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Protein phosphorylation is a prevalent reversible post-translational modification that

influences protein functions. The advent of phospho-proteomic technologies now en-

ables proteome-wide quantitative detection of residues phosphorylated under different

physiological conditions. The functional consequences of the majority of these phospho-

rylation events are unknown. This calls for endeavors to characterize their molecular

functions and cellular effects. This can be facilitated by systematic approaches to cat-

egorize phosphorylation events, interpret their importance and infer their functions. I

carried out comparative, evolutionary and integrative analyses on in vivo phosphory-

lation events to address these challenges. First, I performed cross-species comparative

phospho-proteomic analysis to identify evolutionarily conserved phosphorylation events

in human. A sequence alignment approach was used to identify phosphorylation events

conserved at similar sequence positions across orthologous proteins and a network align-

ment approach was applied to identify potential evolutionarily conserved kinase-substrate

interactions. Conserved human phosphoproteins identified are found enriched for pro-

teins encoded by known cancer- and disease-associated genes. Next, I developed a new

approach to analyze the sequence conservation of known phosphorylated residues on

human, mouse and yeast proteins that factored in the background mutational rates of

protein and phosphorylatable residue. Furthermore, sites were analyzed according to (i)
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characterized functions, (ii) prevalence, (iii) stoichiometry, their occurrence in (iv) struc-

turally disordered/ordered protein regions, in (v) proteins of various abundance and in

(vi) proteins with different protein interaction propensity to identify the factors influenc-

ing sequence conservation of phosphorylated residues. Importantly, my analysis suggests

that false positives and randomly phosphorylated residues are present in existing phos-

phorylation datasets and they are more common on high abundance proteins. Lastly, I

characterized the theoretical maximum phosphorylation capacity in terms of phospho-

rylatable residues and discovered that genomic tyrosine frequency correlates negatively

and significantly with tyrosine kinase frequency and cell type in metazoan. This observa-

tion suggests that fidelity of phosphotyrosine signaling occurred partially through global

tyrosine depletion.
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Chapter 1

Introduction

Section 1.3.1, 1.4 and 1.5 were published in:

C. S. Tan and R. Linding. Experimental and computational tools useful for (re)construction

of dynamic kinase-substrate networks. Proteomics, 9(23):5233-42., 2009 Dec.
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1.1 Protein phosphorylation

Protein phosphorylation is arguably the most prevalent reversible post-translational mod-

ification (PTM) as it is estimated to occur on approximately one-third of all human

proteins [30]. Phosphorylation is known to modulate the enzymatic activity, three-

dimensional structure, degradation, subcellular localization, and biomolecular interaction

of phosphorylated proteins. In eukaryotes, the process, catalyzed by a protein kinase,

involves the attachment of a phosphate group from adenosine-5’-triphosphate (ATP) to

serine, threonine or tyrosine typically but aspartate, histidine and arginine can also be

phosphorylated. On the other hand, dephosphorylation (the removal of phosphate from

a phosphorylated residue) is catalyzed by protein phosphatases. Protein phosphoryla-

tion allows cell to dynamically modulate protein functions [160] in response to extra-

and intracellular cues, so as to elicit appropriate cellular behaviors (e.g. proliferation,

differentiation, migration and apoptosis) needed for survival and proper morphological

development.

The dynamic balance between protein phosphorylation (by protein kinases) and de-

phosphorylation (e.g. by protein phosphatases or through protein degradation) in re-

sponse to combinatorial intra- and inter-cellular cues imposes dynamic structures in sig-

naling networks which function as molecular switches or logic gates to regulate cellular

activities [37]. Errors in protein phosphorylation or dephosphorylation often result in

dysfunctional cellular processes leading to cancer and complex regulatory diseases [205].

Hyper-phosphorylated retinoblastoma protein, for instance, is linked to multiple cancers

[87, 28, 22] while hypophosphorylated retinoblastoma protein is implicated in adult T-

cell lymphoma progression [121]. In brief, identifying phosphorylated proteins and their

sites of phosphorylation provides important clues for understanding cell biology.

