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Somatic mutations in cancer genomes include drivers that provide selective advantages to tumor cells and
passengers present due to genome instability. Discovery of pan-cancer drivers will help characterize biological
systems important in multiple cancers and lead to development of better therapies. Driver genes are most
often identified by their recurrent mutations across tumor samples. However, some mutations are more
important for protein function than others. Thus considering the location of mutations with respect to
functional protein sites can predict their mechanisms of action and improve the sensitivity of driver gene
detection. Protein phosphorylation is a post-translational modification central to cancer biology and
treatment, and frequently altered by driver mutations. Here we used our ActiveDriver method to analyze
known phosphorylation sites mutated by single nucleotide variants (SNVs) in The Cancer Genome Atlas
Research Network (TCGA) pan-cancer dataset of 3,185 genomes and 12 cancer types. Phosphorylation-
related SNVs (pSNVs) occur in ,90% of tumors, show increased conservation and functional mutation
impact compared to other protein-coding mutations, and are enriched in cancer genes and pathways.
Gene-centric analysis found 150 known and candidate cancer genes with significant pSNV recurrence. Using
a novel computational method, we predict that 29% of these mutations directly abolish phosphorylation or
modify kinase target sites to rewire signaling pathways. This analysis shows that incorporation of information
about protein signaling sites will improve computational pipelines for variant function prediction.

C
ancer is a set of diseases characterized by somatically acquired cellular alterations that lead to selective
advantages such as unrestricted growth, suppression of apoptosis and enhanced metabolism1. The com-
plexity of cancer is observed at multiple levels of cellular organization, as somatic alterations in chromo-

somal copy numbers, epigenetic regulation and gene expression give rise to tumor types and subtypes with
different biological and clinical properties2–4. In particular, high-throughput sequencing has revealed a complex
landscape of somatic DNA mutations in cancer genomes5. Most cancer mutations are likely passengers that
appear due to genetic, epigenetic and transcriptional instability, while few mutations, termed drivers, unlock
oncogenic cell properties that lead to selective advantages and tumor development1,6. Cancer drivers are often
discovered due to high mutation frequency across many tumors of a particular type, however combinations of
rare mutations in related systems or pathways may be also responsible for tumorigenesis7,60. The accumulation of
sequencing data from cancer genome projects8–16 now enables the discovery of driver mutations relevant across
multiple tumor types. The characterization of these pan-cancer drivers is important for establishing efficient
multi-cancer therapies such as the mutant BRAF inhibition strategy applicable in melanoma and leukemia17,18.

Cellular signaling networks are complex systems of interacting proteins that are ultimately encoded in the
genome. Analysis of disease mutations using network context will thus lead to better understanding of their
mechanisms of action61. Protein phosphorylation, a reversible post-translational modification (PTM) at serine
(S), threonine (T) and tyrosine (Y) residues, involves a system of sequence-specific kinases (writers), phospha-
tases (erasers) and reader proteins. Phosphorylation signaling can modulate protein activity, alter protein folding,
and help mediate or inhibit interactions with other proteins. Phosphorylation is important in cancer and is
involved in the control of proliferation, oncogenic kinase signaling19, transcriptional regulation20, and TP53
activity21, among other processes. Phosphorylation is also a pharmacologically targetable mechanism with mul-
tiple approved therapies available for cancer treatment17,18. We recently proposed that cancer may be driven by
statistically significant and spatially specific mutations in protein sites involved in cellular phosphorylation
signaling, and developed the ActiveDriver method to detect such mutations comprehensively7. ActiveDriver is
a gene-centric method that identifies signaling sites where the mutation rate is significantly higher than expected
from the entire gene sequence, thus suggesting the site’s importance in tumor biology.

The recently available pan-cancer dataset of 3,185 tumor genomes and 12 cancer types from The Cancer
Genome Atlas (TCGA) comprises the largest collection of somatic cancer mutations to date65. It involves four
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times more samples and 24 times more SNVs than previous collec-
tions7, providing the opportunity to discover novel cancer driver
genes across multiple cancer types. Here, we analyze the TCGA
pan-cancer dataset of protein-coding missense single nucleotide var-
iants (SNVs), as SNVs are easiest to interpret as specific alterations of
signaling sites and are more reliably detected and abundant than
other types of genetic mutations. We predict known and novel
signaling-specific cancer driver genes, create a high-confidence col-
lection of cancer mutations likely involved in altered cellular signal-
ing, and propose numerous specific hypotheses to explain their
functional effects.

