTQ or BAM files. Processed sc and 
snRNA-seq data are publicly available through the Broad Institute Single-Cell 
Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP503) and 
CReSCENT60 (https://crescent.cloud; study ID CRES-P23). All other data 
supporting the findings of this study are available from the corresponding author 
on reasonable request. Original CSV files for Supplementary Tables 2–9 are 
available in the Supplementary Information. Previously published scRNA-seq data 
that were re-analyzed in this study are available from the following sources: Wang 
et al.9 (GSE138794), Bhaduri et al.10 (http://cells.ucsc.edu/?ds=gbm), Neftel et al.2 
(https://singlecell.broadinstitute.org/single_cell/study/SCP393/) and Darmanis 
et al.8 (http://gbmseq.org/). Source data are provided with this paper.

Code availability
Code necessary to reproduce the core analyses presented in this study are available 
without restrictions at https://github.com/pughlab/su2c-gsc-scrna.
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Extended Data Fig. 1 | Visualization and benchmarking of intra-GSC clustering. a, t-SNE representation of intra-GSC heterogeneity across 29 
patient-derived GSCs. Cells are colored by transcriptional cluster. Samples ordered by number of clusters. b, Comparison of cluster number (top), marker 
genes per cluster (middle) and average silhouette width per cluster (bottom) between our original GSC smart local moving (SLM) clustering algorithm 
(blue), Louvain (yellow), Louvain with multilevel refinement (green), k-means (salmon) and spectral (pink). across 29 GSCs. The number of data points 
in the boxplots (middle, bottom) corresponds to the number of clusters in the matched histogram (top). Box plots represent the median, first and third 
quartiles of the distribution and whiskers represent either 1.5-times interquartile range or most extreme value.
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Extended Data Fig. 2 | See next page for caption.