Phosphoproteins are routinely detected by isotopic labeling using inorganic phos-

phate isotopes 32P or 33P. The isotopes, in the form of ATP, are often added in in

vitro kinase assays to detect phosphorylation on purified proteins of interest. Antibodies
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(Ab) that target phosphoresidues can be used in place of radioactive isotopes to detect

phosphorylated proteins. However, these methods are typically not scalable for simulta-

neous detection of thousands of phosphoproteins needed for a system-level understanding

of how protein kinases and phosphatases influence cellular behavior. A protein can be

phosphorylated at multiple sites, and each site individually and in combination may have

different functional consequences. Knowing the site of phosphorylation on a protein can

help in deciphering the molecular effect of phosphorylation. It is, therefore, important to

identify the exact site of phosphorylation on proteins. This can be achieved by Edman

sequencing [40] and mutagenesis genetic experiments, but the techniques are generally

time-consuming.

Various proteome-wide techniques have been developed to identify phosphoproteins

and their phosphorylated sites. Among them, mass spectrometry has recently emerged

as a popular choice for at least two reasons [138, 155]. First, it is a high-throughput

(HTP) identification method that can detect thousands of phosphorylation sites in a

single experiment [155]. Second, coupled with good separation techniques, it can detect

phosphoproteins and their phosphorylated sites from complex samples such as cell lysate.

The underlying principle behind phosphorylation site detection by mass spectrometry is

that phosphorylated peptides produce unique tandem mass spectra (MS/MS) that help

in their identification. First, proteins are broken down into peptides, typically by trypsin,

which are then separated and ionized prior to m/z (mass-to-charge) measurement by mass

spectrometer. The ionized peptides are subsequently isolated and broken down into ion

fragments at amide bonds. From each ionized peptide, an ensemble of ion fragments each

with different M/Z value is generated that collectively produce a unique mass spectrum

useful for determining the sequence of the peptide [171]. A phosphorylated peptide

will have a detectable 80 Da mass shift per phosphate in its mass spectrum over its

unphosphorylated form due to the additional phosphate group. Hence, a phosphorylated

peptide can be identified from its MS/MS spectrum. The exact site of phosphorylation
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on a phosphorylated peptide can also be determined from its mass spectrum albeit at a

higher degree of error. Another common proteome-wide technique useful for identifying

substrates of individual kinases is protein/peptide array (described in later section) [137]

.

As a result of these proteome-wide techniques, there has been an explosion of known

phosphorylation sites in the last five years or so. The first proteome-wide screen was

carried out in S. cerevisae that identified 383 phosphosites [42]. Subsequently, proteome-

wide screens for phosphorylation sites using phosphoproteome technologies were deployed

on various human cell lines [129, 83], mouse [187], fly [203], plant [91] and bacteria [105].

To date, human-focused phosphoproteome studies have detected more than 50,000 phos-

phorylation sites of which at least half have not been detected in directed experiments

(personal analysis). The identification of these phosphorylation sites provide new infor-

mation that can enhance our understanding of how protein kinases and phosphatases

regulate cellular processes and dictate cell behavior. In this chapter, I survey the various

proteome-wide techniques used for profiling phosphoproteins and phosphorylation sites,

and their applied biological studies. I also survey various reported evolutionary analysis

of protein phosphorylation sites. Finally, in the last section, I highlight the challenges in

exploiting the new information for understanding phosphoregulation of cellular activities,

outline my research objectives and summarize my research work.

1.2 Technologies for high-throughput protein phos-

phoprofiling

1.2.1 Phosphopeptide enrichment techniques

Mass spectrometry has emerged as a popular method for identifying phosphoproteins and

their sites of phosphorylation. The key steps in the identification process can be sum-
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Figure 1.1: Main steps in the identification of phosphorylated peptides and phos-
phorylation sites by tandem mass spectrometry analysis.

marized as follows (Figure 1.1): (i) breaking down of proteins in a sample into peptides,

typically by trypsin, (ii) enrichment of phosphorylated peptides, (iii) purification of pep-

tides using separation techniques like high-performance liquid chromatography (HPLC),

(iv) generation of mass spectra for separated peptides using mass spectrometer and fi-

nally, (v) matching of mass spectra to a spectra database to identify peptide sequences

and its corresponding proteins.