Results
Signaling sites are important in mutation function prediction. To
investigate cancer mutations in phosphorylation signaling, we
collected 87,060 experimentally determined phosphosites in 10,185
human proteins and integrated these with 241,701 missense single
nucleotide variants from the TCGA pan-cancer project (Supple-
mentary Table 1). Including 67 residues of phosphosite flanking
regions and covering 7% of protein sequence, we found 16,840
phosphorylation-related SNVs (pSNVs) in 5,859 genes and 89% of
all samples – over 17 times more pSNVs than previously discovered7

(Supplementary Tables 2–3). The observed large number of pSNVs
helps us identify novel pan-cancer trends in phosphosite mutation
distribution. We previously found that phosphosites are enriched in
somatic mutations7. While this trend no longer holds with the larger
pan-cancer dataset (Supplementary Fig. 1), we now identify a more
specific signal – structured protein regions are enriched in pSNVs (p
, 0.001, Poisson exact test), while disordered regions show no
significant bias (Fig. 1a). pSNVs also show significantly stronger
evolutionary constraint in 34 mammalian genomes22 compared to
other SNVs (Fig. 1b), suggesting that these signaling sites undergo
negative selection. Further, we compared the predicted functional
impact of mutations in a majority vote23 of five state-of-the-art

methods (SIFT24, PolyPhen225, LRT26, PhyloP27, MutationTaster28)
and found that pSNVs are more likely disruptive to protein function
than other protein-coding mutations (Fig. 1c). According to another
measure of pSNV importance, 1,427 direct pSNVs replace the central
phosphorylated residue and thus disrupt phosphorylation; such
mutations are under-represented on the whole, although fre-
quently seen in known cancer genes such as TP53 and CTNNB1
(79 cancer genes, p 5 4.2e 2 18, Fisher’s exact test). In total, we
predict a specific signaling mechanism for 29% of pSNVs (4,800)
through either direct pSNVs or kinase network rewiring (see
below). Collectively, these global observations suggest that pSNVs
represent a subset of protein-coding missense mutations with greater
functional impact and relevance in cancer compared to other SNVs.

Interestingly, 40% of our mechanistic predictions (1,937 pSNVs)
are considered neutral by most functional predictors, showing that
incorporation of signaling information will greatly improve coverage
of existing methods. We also observe that disordered regions com-
prising 37% of protein sequence carry the majority of phosphosites
(71%) and thus represent an important but typically untreated factor
in mutation analysis – one that ActiveDriver considers (Supplemen-
tary Fig. 2). While variants in disordered regions are generally less
conserved than in structured regions, disordered pSNVs form a sub-
set of higher evolutionary constraint and potential functional impact
(Fig. 1b–c). In particular, 49% (977) of pSNVs in hallmark cancer
genes occur in disordered regions. Thus, extending conservation-
weighted functional mutation prediction methods to consider pro-
tein disorder will improve their coverage.

ActiveDriver reveals pan-cancer driver genes with enriched pSNVs.
Next we used our ActiveDriver mutation significance model7 to
predict a list of cancer driver genes specifically enriched in
pSNVs. Pan-cancer analysis revealed 150 genes (FDR p , 0.01;
Fig. 2a, Supplementary Table 4), many of which are known
cancer genes (n 5 26, p 5 6.1e 2 15, Fisher’s exact test). Most
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genes (86), including seven known cancer genes, are only iden-
tified in the combined dataset but not in any individual cancer
type, emphasizing the utility of integrated mutation analysis. Ana-
lysis of pSNVs recovers established driver mutations, validating our
results, and provides novel signaling-related insight into functional
consequence of many SNVs.