NATuRE CANCER | www.nature.com/natcancer

http://www.nature.com/natcancer


Articles NATuRE CANCERArticles NATuRE CANCER

Extended Data Fig. 2 | Defining intra-GSC transcriptional heterogeneity. a, Heat map of Jaccard Index (more similar = blue, less similar = white) 
between marker gene lists across 86 intra-GSC clusters. A subset of 14 clusters, from 13 samples, display increased similarity (labelled as Cluster 1). 
b, Enriched pathways from 358 genes common to all 14 clusters defined in Extended Data Fig. 2a. c, Spearman correlation between inferred proportion 
G2M cells from scRNA-seq data vs. survival in an orthotopic xenograft model (left; n = 18 independent GSC xenograft models) and doubling time in 
vitro (n = 15 GSC cultures) in adherent (green) or neurosphere (orange) GSCs. Red line represents a linear regression line. Shaded grey area represents 
95% confidence interval. d, 14 intra-GSC clusters share increased marker gene overlap and define a core proliferation module shared across 13 patients. 
Expression of select marker genes common across all clusters. Columns separated by intra-GSC cluster, bolded labels represent clusters with upregulation 
of the proliferation module. e, Relative expression of top 5 significant marker genes (based on logFC, one-sided Wilcoxon rank-sum test, FDR < 0.05) for 
clusters C1 and C2 within G549_L (left). UMAP visualization of select marker genes of C2 (right). f, Relative expression of top 5 significant marker genes 
(based on logFC, one-sided Wilcoxon rank-sum test, FDR < 0.05) for clusters C1-C5 within G837_L (left). UMAP visualization of select marker gene of C5 
(right).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Validation of inferred single cell CNV profiles and impact on marker gene expression. a, Spearman correlation between inferred 
scRNA-seq CNV score from averaged intra-GSC clusters (left; n = 56 clusters from 20 GSC cultures) or averaged samples (right; n = 20 GSC cultures) and 
log2 ratios from matched genes from WGS of GSC samples (n = 20 GSC cultures). Each point represents a gene within a given sample. b, Distribution of 
InferCNV scores for genes labelled as deletion (<0; n = 11,617 genes), neutral (0; n = 100,426 genes) or amplified (>0; n = 12,777 genes across) by GISTIC 
from corresponding WGS data. Gene counts per GISTIC CNV state represent a cumulative number of genes across 20 GSCs. Median scores for deletions 
(-0.15) and gains (0.17) used as cut offs to classify InferCNV scores as at least single copy gains or losses. Box plots within the violin plot represent the 
median, upper and lower quartiles of the distribution and whiskers represent 1.5-times interquartile range. Tips of the violin plot extend to the minimum 
and maximum values of the distribution. c, Visualization of single cell CNV calls averaged by intra-GSC cluster (denoted “_C#”), averaged by sample 
(“SampleAverage”) or results of matched WGS (“_WGS”). Samples (rows separated by solid lines) ordered by increasing cluster number. WGS CNV 
track below dashed line. Sample average above dashed line and cluster transcriptional profiles represent remaining rows. d, Binary heat map depicting 
chromosome arms (y-axis; sorted by genomic position) that are gained (red), deleted (blue) or copy-neutral (white) across intra-GSC clusters (x-axis; 
ordered alphabetically; n = 86 clusters from 29 GSC cultures). e, Proportion of cluster marker genes located within a variable CNV loci (y-axis) across 
intra-GSC clusters (x-axis; n = 69 clusters) from samples with variable cluster CNV profiles (n = 22 GSC cultures) as determined in Extended Data Fig. 3d. 
Clusters with significant (Fisher’s Exact Test p < 0.05) enrichment of marker genes within variable CNV loci are colored dark blue.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Defining global inter-GSC cluster relationships and evaluation of batch correction methods. a, UMAP projection of 69,393 GSC 
cells from 29 patients reveals patient-specific clustering patterns (left panel, cells colored by patient). Unbiased clustering reveals 61 transcriptional 
clusters (right panel, cells colored by transcriptional cluster). GSCs derived from different regions of the same tumor underlined with red (G945-I,J,K) and 
black (G946-J,K) bars. b, Transcriptional clusters from the same sample and patient are more similar to each other compared to cells from other samples. 
Dendrogram of average gene expression profiles of transcriptional clusters defined in Extended Data Fig. 4a based on distance (1-Spearman correlation)
(top). Sample composition of transcriptional clusters (bottom). Vertical bars colored by sample. Labels at bottom depict sample identifier and proportion 
of sample for up to the top three samples/cluster. c, UMAP visualizations of global GSC clustering results with CONOS batch correction (top row), with 
Liger batch correction (middle row) and fastMNN batch correction (bottom row). Cells are colored by sample ID (left column) and transcriptional cluster 
(right column) (n = 69,393 cells from 29 GSC cultures). d, Proportion of cells (y-axis) corresponding to a given sample across transcriptional clusters 
(x-axis) across original and batch corrected datasets. e, Number of transcriptional clusters in original clustering pipeline vs. post-batch correction. f, Box 
plots representing the number of samples with >10 cells per transcriptional cluster across original and batch corrected clustering results (Original=61 
clusters; Conos=12 clusters; Liger=78 clusters; fastMNN=39 clusters). Box plots represent the median, first and third quartiles of the distribution and 
whiskers represent either 1.5-times interquartile range or most extreme value. Outliers displayed as circles.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Characterization and interpretation of GSC transcriptional gradient. a, PCA plot of 69,393 cells from 29 GSC cultures. Plot 
colored by cell density (left). PCA plot with cells belonging to outlier sample G800_L, colored red. Remainder of cells colored grey (middle). Quantification 
of deviation from the mean of PC2 (y-axis) across samples. G800_L (red) represents an outlier with >95% of cells within the sample greater than two 
standard deviations from the mean. Horizontal dashed red line represents threshold of two standard deviations to determine outliers (right). Box plots 
represent the median, upper and lower quartiles of the distribution and whiskers represent 1.5-times interquartile range or the most extreme value. 
Outliers represented as circles. b, Correlation of cell type gene signature scores from PC1 cell embeddings (n = 65,655 cells from 28 GSC cultures; outlier 
G800_L removed as in Fig. 2a). Only correlations with Spearman correlation coefficient greater than |0.5| shown. Bars colored by gene signature source. 
c, Enriched MSigDB gene sets (FDR < 0.01) for top 100 and bottom 100 genes for PC1. (n = 65,655 cells from 28 GSC cultures; outlier G800_L removed as 
in Fig. 2a). d, Gene Set Enrichment Analysis (GSEA) on PC1 loadings (gene associations with PC1) visualized using EnrichmentMap (n = 65,655 cells from 
28 GSC cultures; outlier G800_L removed as in Fig. 2a). Similar pathways (circles) are grouped into labeled clusters (larger bubbles). Blue circles denote 
positively associated pathways (Injury Response associated) and red circles denote negatively associated pathways (Developmental associated). Edges 
(lines) denote overlap between pathways.