A key advancement in recent years that greatly facilitates phosphopeptide detection

by mass spectrometry is the development of phosphopeptide enrichment techniques. As

many phosphoproteins are of low abundance, their detection by mass spectrometry is a

challenge. In addition, only a few copies of a cellular protein may be phosphorylated

at one time (phosphorylation stoichiometry) especially for phosphotyrosines. This can

result in the signal from phosphopeptides being completely masked by its more abundant

unphosphorylated forms. In many situations, the ability to identify minute phosphopro-
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teins and phosphopeptides in a complex mixture (such as cell lysate) is desirable. Thus,

in recent years, techniques for phosphopeptide enrichment prior to identification by mass

spectrometry have emerged that greatly facilitate the identification of phosphorylation

sites. Some of these techniques are:

Immobilized Metal Affinity Chromatography (IMAC)

One of the first phosphopeptide enrichment techniques applied in genome-wide detection

of phosphorylation events is immobilized metal affinity chromatography (IMAC). The

technique was first described in 1999 [136], and was subsequently adapted for large-scale

detection of phosphorylation events in S. cerevisiae [42]. The technique exploits the

affinity of phosphate for immobilized metal. However, unphosphorylated peptides that

contain acidic residues (like glutamic and aspartic acids) can also bind to the immobilized

metals. To prevent this, all peptides in a sample may first be converted to corresponding

peptide methyl esters prior to phosphopeptide enrichment by IMAC. The enrichment

technique has been coupled with liquid chromatography (LC)-tandem mass spectrometry

(MS/MS) to detect phosphorylation events in cancerous cells [83, 118].

Strong Cation Exchange Chromatography (SCX)

Another chromatographic method used for phosphopeptide enrichment is strong cation

exchange chromatography (SCX). The technique was first applied in a proteome-wide

manner to detect phosphorylation events in a HeLa cell line [10] where proteins in a cell

lysate were first separated by SDS-PAGE followed by in-gel trypsin digestion. This tech-

nique produces mostly peptides with +2 net charge at low pH. Singly-phosphorylated

peptides, on the other hand, have a +1 net charge due to the presence of the negatively

charged phosphate group. Phosphopeptides were then separated from non-phosphorylated

peptides by SCX on the basis of charge difference. A total of 2002 sites from 976 proteins

were identified in the experiment. It should be noted that the approach cannot detect

6



doubly-phosphorylated peptides which have a net charge of 0 at low pH. It addition,

it was found that phosphorylation sites with proline and acidiphilic amino acids in its

flanking sequence make up a large fraction of the identified sites, suggesting a possible

bias in the technique [10]. Like IMAC, the SCX had been applied on lysate from whole

tissue, e.g. [9].

Antibody-based Enrichment Techniques

Antibodies (Ab) against phosphoresidues have also been used to enrich for phospho-

proteins and phosphopeptides. In Grønborg et al. [54], proteins were immunoprecip-

itated with anti-pSer Ab and anti-pThr Ab followed by matrix-assisted laser desorp-

tion/ionization time-of-flight (MALDI-TOF) and nanoelectrospray tandem mass spec-

trometry to detect serine and threonine phosphorylation events. Other works used anti-

pTyr Ab to profile tyrosine phosphorylation in epidermal growth factor receptor signaling

pathway [170] and in Jurkat leukemia T-cell line [151]. As tyrosine phosphorylation is a

rare event compared to serine/threonine phosphorylation and that anti-pTyr Ab generally

has higher efficiency than anti-pSer Ab and anti-pThr Ab, enrichment techniques using

anti-pTyr Ab has emerged as a common experimental strategy to study phosphotyrosine

signaling pathways [156]. In addition to antibodies targeting phosphoserine, phospho-

threonine and phosphotyrosine generically, antibodies that target phosphoresidues with

specific consensus sequence or motif had been used to identify proteins potentially phos-

phorylated by specific kinases or specific classes of kinases [54, 110].

Chemical Modification

Phosphorylated peptides can also be chemically modified to facilitate their enrichment.

One approach involves replacing the phosphate moiety on phosphorylated peptides with

biotinylated moieties [128]. The phosphorylated biotinylated peptides are then enriched

with immobilized avidin and characterized by mass spectrometry. The shortcoming of
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this technique is it is not applicable to phosphotyrosine [53]. Another technique involves

converting phosphopeptides into covalent tethers for attachment to a polyamine den-

drimer [183]. The phosphopeptides with its high molecular mass dendrimer are then

separated from non-phosphorylated peptides by size exclusion filtering.

