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Comprehensive multi‑cohort 
transcriptional meta‑analysis 
of muscle diseases identifies 
a signature of disease severity
C. J. Walsh1,2, J. Batt1,2, M. S. Herridge4, S. Mathur5, G. D. Bader6, P. Hu7, P. Khatri8,9 & 
C. C. dos Santos1,3*

Muscle diseases share common pathological features suggesting common underlying mechanisms. 
We hypothesized there is a common set of genes dysregulated across muscle diseases compared 
to healthy muscle and that these genes correlate with severity of muscle disease. We performed 
meta‑analysis of transcriptional profiles of muscle biopsies from human muscle diseases and healthy 
controls. Studies obtained from public microarray repositories fulfilling quality criteria were divided 
into six categories: (i) immobility, (ii) inflammatory myopathies, (iii) intensive care unit (ICU) acquired 
weakness (ICUAW), (iv) congenital muscle diseases, (v) chronic systemic diseases, (vi) motor neuron 
disease. Patient cohorts were separated in discovery and validation cohorts retaining roughly equal 
proportions of samples for the disease categories. To remove bias towards a specific muscle disease 
category we repeated the meta‑analysis five times by removing data sets corresponding to one 
muscle disease class at a time in a “leave‑one‑disease‑out” analysis. We used 636 muscle tissue 
samples from 30 independent cohorts to identify a 52 gene signature (36 up‑regulated and 16 down‑
regulated genes). We validated the discriminatory power of this signature in 657 muscle biopsies 
from 12 additional patient cohorts encompassing five categories of muscle diseases with an area 
under the receiver operating characteristic curve of 0.91, 83% sensitivity, and 85.3% specificity. The 
expression score of the gene signature inversely correlated with quadriceps muscle mass (r = −0.50, 
p‑value = 0.011) in ICUAW and shoulder abduction strength (r = −0.77, p‑value = 0.014) in amyotrophic 
lateral sclerosis (ALS). The signature also positively correlated with histologic assessment of muscle 
atrophy in ALS (r = 0.88, p‑value = 1.62 ×  10–3) and fibrosis in muscular dystrophy (Jonckheere trend 
test p‑value = 4.45 ×  10–9). Our results identify a conserved transcriptional signature associated with 
clinical and histologic muscle disease severity. Several genes in this conserved signature have not been 
previously associated with muscle disease severity.

Skeletal muscle diseases result in decreased muscle mass and muscle dysfunction thereby inducing physical dis-
ability and increased  mortality1. Skeletal muscle dysfunction has been shown to contribute to decreased quality 
of life, increased disease morbidity and mortality in respiratory illness including for example, chronic obstructive 
pulmonary disease (COPD), pulmonary arterial hypertension and acute respiratory distress syndrome (ARDS)2–4. 
Despite the profound clinical implications, knowledge of the molecular mechanisms of muscle dysfunction, 
as well as objective, non-volitional methods to quantify the degree of muscle dysfunction are  insufficient5,6. 
Understanding the pathomolecular mechanisms conserved across muscle diseases may provide vital insight to 
help develop therapies to ameliorate them.
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A growing number of studies of human muscle disease have identified dysregulated gene expression that is 
associated with disease  severity1,7–9. These studies however, are usually limited by relatively small sample sizes 
without external validation from independent  cohorts10. Moreover, individually these studies are not representa-
tive of biological and clinical heterogeneity observed in the real-world patient population, which substantially 
limits their generalizability. The vast quantity of expression profiling data in the public repositories Gene Expres-
sion Omnibus (GEO) and ArrayExpress represents novel opportunities to address these challenges by facilitating 
comprehensive integration of human muscle disease cohorts for meta-analysis.

We applied a multi-cohort analysis  framework11,12 that leverages the biological, clinical, and technical het-
erogeneity across independent data sets to identify a reproducible disease gene  signature13,14. This approach has 
discovered robust signatures in organ  rejection13, neurodegenerative  diseases14,  sepsis15,  tuberculosis16, viral 
 infections17,  vaccination18, and systemic  sclerosis19, many of which have been successfully validated in pro-
spective independent  cohorts20–22. We hypothesized that convergent transcriptional abnormalities occur across 
muscle diseases regardless of the specific muscle pathophysiology and that the relative expression of these genes 
is associated with the degree of muscle dysfunction. To the best of our knowledge, this is the largest systematic 
multi-cohort analysis investigating transcriptional changes across multiple human muscle diseases.