ActiveDriver reveals many known and novel cancer genes with spe-
cific pSNVs. For instance, beta-catenin (CTNNB1) is a Wnt-activated
oncogene in lung and liver cancer that is degraded in non-tumor cells
via phosphorylation of its N-terminus20. ActiveDriver identifies N-ter-
minal mutations in five cancer types as highly significant (n 5 73, FDR
p 5 2.5e 2 92 from ActiveDriver; Fig. 2b), confirming constitutive
activation of CTNNB1 via disrupted phosphorylation as a prevalent
driving mechanism of cancer. As another example, isocitrate dehydro-
genase 1 (IDH1) is a metabolic enzyme with frequent R132H mutations
in leukemia and glioblastoma that associate to altered DNA methy-
lation29. ActiveDriver suggests a novel hypothesis that 36 pSNVs
modify the phosphosite Y135 recently observed in multiple proteomics
datasets (Ref. 30, unpublished data at www.phosphosite.org; FDR

p 5 2.9e 2 71; Fig. 2c). Kinase proteins are enriched in the predicted
list of cancer drivers (n 5 14, p 5 1.0e 2 07, Fisher’s exact test),
indicating that pSNVs also modify regulators in signaling networks.
The tyrosine kinases FLT319 (Fig. 2d) and KIT31 are the most prom-
inent examples of significant activation loop pSNVs in leukemia that
lead to increased kinase activity and acquired drug resistance, while we
also observe similar mutations in other kinases, such as HCK and
CHEK2. In addition to oncogenic kinases, pSNVs also modify tran-
scription factors (TFs). For instance, the multifunctional TF and can-
didate tumor suppressor CTCF is differentially phosphorylated in its
DNA-binding domains during cell cycle32,33. ActiveDriver highlights 19
pSNVs at these sites in six cancer types (FDR p 5 6.4e 2 10; Fig. 2e),
providing phospho-mechanistic insight into the earlier observation
that cancer mutations in CTCF DNA-binding domains alter transcrip-
tion of proliferative genes34. The candidate cancer gene BCLAF1 (Bcl-
2-associated transcription factor 1) is another phosphorylated TF with
frequent pSNVs in sites of SRC onco-kinase (Fig. 2f). Finally, RGPD8 is
an example of a poorly characterized gene with recurrent and specific
pSNVs of four cancer types in the Grip domain related to Golgi
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signaling and protein secretion (Fig. 2g). In summary, analysis of
phospho-mutations in cancer helps predict novel cancer driver genes
and signaling-related mechanisms for known cancer genes.

Gain-of-signaling and loss-of-signaling pSNVs cause oncogenic
rewiring of the kinase network. As most pSNVs occur in pho-
sphosite flanking sequence, we sought to characterize their impact
on kinase binding specificity, which may affect site phosphorylation.
We first developed a high-confidence set of sequence patterns
recognized by 96 kinases modeled as position weight matrices
(PWMs), based on known kinase binding sites (Supplementary
Fig. 3). We next predicted which kinases recognize known phospho-
sites and how this changes after pSNV mutation. We identified
3,814 significant network-rewiring mutations – losses or gains in
kinase-substrate signaling – that alter 11,802 potential kinase-
substrate interactions and cover 23% of all pSNVs (p , 0.05;
Supplementary Table 5). A high-confidence network includes 392

pSNVs in 534 interactions, and comprises only top-scoring kinase
binding sites for signaling gain and experimentally determined
kinase-substrate signaling loss (Fig. 3a). Most inferred network-
rewiring pSNVs confer loss-of-signaling, but many added inter-
actions and change-of-signaling events are also predicted (Fig. 3b).
Several examples of well-studied mutations are apparent in the
rewiring analysis, which help validate our results. N-terminal
phosphorylation of CTNNB1 at S37 involves the most frequent
rewiring with 23 direct pSNVs and 23 flanking pSNVs (Fig. 3c)
leading to predictions of gained signaling (with MAP3K8, PRKCE
kinases) and lost signaling (TBK1). Notably, the gain-of-signaling
mutation G34R may involve Wnt-MAPK signaling of CTNNB1
activation35, or the protein kinase C pathway that degrades CTN-
NB1 independently of Wnt36. As another example, phosphorylation
of TP53 by AURKA kinase at S215 is known to inhibit TP53 tumor
suppression function21. We predict that AURKA-TP53 signaling at
that site is disrupted by six direct and seven flanking pSNVs (Fig. 3d),