Combinatorial Approach

Various phosphopeptide enrichment techniques have been combined to improve enrich-

ment. For example, IMAC was used in conjunction with immunoprecipitation to profile

tyrosine phosphorylation events in Jurkat cells [153] and in the interferon-α signaling

pathway [206] using mass spectrometry. In another work, IMAC, SCX and immunopre-

cipitation were used in combination to detect phosphorylation events occurring in mouse

liver [187]. Phosphopeptide modification by dendrimer coupled with immunoprecipita-

tion has also been used to characterize tyrosine phosphorylation in T-cells [183].

1.2.2 Quantitative mass spectrometry techniques

The ability to quantify the amount of phosphoproteins and phosphorylation sites in ad-

dition to their detection provides further insight into how protein kinases and protein

phosphatases regulate cellular activities. While there are methods to measure the ab-

solute quantity of peptides (e.g AQUA [46]), they are presently not commonly used for

quantifying phosphopeptides. Instead, techniques for relative quantification of phospho-

peptides in one sample compared to the same phosphopeptides in another sample are

more commonly used. The key step is often to differentially label proteins/peptides

from different samples with isotopes or special chemical reagents such that the same

phosphopeptide from different samples are of different mass that can be differentiated

and quantified. Once samples are differentially labelled, they are mixed together before

identification by mass spectrometry. While the term “quantitative phosphoproteome” is

commonly used in literature, the quantitative measurements were often relative in nature.
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When Forest White and his colleagues first applied the IMAC technique for detect-

ing phosphorylation events [42], they also incorporated a quantitative approach in the

technique. They showed that peptides of same sequence converted to methyl esters using

methanol and deuterated methanol separately produces different mass spectra that is de-

tectable by mass spectrometry. Another approach uses whole-cell stable isotope labeling

by incorporating 15N isotope into cell culture for quantification [127]. Here, I surveyed

the more commonly used labeling methods.

1.3 Technologies for high-throughput protein phos-

phoprofiling

Stable Isotope Labeling by Amino acids in Cell culture (SILAC)

The SILAC technique, first described in 2002, involves growing cells in media with an

isotopically-labeled form of an essential amino acid until the amino acid is incorporated

into the proteome of the cell ([131], see Figure 1.2 for an overview). Isotope-labeled

peptides produce different mass spectra compared to normal peptides. The method was

adopted to elucidate the tyrosine phosphorylation state in HeLa cells at different time

points after epidermal growth factor (EGF) stimulation [14]. To enable comparison of

phosphorylation state across three different time points after EGF stimulation, three

different isotope-labeled arginines (12C6
14N4-Arg, 13C6

14N4-Arg, 13C6
15N4-Arg) are used.

Cells grown in media separately with each of the isotope-labeled arginines were mixed and

lysed. Tyrosine-phosphorylated proteins were then purified with anti-pTyr Ab, digested

and then identified/quantified with LC-MS.
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Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)

Rather than culturing cells to incorporate isotopes into their proteome, peptides can

be directly labeled using iTRAQ reagents. Each iTRAQ reagent consists of a protein-

reactive group that attaches to protein/peptides and a reporter group that fragments to

produce different m/z value, allowing identification and quantification directly from the

MS2 spectrum [149]. There are up to eight different iTRAQ reagents, each producing

different mass spectra for peptides of the same sequence. Thus, up to eight samples can

be simultaneously assessed using iTRAQ. The technique has been applied to compare

phosphorylation profiles of parental human mammary epithelial cells after 0, 5, 10 and

30 minutes of EGF simulation [204]. In this example, phosphopeptides were enriched

with IMAC, and the temporal profiles of 104 phosphotyrosine sites on 76 proteins were

generated.