We identified a conserved gene signature across five muscle disease categories including muscular dystro-
phies, inflammatory myopathies, critical illness myopathy, and chronic systemic diseases associated with muscle 
dysfunction such as chronic obstructive pulmonary disorder (COPD). Importantly, we validated the discrimi-
natory power of this signature in other diseases with muscle phenotypes that were not part of the discovery 
meta-analysis, cerebral palsy (CP) and amyotrophic lateral sclerosis (ALS). We found that the common muscle 
disease gene signature is significantly associated with clinical and histological disease severity in independent 
validation cohorts. Finally, we identified patterns of gene dysregulation unique to each muscle disease category 
relative to the others.

Portions of this manuscript, including the methods section, have been presented previously reported in a 
PhD thesis by the first  author1. The present study has an expanded number of patient cohorts that were not 
included in the PhD thesis.

Results
Meta‑analysis identifies a common gene signature of muscle diseases. A total of 45 independ-
ent patient cohorts that profiled human muscle diseases and normal muscle controls (862 cases, 512 controls), 
comprising 1374 samples met criteria for inclusion (Supplementary Fig. 1, Table 1). Collectively, the cohorts 
represent a broad range of patient ages and peripheral muscles from both upper and lower extremities. Available 
phenotypic data for patient samples included in public repositories is shown in Supplementary Table 1 and sum-
mary descriptions of each study are found in Supplementary Document 1.

For the discovery cohort we ensured that there were at least three cohorts for each disease category that met 
our inclusion criteria. As there were only two cohorts for the MND category, this was not included in the discov-
ery cohort as a disease category; instead, the two MND cohorts were included in the secondary validation cohort.

We chose smaller patient cohorts (< 30 samples) for the discovery meta-analysis and reserved larger patient 
cohorts and/or cohorts with clinical measures of muscle mass or strength or histologic assessments for validation 
analysis. For the discovery meta-analysis, 30 patient cohorts (348 cases, 288 controls) containing at least three 
cohorts from each of the five muscle disease categories were analyzed.

To identify the most robust differentially expressed (DE) genes across muscle diseases measured on multiple 
different microarray platforms we performed gene expression meta-analysis10,11 using a “leave-one-disease-out” 
strategy to correct for heterogeneity in genes DE between muscle disease categories and to avoid one muscle dis-
ease influencing the overall analysis, as described  before13,14. We identified 209 genes that remained significantly 
DE in all 5 iterations of the “leave-one-disease-out” analysis (Supplementary Table 2).

We then applied an iterative greedy forward  search15 to the 209 genes and identified a set of 52 genes (36 
up-regulated, 16 down-regulated) that was optimized for discriminatory power termed the Common Muscle 
disease Module (CMDM). As expected, the 52-gene CMDM score distinguished muscle disease from healthy 
controls with summary area under the curve (AUC) = 0.91 (95% confidence interval [CI] 0.83- 0.96) in the 
discovery cohorts (Fig. 1A,B).

Next, we tested the CMDM 52- gene signature in the validation dataset of 12 cohorts (N = 657 total samples; 
Table 1). The validation set included at least one cohort belonging to each of the five muscle disease categories. 
(Table 2; Supplementary Table 3). The CMDM accurately identified muscle disease samples in most cohorts 
(summary AUC = 0.91 [95% CI 0.77–0.97]) (Fig. 2A).

An additional three cohorts (two cohorts from amyotrophic lateral sclerosis [ALS] and one cohort from 
cerebral palsy [CP]) could not be classified into any of the five muscle disease categories present in the discovery 
and validation sets. Therefore we tested these three cohorts (N = 81 total samples; Table 1) as a secondary valida-
tion set to assess the generalizability of the CMDM. The CMDM accurately identified muscle disease samples 
in two of the three cohorts (ALS-GSE3307 and GSE31243); summary AUC of all three cohorts = 0.92 [95% CI 
0.54–0.99]) (Fig. 2B).

Visual inspection of the heatmap of the 52 CMDM genes in Fig. 2C shows the pattern of expression is 
generally highly consistent between the discovery and validation set, as well as the secondary validation set, 
further supporting the generalizability of the CMDM to muscle diseases. One notable exception was the cohort 
GSE13608 in the validation analysis with AUC 0.23 (95% CI 0.14–0.32), which was reflected in the heatmap 
showing gene expression opposite to the majority of genes across the meta-analysis.
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Disease category Accession# Reference Cases n cases n control Total samples Platform