a. High-confidence network rewiring events
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leading to increased activity of TP53. This potentially explains our
earlier observation of improved survival of ovarian cancer patients
with TP53 pSNVs7 and encourages further investigation of the site as
a prognostic biomarker. Next, our analysis predicts that the BRAF
V600E kinase activation mutation37 implicated in therapy of mela-
noma17 and leukemia18 interferes with phosphorylation by PRKCI at
S602 (Fig. 3e). Phosphorylation of wildtype BRAF at S602 by MLK3
is known to activate cell proliferation pathways, however BRAF
V600E tumor cells proliferate independently of MLK338. We
therefore speculate that BRAF signaling may involve PRKCI or
another unrecognized kinase in a combinatorial or competitive
mechanism with MLK3. Such kinase binding site analysis shows
that flanking pSNVs may frequently lead to oncogenic rewiring of
signaling networks, thus identifying specific mechanistic hypotheses
about cancer-driving mutations.

Mutated signaling is central to hallmark cancer pathways and
transcription regulatory networks. Cancer is a disease of path-
ways driven by systematic alterations in hallmark processes1. Thus
many infrequent but specific pSNVs may affect different compo-
nents of underlying systems and lead to tumorigenic cell
properties. To establish the significance of altered signaling at the
pathway level, we conducted a functional enrichment analysis of
somatic mutations. We focused on a stringently filtered subset of
pathways specifically enriched in pSNVs and not in other SNVs,
and revealed multiple phosphorylation-related functional themes
with pan-cancer significance (FDR p , 0.01, Poisson exact test;
Fig. 4a, Supplementary Fig. 4, Supplementary Table 6). The ma-
jor functional themes are related to regulation of gene expression on
epigenetic, transcriptional and post-transcriptional levels, cell cycle

and differentiation, and immune and insulin signaling. For example,
the RNA splicing and processing theme involves 2,009 pSNVs in 652
genes (Fig. 4b), including 38 known cancer genes such as BRCA1,
RBM15, CDK12, CDC73 and TOP1 (FDR p 5 1.3e 2 06, Fisher’s
exact test), as well as candidate cancer genes. For instance, the
transcription factor SPEN, a negative regulator of Notch prolife-
rative signaling pathway39, has 19 pSNVs in ten cancer types (FDR
p 5 2.2e 2 03 from ActiveDriver). Enrichment analysis also
highlights pSNVs in protein complexes of RNA regulation
(Fig. 4c), such as the DGCR8 multiprotein complex40 of micro-
RNA processing (49 pSNVs) and the exon junction complex41 of
mRNA splicing and post-transcriptional regulation (32 pSNVs).

As oncogenic signaling mutations appear in central gene regula-
tory processes, we hypothesized that pSNVs alter interactions and
activity of regulatory protein domains. To investigate this in detail,
we studied 5,662 protein domains for specific pSNV enrichment, and
found 27 unique domains with frequent signaling mutations ($25
pSNVs, FDR p , 0.05, Poisson exact test, Fig. 5a, Supplementary
Table 7). pSNVs are most abundant in kinase domains (446 pSNVs
in 197 kinases), as kinases are regulated by phosphorylation in com-
plex hierarchical networks7. In addition, pSNV enrichment is appar-
ent in RAS, phosphatase, histone, and transcription regulatory
domains. Interestingly, neurotransmitter genes such as GABA recep-
tors were enriched in pSNVs in ligand-binding and transmembrane
domains. Protein-protein interaction (PPI) network analysis of
domain-specific pSNVs emphasizes the centrality of altered kinase
signaling (Fig. 5b, Supplementary Table 8). In particular, the group
of kinase proteins involves more within-group PPIs than expected (n
5 253, p 5 4.0e 2 153, Poisson exact test), and the phosphorylation
reader-writer system of kinases and phosphatases is also highly
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interacting (n 5 52, p 5 2.5e 2 04). The domain-centric network
includes 499 specific pSNVs in 183 proteins, including 42 known
cancer genes (p 5 1.5e 2 28, Fisher’s exact test). In summary, pathway
and domain enrichment analysis shows that multiple regulatory sys-
tems and novel cancer hallmark processes are extensively altered by
specific, potentially targetable mutations in phosphorylation signaling.