1.3.1 Protein and peptides microarrays

Multiple putative protein substrates of protein kinases can be immobilized on a solid sup-

port, such as glass slide or streptavidin-coated membrane, as miniature protein array or

proteome chip [104]. They can then be overlaid with isotope-labeled ATP and a protein

kinase of interest to perform an in vitro kinase reaction assay [208, 207] . Phospho-

rylated substrates can be subsequently detected using high-resolution phosphorimaging

[76]. This approach allows rapid screening for putative substrates of a specific kinase us-

ing a small amount of reagents and can be scaled up for proteome-wide assays [104]. For

example, using microarrays containing 4400 unique S. cerevisiae proteins [104], Ptacek

and colleagues tested 82 S. cerevisiae protein kinases and identified 4200 phosphoryla-

tion events on 1325 proteins [137]. In another study, potential substrates of Abl and

Abl-related gene (Arg) tyrosine kinases were assessed using a microarray containing 2400

different human proteins [20].
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Kinase-substrate interactions detected using protein microarray as described above

may not occur physiologically due to lack of biological context, such as cellular colo-

calization and/or protein coexpression between kinases and their detected substrates.

Moreover, high kinase concentration, which does not reflect physiological or cellular lev-

els, is often used to increase sensitivity of these assays. In addition, many physiological

kinase-substrate interactions can be missed because contextual factors like adaptor pro-

teins or coactivators (e.g. cyclins) and priming phosphorylation sites or kinases are often

not present in the arrays. Nevertheless, a protein microarray assay serves to identify

potential kinase-substrate relations that can either be validated through downstream

biochemical and genetic experiments or corroborated with biological data from other

studies.

Peptides with a phosphoacceptor residue at a fixed position can be immobilized on a

chip just like full-length proteins, and subsequently incubated with isotope-labeled ATP

and kinase of interest, followed by phosphorimaging to identify phosphorylated peptides.

Peptides spotted on microarrays can be random sequences [152], from degenerate oriented

peptide libraries [167] or are subsequences found in proteins [52, 94, 89]. If peptides cor-

responding to subsequences in proteins are used, the precise sites of phosphorylation on

substrates can be determined. However, both false positive and false negative phospho-

rylation sites can be detected by this approach, as the 3-D structural context of the

phosphoacceptor residues which can affect phosphorylation are not represented in the

assays. On the other hand, if peptides of random sequence or degenerate oriented pep-

tide libraries are used, the observed phosphorylated peptides can be used to derive a

position-specific scoring matrix (PSSM), as a statistical model, to quantify the phos-

phorylation propensity of a phosphoacceptor residue based on amino acids flanking the

residue [114, 200]. The PSSM can then be used to scan a proteome to identify putative

substrates for the kinase assayed [114, 200]. Exact sites of phosphorylation are pre-

dicted using this bioinformatics approach although the approach is known to have high
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false positive rate presumably because non-naturally occurring peptides devoid from the

content/context of whole protein sequences were used.

A challenge for peptide chips based on random sequence peptide is the huge surveyable

peptide sequence space. An alternate approach is to incubate the kinase of interest

and isotope-labeled ATP in solution with a large set of fixed-length peptides of different

sequences. To facilitate the identification of sequence patterns needed for phosphorylation

by a protein kinase of interest, peptides can be divided into pools such that peptides in

each pool match a consensus pattern. Such an approach was taken by Cantley, Yaffe,

Turk and coworkers to determine the sequence specificities of serine/threonine kinases

[200, 68, 117]. Unique peptide pools were generated such that in each pool, all peptides

have a common amino acid at one of the residue position while amino acids in other

positions are degenerated. In Turk’s approach, a total of 198 unique peptide pools

were generated as phosphothreonine, phosphotyrosine and the 20 naturally occurring

unmodified amino acids were individually fixed at each of the nine residue positions

flanking a central phosphoacceptor residue. Each peptide in the pools is biotin-tagged,

allowing the peptide to be spotted onto a streptavidin-coated membrane. Phosphorylated

peptides can subsequently be detected by autoradiography or phosphorimaging. Amino

acids preferred by the kinase of interest at each position flanking the phosphoacceptor

residue can then be determined. In addition, the fixation of a phosphorylated residue

at one of the positions flanking a phosphorylated phosphoacceptor residue allows the

detection of phosphorylation that requires priming phosphorylation sites [143].

1.4 Applied proteome-wide phosphoprofiling of bio-

logical systems

The experimental techniques and technologies described in the previous section had been

adapted to study signal transduction, in particular to identify the phosphorylation sites
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targeted by different kinases. Here, we surveyed some of the strategies adopted toward

this goal.