Discovery

ICUAW GSE13205 Fredriksson49 Sepsis MODS 13 8 21 GPL570

ICUAW GSE53702 Langhans50 ICUAW 7 6 13 GPL5188

ICUAW GSE3307 Bakay51 ICUAW 5 13c 18c GPL96

Congenital GSE15090 Arashiro52 FSHD 5 5 10 GPL570

Congenital GSE18715 Voets a POLG1 6 12 18 GPL570

Congenital GSE36398ab Rahimov53 FSHD 8 16 24 GPL6244

Congenital GSE36398b Rahimov53 FSHD 10 8 18 GPL6244

Congenital GSE37084 Perfetti54 MMD 10 10 20 GPL5175

Congenital GSE26852 Tasca55 FSHD, dysferlinopathy 12 7 19 GPL6947

Congenital GSE47968 Nakamori56 FSHD, DM 23 8 31 GPL5188

Congenital GSE42806 Screen57 TMD 7 5 12 GPL570

Congenital GSE38417 Dorsey a DMD 16 6 22 GPL570

Congenital GSE38680b Palermo58 GSD II 9 10 19 GPL570

Congenital GSE11681 Saenz59 LGMD2A 10 10 20 GPL96

Congenital GSE12648 Eisenberg60 HIBM 10 10 20 GPL96

Congenital GSE6011 Pescatori61 DMD 23 14 37 GPL96

IM GSE48280 Surez-Calvet62 PM, IBM, DM 14 5 19 GPL6244

IM GSE3307 Bakay51 Juvenile DM 21 13c 34c GPL96

IM GSE1551 Greenberg63 DM 13 10 23 GPL96

IM GSE26852 Tasca55 PM, IM, DM 7 7 14 GPL6947

IM EMEXP2681 Bernasconi a DM, PM 8 7 15 GPL96

Immobility GSE45745 Barres64 Morbid obesity 5 6 11 GPL13667

Immobility GSE21496 Reich65 Unloading 7 7 14 GPL570

Immobility GSE5110 Urso66 Immobility 5 5 10 GPL570

Immobility GSE24215 Alibegovic67 Immobility 12 12 24 GPL6480

Immobility GSE104999 Rullman68 Immobility 12 12 24 GPL17692

Immobility GSE474 Park69 Morbid obesity 16 8 24 GPL96

Chronic GSE27536 Turan70 COPD 30 24 54 GPL570

Chronic GSE1786 Radom-Aizik71 COPD 12 12 24 GPL96

Chronic EMTAB3671 Kreiner72 PMR 12 12 24 GPL570

Total 348 288 636

Validation

ICUAW GSE78929 Walsh8 ICUAW 24 8 32 GPL10558

Congenital GSE13608 Bachinksi73 DMD, MMD 59 9 68 GPL570

Congenital GSE38680a Palermo58 GSD II 32 7 39 GPL570

Congenital GSE109178 Dadgar9 MD 42 6 48 GPL570

Congenital GSE3307 Bakay51 MD 66 13c 79c GPL570

Congenital GSE10760 Osborne74 FSHD 38 60 98 GPL96

IM GSE3112 Greenberg75 PM, IBM 29 11 40 GPL96

IM GSE39454 Zhu76 PM, IBM, NM 31 5 36 GPL570

Immobility GSE14901 Abadi30 Limb disuse (casting) 48 24 72 GPL570

Immobility GSE45462 Chen77 Limb disuse (casting) 16 16 32 GPL570

Chronic GSE34111 Gallagher78 Cancer 12 6 30 GPL570

Chronic GSE100281 Willis-Owen79 COPD 80 15 85 GPL11532

Total 477 180 657

Secondary validation

MND EMEXP3260 Pradat7 ALS 9 10 19 GPL96

MND GSE3307 Bakay51 ALS 9 13c 22c GPL96

Continued
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CMDM score significantly associates with clinical and histological measures of disease sever‑
ity. When selecting differentially expressed genes using the multi-cohort analysis, we did not consider dis-
ease severity. Every sample was classified as either “control” or “case.” As muscle disease severity exists along a 
continuum, we hypothesized that the summary expression of the CMDM would correlate with the severity of 
muscle disease and clinical measures of muscle function. We calculated and then correlated CMDM scores for 
each cohort to measures of disease severity and extent, muscle mass, strength, and function, when this detail 
was provided.

Five of the cohorts reported disease severity scores and/or clinical measures of muscle mass, strength and 
function. The cohort GSE109178 assessed the degree of muscle fibrosis histologically in patients with dystrophic 
subtypes of CMD, and categorized cases into subgroups of normal, mild, moderate, or severe fibrosis (Fig. 2D, 
Supplementary Table 1). Cohorts GSE78929 (ICUAW), GSE34111 (CSM) and EMEXP3260 (ALS), reported 
strength, muscle mass and/or physical functional capacity and the ALS cohort was additionally classified as 
“early” vs “late” disease severity. We found CMDM summary expression scores were significantly correlated to 
the histologic measures of disease severity and clinical measures of muscle mass, strength and function (Table 3 
and Fig. 3A–F).