Discussion
Our analysis demonstrates the extent of signaling-related mutations
in a dozen important cancer types. A quarter of pSNVs are predicted
to directly disrupt phosphorylation or involve kinase rewiring at the
sequence level.

Our developed mechanistic hypotheses potentially depend on
many factors of the cellular context. For instance, when observing
a mutated signaling site, we assume that the site is actually phos-
phorylated in the tumor of study. While this information cannot be
confirmed in general, we rely on the principle of evolutionary selec-
tion in cancer to gain confidence in our predictions. A major indi-
cator of cancer driver mutations is their frequent, statistically
significant recurrence in multiple tumor samples. The observation
of repeated random events in precisely the same genomic locus is
statistically so unlikely that we instead suggest that the site is under
positive selection due to its role in tumor growth. The stronger the
observed selection signal, the higher our confidence in calling the
gene a cancer driver, regardless of our lack of knowledge about the
context of the expressed protein in tumor cells. This is a standard and
powerful approach in the cancer genomics field.

One limitation of the current analysis is that we restrict observed
signaling alterations to protein-coding SNVs that comprise a minor-
ity of all cancer mutations known to affect protein function. We are
thus underestimating the extent of mutated signaling in tumor cells
caused by other mechanisms, for example genomic deletions such as
the EGFRvIII isoform in glioblastoma, or translocations such as
BCR-ABL in leukemia. However, the specific focus on protein-cod-
ing variants provides us with a high-confidence set of mutations that
are simple to interpret in the context of cell signaling and lead to
novel hypotheses that can be experimentally tested. In particular,
tumor cell lines can be infected with mutated proteins using lentiviral
technology, and phosphorylation-specific antibodies and mass spec-
trometry can be used to compare site-specific phosphorylation in
mutated cell lines and controls. The functional consequence of such
mutations can be characterised in phenotypic readouts such as
growth assays or drug response screens. The impact of mutations
on kinase binding specificity can be explored in in vitro protein-
binding microarrays, or in vivo, for example, by measuring kinase
target phosphorylation after kinase mutation.

We previously performed ActiveDriver analysis on 800 cancer
samples of eight cancer types7. Here we extend our analysis to
3,185 tumor genomes and 12 cancer types. As a result we predict
54 additional cancer-specific drivers and 82 genes only seen in pan-
cancer analysis. In a related analysis, we combined these Active-
Driver results with predictions from MuSiC62, OncodriveFM63, and
OncoDriveClust64 to establish a high-confidence set of pan-cancer
driver genes66.
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The major goal of our analysis is to mechanistically explain the
impact of phospho-mutations. Previously we could only specify that
mutation of the central S, T, or Y amino acid to a non-STY residue
would cause a loss of signaling. Here, we introduce a novel method to
predict cancer-specific kinase rewiring events that considers how
mutations in the phosphosite flanking region affect protein function.
This approach increases the coverage of potential mechanistic expla-
nations from 8% to 29% of all pSNVs. For our kinase rewiring ana-
lysis, we only cover 20% of human kinases and do not include
information about kinase expression in a given tumor sample.
Additional kinase specificity and tumor-specific protein expression
data will improve the coverage and accuracy of these predictions.

In summary, this analysis leads to three major conclusions. First,
incorporation of signaling information improves the sensitivity and
coverage of variant function prediction and helps discovery of cancer
driver mutations. Second, protein disorder is an important factor
that functional mutation prediction methods should account for.
Third, somatic alteration in phosphorylation signaling is a pan-can-
cer phenomenon, at least in the 12 cancer types studied here. As
phosphorylation is a targetable mechanism with proven rational
agents such as kinase inhibitors, consideration of pan-cancer
pSNVs in therapy development may help find additional treatment
strategies applicable to multiple cancer types.