NATuRE CANCER | www.nature.com/natcancer

http://www.nature.com/natcancer


ArticlesNATuRE CANCER ArticlesNATuRE CANCER

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Diffusion Map and bulk RNA-sequencing of 72 GSCs confirms Developmental and Injury Response transcriptional states.  
a, Spearman correlation between diffusion component 1 (DM1; x-axis) and principal component 1 (PC1; y-axis) cell embeddings for a subset of 14,000 
GSCs (500 cells/sample). b, Diffusion Map of 14,000 GSCs. Cells coloured by PC1 cell embeddings (left; Related to Fig. 2a), scaled Developmental 
transcriptional program score (middle) and scaled Injury Response transcriptional program score (right). c, Spectral clustering determined GSCs  
(n = 72 GSC cultures) profiled with bulk RNA-sequencing separated into two stable clusters. For each cluster number (x-axis), boxplots depict 200 
pairwise similarities (y-axis) (adjusted Rand index, ARI) between the solution obtained for the full dataset and random subsets of data containing 80% 
of samples. Box plots represent the median, first and third quartiles of the distribution and whiskers represent either 1.5-times interquartile range or most 
extreme value. Outliers displayed as circles. d, PCA plot of GSCs profiled with bulk RNA-sequencing colored by GSVA score for Developmental signature 
(n = 72 GSC cultures). Circles denote GSCs from the Developmental cluster, while triangles denote GSCs from the Injury Response Cluster.  
e, GSEA on differentially expressed genes between Developmental and Injury Response clusters as determined by bulk RNA-sequencing, visualized with 
EnrichmentMap. Similar pathways (circles) are grouped into labeled clusters (larger bubbles). Blue circles denote Injury Response associated pathways 
and red circles denote Developmental associated pathways. Edges (lines) denote overlap between pathways. f, Spearman correlation at the individual 
cell (n = 65,655) level between PC1 cell embeddings from scRNA-seq and Developmental and Injury Response gene signature scores derived from bulk 
RNA-sequencing.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Continuous transcriptional gradient of Developmental and Injury Response cell states across patients. a, Distribution of AUC 
gene signature scores for Developmental (left) and Injury Response (right) programs across all GSC cells (n = 65,655 cells from 28 GSC cultures). Red 
line marks classification threshold to determine if a given program is active or not. b, Proportion of cells across samples categorized as being resembling 
Developmental or Injury Response states, as well as intermediate hybrid states. c, Position of cells on the Developmental (x-axis) and Injury Response 
(y-axis) gradient across all samples (n = 65,655 cells from 28 GSC cultures). Cells are colored by relative expression of the Developmental (red) and Injury 
Response (black) expression programs. GSC cultures with intermediate scores either contain subpopulations of both subtypes or middling scores for both 
states. Samples ordered as presented in Fig. 2d. d, Violin plots depicting the distribution of Developmental (red) and Injury Response (black) programs 
post-fastMNN correction for cells within samples. Samples sorted by increasing median Injury Response program score. e, Pearson correlation of median 
Developmental (top panel) and Injury Response (bottom panel) between transcriptional program scores derived from the original expression matrix 
(x-axis) and expression matrix post-fastMNN batch correction (y-axis). Blue line represents linear regression line, shaded grey area represents 95% 
confidence interval and each dot represents the median raw AUC score per GSC. f, Ridge plots depicting distribution of the difference in Developmental 
(red) and Injury Response (black) scores (x-axis) across cells within samples (y-axis) (n = 65,655 cells from 28 GSC cultures). Samples ordered as 
presented in Fig. 2d. Vertical black line represents the median.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Genome-Wide CRISPR-Cas9 screens in GSCs. a, Box and whisker plots of TKOv3 gRNA library complexity in T0 populations for 
70,948 individual gRNAs from a single independent screen per GSC (n = 11 screens in 11 GSC cultures). Box plots represent the median, first and third 
quartiles of the distribution and whiskers represent 1.5-times the interquartile range. Outliers displayed as circles. b, Precision-recall curves for 11 GSC 
CRISPR-Cas9 screen produced with BAGEL pipeline and v2 reference for essential/non-essential genes. c, Barplot depicting the number of shared fitness 
genes across GSC screens. d, Heatmap of quantile normalized gene fitness Bayes factor (qBF) scores for the 1,484 most variable genes across 11 GSC 
screens. Samples (columns) annotated with GSVA score for Developmental and Injury Response gene signature scores from bulk RNA-sequencing.  