Meta‑analysis highlights common mechanisms of muscle diseases. We next sought to identify 
conserved pathways dysregulated across muscle diseases using meta-analysis. Gene Set Enrichment Analysis 
(GSEA) evaluated the enrichment of Gene Ontology (GO) terms in the complete ranked list of genes based on 

Table 1.  Summary of public gene expression-based discovery and validation data sets used in the meta-
analysis. IM inflammatory myositides, MMD myotonic muscular dystrophy, MD muscular dystrophies, 
DMD Duchene’s muscular dystrophy, FSHD fascioscapulohumoral muscular dystrophy, LGMD2A limb-
girdle muscular dystrophy type 2A, HIBM heritable IBM, POLG1, MD, TMD tibial muscular dystrophy, 
IBM inclusion body myositis, DM diabetes mellitus, GSD II glycogen storage disease type II, also called Pompe 
disease, POLG1 mitochondrial DNA polymerase γ, ICUAW  intensive care unit acquired weakness, MODS 
multi-organ dysfunction syndrome. a Not published yet. b Deltoid muscle samples removed as FSHD typically 
affects biceps. c Same healthy controls used in subcohorts of GSE3307.

Disease category Accession# Reference Cases n cases n control Total samples Platform

CP GSE31243 Smith80 CP 20 20 40 GPL570

Total 38 43 81

Figure 1.  Discovery of the 52-gene signature expressed across human muscle diseases. (A) Meta-analysis 
and leave-one-disease-out analysis reveal common differentially expressed genes across muscle diseases. (B) 
Representative forest plots of most up-regulated (CHRNA1, left) and most-downregulated (CAMK2II, right) 
across muscle disease. The x axis represents standardized mean difference (Hedges’ g in z-scaled log 2 values) 
between muscle disease and controls. Summary effect sizes for each gene across all cohorts are represented as a 
yellow diamond.
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Table 2.  Common muscle disease module (CMDM) genes. Genes are listed from the largest absolute meta-
effect size to the smallest (from summary effect size in discovery set).

Gene symbol
Summary effect size 
in discovery set

Summary effect size 
in validation set

Summary effect size in secondary 
validation set

CHRNA1 1.31 1.125 1.796

LGMN 1.27 1.14 1.114

MYH8 1.161 1.241 2.009

C1R 1.094 0.924 0.743

AKR1A1 1.041 0.879 2.603

CDKN1A 1.04 1.009 1.855

CILP 0.993 1.189 1.01

TNFRSF21 0.992 0.942 0.464

OSBPL8 0.981 0.827 1.309

KLHL2 0.961 0.894 2.101

TMEM208 0.946 0.47 0.83

TMEM87A 0.94 0.49 0.671

IFITM2 0.932 0.599 0.195

C3 0.892 1.083 0.801

DUSP22 0.88 0.635 0.07

DDOST 0.855 0.308 0.321

LETMD1 0.847 0.844 0.563

CETN2 0.835 0.712 0.792

GPX3 0.833 0.549 − 0.252

ITPA 0.821 0.468 0.865

CLTC 0.808 0.633 0.894

SCPEP1 0.796 0.767 0.099

HEXA 0.789 0.54 − 0.145

SAE1 0.787 0.549 1.234

CHI3L1 0.765 0.442 − 0.44

USP3 0.76 0.386 0.619

HSP90B1 0.754 0.373 0.169

CKAP4 0.752 0.46 0.638

FST 0.747 0.923 1.546

NIP7 0.742 0.243 − 0.076

PANX1 0.737 0.666 0.389

HEY1 0.737 0.37 0.828

TBC1D16 0.726 0.571 0.84

TRMT112 0.711 0.475 0.698

TPP1 0.698 0.586 − 0.092

CERS2 0.673 0.158 0.793

ATP2A1 − 0.696 − 0.192 − 1.703

CS − 0.71 − 0.673 0.185

ALDOA − 0.719 − 0.428 − 1.847

SH2B2 − 0.721 − 0.724 − 0.573

PTP4A1 − 0.75 − 0.568 − 0.259

ACADSB − 0.751 − 0.356 − 0.814

FXYD1 − 0.754 − 0.534 0.013

ATP5F1D − 0.762 − 0.603 − 0.03

CAPN3 − 0.774 − 0.525 0.399

DUSP26 − 0.792 − 0.661 − 0.388

SLC25A12 − 0.834 − 0.479 − 0.32

TAPT1 − 0.865 − 0.37 − 0.506

GOT2 − 0.88 − 0.612 − 0.3

PYGM − 0.956 − 0.432 − 1.556

LRRC20 − 0.968 − 0.635 − 0.208

CAMK2G − 0.996 − 0.652 − 0.445
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expression relative to controls from both discovery and validation cohorts combined. A total of 74 GO Biologi-
cal Process (BP) terms were significantly enriched (FDR q-value < 0.05) after removing redundant GO terms 
(Supplementary Table 4). Twelve GO terms were down-regulated and 62 up-regulated. Networks of overlapping 
significantly enriched up- and down-regulated GO terms were visualized to aid in the interpretation of the GO 
enrichment results (Supplementary Fig. 3).