Methods
Protein data. Sequences for completed human refGene genes (hg19) were translated
to proteins with the Annovar toolset for functional annotation of genetic variants42

and filtered to retain the longest isoform for every gene. Pseudo-autosomal genes and
genes with non-standard chromosomal annotations were discarded. Protein disorder
was predicted with the DISOPRED2 toolset43 using default parameters.
Experimentally validated and published phosphorylation sites in human proteins
were retrieved from three databases (HPRD44, PhosphositePlus45, Phospho.ELM46).
Phosphorylated sites with 67 residues were matched exactly to the longest isoforms
of annotated proteins, allowing multiple matches per sequence. Sites with
overlapping flanking sequences were merged into continuous regions. SMART46 and
Pfam47 protein domains were predicted with the SMART webservice. Physical human
protein-protein interactions (PPI) were retrieved from the BioGRID database48 and
auto-interactions were discarded. The list of 555 canonical cancer genes was compiled
from earlier review papers6,49–51 using the CancerGenes52 and Cancer Gene Census6

databases.

Mutation data. The cleaned and filtered pan-cancer mutation annotation file for 12
cancer types was retrieved from The Synapse database (www.synapse.org; ID
syn1729383). Hypermutated samples (71) were discarded. DNA mutations were
translated to protein sequence with Annovar42. Only missense single nucleotide
variants (SNVs) were retained and other mutation types including stop codon
mutations were discarded. Mutations were mapped to phosphosites with
ActiveDriver7. pSNVs were classified as direct (mutation at central phosphorylated
residue, S/T/Y), proximal flanking (mutation within 2 residues of the central residue),
and distal flanking (mutation within 7 residues). The set of direct mutations was
further filtered 2105 serine-threonine mutations (S . T, T . S) were not considered
direct, as these are known to be equivalent in terms of kinase specificify. Phosphosite
mutations and other supplementary data accompanying our analysis are stored in the
Synapse database (www.synapse.org, ID syn2237931).

Statistical analysis of pSNVs. The distribution of SNVs with respect to phosphosites
was assessed with the Poisson exact test by comparing the mutation frequencies
(average number of SNVs per residue) in phosphosite-related and non-related
sequence, using all proteins in the dataset. Robust expected range of pSNVs was
sampled from the Poisson distribution (median 6 median absolute deviation).
Distribution of phosphosites in disordered and structured regions was assessed
similarly with background mutation rates estimated from disordered and structured
sequence, respectively. GERP11 scores for evolutionary constraint of mutations in
human and 33 other mammalian species22, as well as functional predictions from five
methods (SIFT24, PolyPhen225, LRT25, PhyloP27, MutationTaster28) were retrieved
from Annovar42. Evolutionary constraint of pSNVs and other SNVs was compared
with the non-parametric Wilcoxon test as well as custom permutation tests (p , 1e 2

6). Prediction of functional impact of mutations was carried out as a majority vote of
the five methods, using the cutoff criteria as defined in the dbNSFP database of
human non-synonymous SNPs23. Each mutation was scored by how many methods
considered it harmful, and was binned as low (0–1), moderate (2–4) and high
confidence (5), as previously proposed23. Statistical significance of pSNVs in bins was
assessed with the binomial test using bin frequencies of other SNVs as background.
Significantly phospho-mutated genes were computed with ActiveDriver7 (false
discovery rate (FDR) p , 0.01). Two genes with significance only from depleted
pSNVs were discarded (PIK3CA, KRAS).

Kinase sequence binding models. Kinase amino acid binding specificities were
modeled as position weight matrices (PWMs) with 15 positions. PWM columns
represent sequence positions, rows represent amino acids, and values represent
probabilities of amino acids being present in a particular position of a kinase binding
site. Initial PWMs were constructed from 15,659 sequence-specific kinase binding site
annotations collected from HPRD, PhosphositePlus and Phospho.ELM. Kinase
models with less than 20 binding sequences were discarded. PWMs were then refined
using a strategy that discarded outlier sequences (cutoff p 5 0.2) from each kinase-
specific sequence set and constructed the PWM iteratively until convergence (no
further sequences below cutoff). PWMs were discarded if the refining procedure
provided less than 20 sequences as result. Refined PWMs were assessed in tenfold
cross-validation experiments in which 80% of known refined kinase binding
sequences were used for PWM construction and the remaining 20% served as the
positive test set. The negative test set for validation using target sequences from other
kinases. Area Under Receiver Operator Curve (AUROC) statistics were used for
PWM evaluation and low-quality PWMs were discarded (AUROC , 0.75). The
remaining high-confidence 96 PWMs (Supplementary Fig. 3) corresponding to
7,606 sequences were used to evaluate pSNVs impact on kinase binding to
phosphosites.