e, GSEA on differentially essential genes between Developmental and Injury Response GSCs, visualized with EnrichmentMap. Similar pathways (circles) 
are grouped into labeled clusters (larger bubbles). Blue circles denote pathways more essential in Injury Response GSCs and red circles denote pathways 
more essential in Developmental GSCs. Edges (lines) denote overlap between pathways.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Characterization of axes of variation in glioblastoma and single nuclei RNA-sequencing of 53,853 nuclei from 10 patient tumors. 
a, Spearman correlation of cell type gene signature scores to PC1 and PC2 cell embeddings for combined PCA of GSC and tumor cells (n = 65,655 cells 
from 28 GSC cultures and 14,207 malignant cells from 7 tumors). Only correlations with Spearman correlation coefficient greater than |0.4| shown. 
Bars colored by gene signature source. b, Projection of GSCs (top row; n = 65,655 cells) and =patient tumor cells (bottom row; n = 14,207 cells) onto 
GBM cell state map: astrocyte-like (AC; bottom left quadrant), oligodendrocyte precursor cell-like (OPC; upper left quadrant), neural progenitor cell-like 
(NPC, upper right quadrant) and mesenchymal-like (MES; bottom right quadrant). Cells are colored by density (left panels) and Developmental - Injury 
Response gradient program scores (right panels). c, Proportion of cells across samples that map to each of the 4 GBM cell states. d, UMAP visualization 
of 53,853 nuclei from 10 patient tumors colored by transcriptional cluster (left), patient (middle) and cell type (right). e, Pearson correlation between 
average transcriptional cluster expression (left). Proportion patient cells per transcriptional cluster (middle), as colored in panel B. Box plots detailing 
expression of cell type marker genes per cluster (right). Box plots represent the median, first and third quartiles of the distribution and whiskers represent 
either 1.5-times interquartile range or most extreme value. Outliers are removed. f, Proportion of cell types across tumors (as colored in the right panel of 
Extended Data Fig. 9d). Numbers in brackets represent the total number of nuclei per tumor.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Validation of GSC-state CNVs in patient tumors and identification of GSC-like tumor cells. a, Genome-wide inferred CNV 
profiles for 14,207 malignant cells from 7 patient tumors. Columns represent genomic regions, ordered by genome position across all chromosomes. Rows 
represent CNVs for individual cells, annotated by sample. b, Developmental (left) and Injury Response (right) program scores across quartiles. Numbers 
underneath quartile labels depict the number of cells harbouring respective Developmental or Injury Response CNVs. Enrichment of CNVs between upper 
and lower quartiles was determined using a Chi-squared test. Box plots represent the median, first and third quartiles of the distribution and whiskers 
represent either 1.5-times interquartile range or most extreme value. Outliers are displayed as circles. c, Train and test accuracy for logistic regression 
model, 30 random 80:20 train test splits (left). Distributions of model coefficients corresponding to the 30 trained models (right). Model coefficients 
are weights by which the logistic regression model describes class likelihood as a function of PC1 and PC2. Box plots represent the median, first and third 
quartiles of the distribution and whiskers represent either 1.5-times interquartile range or most extreme value. Outliers displayed as circles. d, Proportion 
of cells in GSCs correctly classified as being GSCs (blue) or misclassified representing tumor-like GSCs (white). Proportion of tumor cells correctly 
classified as being tumor (black) or misclassified as being GSC-like (grey). e,f, PCA plot of all GSCs and tumor cells as in Fig. 5a. Black line represents 
contour encompassing 99% of tumor cells. Blue line represents contour encompassing 99% of GSCs. Grey dots represent tumor cells classified as being 
GSC-like. White dots with blue outline represent GSC cells classified as being tumor-like. g, Differential gene expression analysis between tumor cells and 
GSC-like tumor cells. Each dot represents a gene (x-axis) ordered by average log2 fold change (y-axis). Red dashed line represents a log2 fold change of 
double between groups. h, Differential gene expression analysis between GSCs and tumor-like tumor cells. Each dot represents a gene (x-axis) ordered by 
average log2 fold change (y-axis). Red dashed line represents a log2 fold change of double between groups. i, Expression of mature and young astrocyte 
gene signatures between tumor cells (black; n = 12,145 cells) and GSC-like tumor cells (grey; n = 2,062 cells). j, Expression of mature and young astrocyte 
gene signatures between GSCs (blue; n = 64,502 cells) and tumor-like GSCs (white; n = 1,153 cells).
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