The most down-regulated and up-regulated gene sets based on enrichment score (ES) were regulation of skel-
etal muscle adaptation (ES = -0.80, q-value = 7.9 ×  10–4) and macrophage migration (ES = 0.73, q-value = 7.3 ×  10–4), 
respectively. Nine of the 12 down-regulated gene sets were related to mitochondrial metabolism, including 
2-oxoglutarate metabolism and synthesis of (ubi)quinone, a redox-active lipid that participates in several processes 
including mitochondrial electron transport. Four upregulated gene sets were related to collagen metabolism and 

Figure 2.  Validation of the 52-gene set of genes expressed across human muscle diseases. (A) ROC curves 
comparing 657 patients in the validation cohort. (B) ROC curves comparing 81 patients in the secondary 
validation cohort. (C) Heat map shows consistent differential expression in the majority of discovery, validation, 
and secondary validation cohort data sets. Columns represent CMDM genes ranked from the highest to the 
lowest standardized mean difference (Hedges’ g in z-scaled log 2 values) from left to right. Rows denote data sets 
used in each stage of meta-analysis, arranged by unsupervised hierarchical clustering using Ward’s minimum 
variance method. (D) Violin plots of CMDM muscle disease severity scores for a cohort of congenital muscle 
diseases, classified by degree of fibrosis (none, mild, moderate, severe), GSE109178. Error bars show middle 
quartiles. P values calculated with Wilcoxon rank-sum test. Jonckheere’s trend test shows significant association 
(two-tailed p ≤ 0.05) p = 4.45 ×  10–9. Refer to Table 1 for data set information. ICUAW  intensive care unit 
acquired weakness, IM inflammatory myopathies, DI disuse and immobility, CMD congenital muscle disorders, 
CSM chronic systemic diseases affecting muscle. Genes unavailable for a dataset are shown in grey.
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extracellular structure organization. Forty-four upregulated gene sets were related to immune system processes 
including neutrophil activation, innate immune response and antigen processing.

Disease‑specific patterns of gene expression changes. We hypothesized that functional analysis of 
a disease category-specific gene signature, after removing genes shared with other disease categories, would 

Table 3.  Associations of common muscle disease module (CMDM) scores with clinical and histological 
measures of disease severity.

Cohort Disease category Clinic measure correlated to CMDM score Correlation r p-value

GSE109178 Congenital Mild fibrosis vs no fibrosis – 2.68 ×  10–5

GSE109178 Congenital Moderate fibrosis vs no fibrosis – 6.66 ×  10–4

GSE109178 Congenital Severe fibrosis vs no fibrosis – 1.49 ×  10–5

EMEXP3260 MND Muscle atrophy 0.88 1.62 ×  10–3

EMEXP3260 MND Muscle strength −0.77 0.014

EMEXP3260 MND Early ALS vs controls – 0.84

EMEXP3260 MND Late ALS vs controls – 0.019

GSE78929 ICUAW Functional independence measure (FIM) motor subscore −0.59 3.10 ×  10–3

GSE78929 ICUAW Quadriceps muscle mass −0.50 0.011

GSE78929 ICUAW Early ICUAW (day 7 post-ICU discharge) vs controls – 2.50 ×  10–5

GSE78929 ICUAW Sustained ICUAW (month 6 post-ICU discharge ) vs controls – 9.14 ×  10–5

GSE34111 Chronic Quadriceps muscle strength −0.09 0.73

Figure 3.  CMDM score significantly associates with clinical and histological severity in ALS and ICUAW. Plots 
of (A) CMDM scores in violin plots for controls, early ALS, and late ALS (EMEXP3260) Error bars show middle 
quartiles. P-values calculated with Wilcoxon rank-sum test. (B) Grading score of muscle atrophy in ALS (based 
on histology) versus CMDM score. (C) Shoulder abduction (muscle strength) versus CMDM score. (D) CMDM 
scores in violin plots for controls, early ICUAW (Day 7 post-ICU), and sustained ICUAW (month 6 post-ICU; 
GSE78929). (E) CMDM scores versus functional independence measure [FIM] motor subscore. (F) CMDM 
score versus quadriceps muscle mass. Each dot corresponds to individual samples. ICUAW  ICU acquired 
weakness, ALS acute amyotrophic lateral sclerosis.
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provide insights into the unique pathomolecular mechanisms underlying each individual muscle disease. Thus, 
for each disease category we used the meta-analysis approach to generate a rank ordered list of genes based on 
expression relative to controls for the combined discovery and validation cohorts. We next visually examined the 
location of each of the CMDM genes, within the ordered list of genes, for each disease category (Fig. 4A). The 
CMDM genes were more densely distributed amongst the most up- and down-regulated genes for each muscle-
specific category gene list, validating that the CMDM genes are similarly dysregulated in each muscle disease.