Analysis of kinase network rewiring. To assess the similarity between a given
sequence and a PWM, we adopted the Matrix Similarity Score (MSS) of the MATCH
DNA binding model53 to amino acids. We excluded the central S/T/Y residue
(column 8 in PWM) from scoring to focus on flanking sequences. To establish the
statistical significance of MSS values for a particular PWM, we computed an empirical
background distribution of MSS scores. The background comprised all phosphosites
with known kinases that were not associated to the kinase of the particular PWM. The
significance p-value of a given MSS score was determined as the fraction of
background sequences with equal or greater MSS. Impact of mutations on kinase
binding was assessed using empirical p-values. A pSNV was considered to lead to loss-
of-signaling of a kinase if a given reference phosphosite had a significant p-value of
MSS (pRef , 0.05) and the corresponding mutated phosphosite had a non-significant
MSS p-value (pMut . 0.1) for the PWM of that kinase. Gain-of-signaling pSNVs
were predicted similarly (pRef . 0.1 and pMut , 0.05 for a PWM). A pSNV was
considered to rewire a binding site (lead to switch-of-signaling) if both gain and loss
events with different PWMs were predicted for the same pSNV.

Protein domain analysis. 5,662 protein domains from SMART and Pfam databases
were matched to human protein sequences. Infrequent domains (,3 proteins) and
infrequently mutated domains (,3 proteins with domain-specific pSNVs) were
filtered. The remaining 525 domains were tested for pSNV enrichment with one-
tailed Poisson exact tests, by comparing domain-specific pSNV counts in domain-
associated sequence with expected mutation rate of all phosphorylation-associated
protein sequence. Results were filtered for significance (FDR p , 0.05) and further
filtered manually for redundancy. The domain network comprises protein-protein
interactions (PPI) between proteins with significantly phospho-mutated domains.
Proteins were grouped by domain type (kinases - TyrKc, STYKc, PI3Kc, Pkinase_Tyr;
phosphatases - Pfam:DSPc, Pfam:Y_phosphatase; histones - Pfam:Histone,
Pfam:Linker_histone; transcription factors - Pfam:HLH, Pfam:CBFD_NFYB_HMF)
and assessed for enrichment of PPI within groups and between groups using the one-
tailed Poisson exact test. The test considered number of interactions for a list of
proteins (e.g. interactions within a list of phospho-mutated proteins with kinase
domains), given the average number of interactions for all proteins in our set.

Pathway enrichment analysis. Functional gene lists representing pathways and
processes were retrieved from the g:Profiler web server54 and filtered to exclude large
lists (.1,000 genes) and small lists (,3 genes). Gene Ontology55 terms, Reactome56

pathways and protein complexes from the CORUM database57 were used for
enrichment tests and other data sources were discarded. Gene lists with mutations in
only single genes or samples were also discarded. Pathway enrichment analysis of
mutations in 14,135 processes, complexes and pathways was carried out with one-
tailed Poisson tests. Separate pathway analyses were carried out for SNVs and pSNVs,
and both mutation groups were tested for cancer type-specific and pan-cancer
pathway enrichments. Multiple testing corrections with FDR were applied separately
for each data source (GO, Reactome, CORUM) mutation type (pSNV, SNV), and
cancer type (12 cancer types plus pan-cancer dataset). The tests compared number of
mutations within a functional gene list, given the average number of mutations across
all genes (SNV analysis) or across genes with phosphosites (pSNV analysis). The final
list of significantly mutated phospho-specific pan-cancer pathways included results
from the pan-cancer analysis (FDR p , 0.01) that were not significant in the SNV
analysis of individual cancer types (FDR p . 0.1) or the SNV analysis of the pan-
cancer dataset (FDR p . 0.1). Processes and pathways were visualized as Enrichment
Maps58 with the Cytoscape software59.
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