We then utilized the “leave-one-disease-out” meta-analysis approach to iteratively generate ranked lists con-
taining four of the five disease categories. Significantly DE genes identified in the four-disease meta-analysis gene 
list were then removed from the single disease category meta-analysis gene list. We removed 359, 99, 200, 484, 
and 365 genes from the gene lists for CMD, IM, ICUAW, DI, and CSM, respectively.

The disease-specific gene lists represent genes that are expressed more strongly in a specific muscle disease 
category (Fig. 4B). The gene lists were then assessed for GO term enrichment to identify disease-specific pathways 
(Supplementary Fig. 4A–E. Supplementary Table 5A–E). Despite removing genes significant to other disease cat-
egories, persistent down-regulation of (i) gene sets related to mitochondrial electron transport were found in IM, 
DI, ICUAW, and CSM cohorts and (ii) gene sets related to mitochondrial translation were found in CMD, DI, and 
CSM cohorts. Significant down-regulation of genes sets related to muscle contraction were identified in CMD, 
IM, and ICUAW. Upregulation of mRNA splicing via spliceosome was found in ICUAW and DI. Upregulation 
of extracellular matrix organization genes were observed in CMD and IM. Significant up regulation of NF-kB 
signaling genes was found in IM and ICUAW categories. Only ICUAW had down-regulation of genes related 
to cell fate specification, including SOX17, a transcription factor induced during satellite cell  specification23.

Subcellular localization analysis of CMDM genes. We explored whether the CMDM gene signature is 
overrepresented in certain subcellular compartments. The majority of CMDM genes (98.1%) mapped to at least 
one subcellular localization. The vesicular exosome contained the greatest proportion of CMDM genes (25%) 
and was significantly overrepresented in CMDM signature (q-value = 0.039) (Supplementary Table 6A and 6B, 
Supplementary Fig. 5). One gene (FST) was extracellular.

Discussion
We analyzed the reported transcriptomes of 1374 individual muscle samples collected from 45 independent 
patient/control cohorts classified into five categories of skeletal muscle disease and derived using multiple micro-
array platforms, to identify and validate a robust and reproducible gene signature of muscle disease. This analysis 
leveraged both biological and technical heterogeneity across multiple independent cohorts in the discovery 
cohort to avoid overfitting and validated the CMDM signature using cohorts containing larger sample sizes to 
reduce technical  heterogeneity11. To assess the generalizability of the signature we examined three more cohorts 
that could not be classified within the five specified muscle disease categories and found the signature to be 
reproducible in these cohorts as well.

Although there are heterogeneous muscle types and diverse genetic and acquired causes of different muscle 
diseases, the 52-gene CMDM reflected convergent transcriptional pathways across peripheral skeletal muscles 
affected by disease. This implies that prior characterization of any of the genes in the CMDM may be relevant 
across muscle diseases. Several of the genes in the CMDM have been associated with muscle disease previously, 
whereas many remain unknown or poorly characterized in skeletal muscle.

Increased expression of cholinergic receptor nicotinic, alpha 1 (CHRNA1), the most robustly DE CMDM 
gene, has been recognized as a marker of severity of muscle  denervation24,25. Up-regulation of CHRNA1 has been 
reported to be associated with dynamic epigenetic modifications of the gene in a rat model of disuse-induced 
 atrophy26. The most down-regulated CMDM gene CAMK2G, calcium/calmodulin-dependent protein kinase 
type II (CaMKII) subunit gamma, is involved in sarcoplasmic reticulum Ca2+ transport in skeletal muscle and 
has been shown to remain active after  exercise27. While agonists of CaMKII have been proposed as potential 
pharmacologic therapies of in various muscle  disease28 , it has remained unclear which of the CaMKII subunits 
is most important in the regulation of skeletal muscle adaptation, response to injury and activity, and oxidative 
capacity as these subunits are currently not well characterized. Given that CAMK2G is down-regulated across 
most muscle diseases in this study we propose that it may be a suitable target for future studies of potential 
therapeutics.

Although able to robustly identify a broad range of muscle diseases, the CMDM signature more importantly 
strongly correlates with clinical and histological measures of disease severity, providing persuasive evidence 
that the signature could have future applications as a biomarker for phenotyping muscle disease. The CMDM 
signature could specifically provide diagnostic information and quantify the molecular response to therapy for 
muscle disease. Measuring changes in CMDM scores after treatment may improve the identification of therapy 
responders, and using it at enrollment in therapeutic trials may aid the stratification of patients within trial 
arms. Furthermore this signature could also serve to phenotype patients with COPD, ICUAW and other chronic 
respiratory diseases based on the extent of muscle dysfunction.

We applied gene set enrichment analysis to identify functional pathways that are similarly altered across 
muscle diseases. As expected, genes involved in skeletal muscle skeletal adaptation and mitochondrial function 
were down-regulated. Coordinate down-regulation of mitochondrial genes has been described in a number of 
muscle  diseases29–32. The predominant up-regulated functional terms were related to immune activation. Muscle 
damage secondary to disease induces immune activation culminating in inflammation and deposition of extra-
cellular matrix (ECM)33,34. Skeletal muscle diseases are characterized by up-regulation of ECM genes including 
collagen, with progressive development of fibrosis leading to dysfunctional muscle  tissue35,36. Collectively, these 
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Figure 4.  Disease-specific meta-analysis. (A) Distribution of the 52 CMD genes among individual disease 
meta-analysis gene lists. Each line presents the presence of a CMDM gene among the 24,572 gene probes 
generated from disease-specific meta-analysis ranked from the most positive standardized mean difference (left) 
to the most negative standardized mean difference (right). (B) Disease-specific meta-analysis after removing 
genes differentially expressed across the other four disease categories, identifies genes more strongly expressed 
in a single disease. Top 10 up-regulated and top 10 down-regulated genes shown (if 20 or more genes present). 
ICUAW  intensive care unit acquired weakness, IM inflammatory myopathies, DI disuse and immobility, CMD 
congenital muscle disorders, CSM chronic systemic diseases affecting muscle.
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findings are consistent with literature in chronic skeletal muscle diseases proposing the convergence of final 
common pathways including chronic inflammation, fibrosis, oxidative stress, and mitochondrial  dysfunction36.

We next removed genes similarly dysregulated across muscle disease to identify pathways altered within 
specific muscle diseases. This strategy identified pathways unique to ICUAW as well as those shared with other 
muscle diseases. Significant up-regulation of NF-kB signaling genes was found in IM and ICUAW. NF-kB has 
been previously shown to play a role in  IM37,38, has been studied in animal models of cancer cachexia and ICUAW 
39–41 and has been shown to be an inhibitor of skeletal myogenesis and muscle  regeneration42. Remarkably, only 
ICUAW had down-regulation of genes related to cell fate specification. Decreased numbers of satellite cells 
(precursors to skeletal muscle cells) in ICUAW sustained long term, compared to healthy controls have been 
detected  histologically43, supporting the finding of a down-regulated stem-cell gene set.

An unexpected finding of our meta-analysis was that the CMDM signature is enriched for genes targeted 
to the exosomal vesicle. Vesicular exosomes, cell derived vesicles containing signaling factors (including genes 
and microRNAs) for intercellular communication, have been found to have roles in muscle regeneration and 
congenital muscle  diseases44. Monitoring exosomal miRNAs has been proposed as a non-invasive method for 
tracking muscle disease  progression44,45. Future studies will assess whether plasma protein concentrations of the 
exosomal CMDM genes correlate with muscle severity to the same extent as their transcripts.

Our meta-analysis has limitations despite its comprehensiveness. Although most included studies attempted 
to select patients without co-morbidities that span more than one muscle disease category, there are potentially 
multiple pathologies in some of the muscle samples. Given the number of cohorts and size of the overall study, 
such confounding is likely to be minimal. The broad inclusion criteria applied in this study has identified a robust 
disease signature that reflects the heterogeneity observed in the real-world patient population. The consider-
able variance in gene expression profiles between the different muscle tissue  sites46 included in this analysis is 
expected to have reduced the number of significant genes, while increasing the generalizability of the significant 
genes detected. We primarily focused on identifying a gene signature that is conserved between several muscle 
disease categories and across samples. Although this is beneficial for capturing features that are consistent across 
multiple diseases, it is ill-suited for identifying subgroups of disease.

Based on the use of microarray data from multiple platforms, we cannot test for alterations in splicing regu-
lation, which has been associated with several congenital muscle diseases including the most common adult 
onset muscular  dystrophies47. Analysis of RNA-seq transcriptome data will be necessary to determine whether 
altered splice variants lead to muscle pathology in other disease categories. Identification of conserved epigenetic 
signatures of muscle disease will provide important insights into the underlying mechanisms resulting in gene 
transcriptomic dysregulation identified here, once future epigenome-wide association studies of various muscle 
diseases are available.

The cohort GSE34111 had a global expression pattern that differed markedly from the other muscle diseases 
and disease categories. As this cohort was the only one in the analysis that included cancer cachexia, it remains 
unclear whether the difference in global expression pattern reflects significant differences in the pathomechanism 
of cancer cachexia or technical or experimental differences in the study. Future analysis comparing peripheral 
muscle from patients with cancer cachexia and controls are required. Within the validation set, the chronic 
systemic disease and ICUAW categories each consisted of one cohort, reducing the power to detect significant 
effect size differences from controls within these disease categories. For this reason, disease specific pathway 
analysis was performed by combing both discovery and validation cohorts.

CMDM genes may be conceptually divided into those having direct etiological contribution to muscle disease 
and those that represent a secondary phenomenon in the development of muscle disease, include stress-related 
changes or cell survival  mechanisms48. Further experimentation will be required to identify the CMDM genes 
directly contributing to disease as these genes are expected to be good candidates for novel disease modifying 
 therapies14. CMDM genes without functional annotation can be prioritized for future experimental evaluation 
based on the strength of the molecular data (e.g. effect size or correlation with clinical phenotype). Direct experi-
mentation will be necessary to determine the role of the dysregulated genes and pathways in muscle disease as 
either causal drivers or responses to muscle disease.

Our results identify a conserved muscle disease transcriptional signature associated with clinical and histo-
logic disease severity, and identify numerous novel genes associated with muscle disease severity. Muscle disease 
specific analysis identifies pathways uniquely altered in ICUAW. Thus our findings serve as a valuable resource 
for interpreting disease mechanisms, connecting findings across muscle diseases, and driving novel hypotheses.

Methods
The analysis workflow is shown in Supplementary Fig. 1.

Data collection and pre‑processing. Two public gene expression microarray repositories (ArrayEx-
press, NIH GEO) were searched for human muscle disease datasets (search date: Aug 29, 2019). We found 45 
independent datasets with 1374 muscle biopsies that met our inclusion criteria (Supplementary Methods).

We divided the sample cohorts into 6 disease categories for analysis: (1) inflammatory myopathies (IM), (2) 
ICU acquired weakness (ICUAW), (3) congenital muscle diseases (CMD), (4) chronic systemic disease affecting 
muscle (CSM), (5) disuse and immobility (DI), (6) motor neuron disease (MND). Next, we divided the patient 
cohorts into a discovery cohort for the initial meta-analysis and a validation cohort for the independent valida-
tion analysis. For the discovery cohort we ensured that there were at least three cohorts for each disease category 
that met our inclusion criteria. As there were only two cohorts for the MND category, this was not included 
in the discovery cohort as a disease category; instead, the two MND cohorts were included in the secondary 
validation cohort.
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Normalization and probe expression summarization are described in Supplementary Methods. The number 
of studies measured for each gene are listed in Supplementary Tables 2 and 3.

Meta‑analysis. Multicohort meta-analysis of gene expression was performed (using R package MetaInte-
grator)12 as described in the Supplementary Methods. The utility of the leave-one-disease-out approach in iden-
tifying a robust gene expression signature during acute rejection across different transplanted solid  organs13 and 
across neurodegenerative  diseases14 has been shown before.

Derivation of common muscle disease module (CMDM) score. We applied a greedy forward search 
as described in the Supplementary Methods section to identify a gene signature maximized for diagnostic power, 
termed the Common Muscle Disease Module (CMDM).

Validation of CMDM score and correlation of the CMDM genes with clinical and histological 
severity. Tukey’s Biweight correlation was used to assess the association of the CMDM score with the his-
tologic and clinical measures. Between- and within-group CMDM score comparisons were done with the Wil-
coxon rank sum test.

Muscle disease category specific meta‑analysis. To identify patterns on gene expression changes that 
are unique to each muscle disease category we performed meta-analysis using the combined data of the discov-
ery and validation cohorts. We first analyzed each disease category separately, as well as the other four diseases 
together.. Genes that were significantly differentially expressed in the four-disease category meta-analysis were 
then removed from the individual disease category meta-analysis, thereby removing the DE genes common to 
all muscle disorders, from the disease-specific gene list.

Gene ontology functional analysis identified functional themes within differentially expressed genes across 
muscle disease categories as described in the Supplementary Methods.

Subcellular localization analysis was performed for each gene within the CMDM as described in the Sup-
plementary Methods.

All analyses were completed in R language for statistical computing (version 3.4.1). Significance levels were 
set at two-tailed p < 0.05, unless specified otherwise.

Data availability
The datasets supporting the results of this article are available in GEO and ArrayExpress online repositories at 
http:// www. ebi. ac. uk/ arrayexpress/ and http:// www. ncbi. nlm. nih. gov/ geo/. Data set accession numbers can be 
found in Table 1.
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