1.4.1 Perturbation-based assays

Protein or peptide chips can be applied to identify putative substrates of kinases. How-

ever, they are in vitro experimental techniques that do not necessarily capture the phys-

iological/cellular concentration and co-localization factors of protein kinases and their

substrates [98]. Instead, Smolka et al. [166] combined quantitative MS techniques with

perturbation studies to identify cellular phosphorylation sites and substrates of yeast

DNA damage checkpoint kinases Mec1/Tel1 and Rad53 upon induction of DNA damage.

Quantitative MS techniques can detect sites that are differentially phosphorylated across

two or more cellular conditions/perturbations but do not directly identify their effec-

tor kinases. However, by detecting phosphorylation sites that were specifically altered

between kinase-null (Mec1/ Tel1 and Rad53) and wild-type S. cerevisiae, Smolka et al.

identified 62 putative target sites of Mec1/Tel1 and Rad53 on 55 proteins. These differ-

entially phosphorylated sites were enriched in the known phosphorylation motifs (linear

motifs) of Mec1/Tel1 and Rad53, which further suggest that many identified targets are

physiological substrates of the kinases.

A quantitative MS approach was also adopted to identify proteins in zebrafish Fyn/Yes

morpholino knockdown embryos that were differentially phosphorylated compared to

those in wild-type embryos [93]. Using similar approaches, Matsuoka et al. identified

putative ATR and ATM phosphorylation sites that were altered upon DNA damage in

human embryonic kidney 293T cells, and thus, should correspond to physiological tar-

gets of the two kinases [110]. Putative phosphorylation sites of ATR and ATM were

identified using antibodies against pSQ or pTQ sites that are known to be targeted by

ATM and ATR kinases. Among the phosphorylation sites detected, 905 sites from among

700 proteins were found up-regulated fourfold after induction of DNA damage, of which
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55 sites were found on 31 ATR and ATM substrates known to be implicated in DNA

damage signaling. Hence, the 700 proteins are possible physiological substrates of ATM

and ATR. The accuracy and scalability of this approach depend on the availability of

suitable antibodies and their qualities. In addition, the specificity of the antibody is

an important consideration in such assays, as many protein kinases are known to have

similar specificities.

A potential pitfall in the above-mentioned approaches is that not all perturbed sites

identified are direct targets of the deleted kinase. Instead, they could be targets of other

kinases that are activated downstream of the deleted kinases in signaling cascades. For

example, in Smolka et al. [166] , about half of the sites down-phosphorylated in Mec1/

Tel1 mutant are also down-phosphorylated in a Rad53 mutant. As these sites express

Rad53 phosphorylation motifs and given that Rad53 acted downstream of Mec1/ Tel1,

they are likely targets of Rad53.

1.4.2 Chemical-genetics approaches

As mentioned above, a challenge in perturbation approaches is that one cannot always

be certain which kinase(s) phosphorylated the observed altered sites as many protein

kinases could share similar consensus motifs or targets. By structural alteration of a ki-

nase (through mutagenesis) such that it can incorporate a specific modified form of ATP,

a detected phosphorylated protein containing the modified ATP is most likely targeted

by the mutant kinase [162, 102, 39]. Cells (NIH 3T3) with such analogue-sensitive (AS)

mutants of v-Src kinase were generated, lysed and incubated with analog ATP to identify

putative substrates of v-Src with in vivo concentration of proteins [163]. An AS mutant

of Pho85 kinase was generated similarly and assayed for putative substrates in whole-

cell extracts of S. cerevisiae [34]. A similar approach was combined with computational

search by Ubersax et al. to identify in vivo substrates of Cdk1 [70]. The phosphorylation

detection was performed on potential substrates expressing a Cdk1 consensus phospho-
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rylation motif (S/T-P-x-K/R) using cell lysate incubated with purified AS mutant Cdk1

with analog ATP to identify 181 proteins that were efficiently phosphorylated by the AS

mutant Cdk1. To validate some of the identified substrates in vivo, small molecules that

inhibit the AS mutant Cdk1 were added to cultures of S. cerevisiae AS mutant Cdk1

strains to detect proteins with decreased phosphorylation as likely targets of Cdk1 in

vivo. A total of 12 high confidence in vivo substrates of Cdk1 were identified in this

manner. Similar approach was adopted by Holt et al [62] to identify phosphorylation

sites targeted by Cdk1 during cell cycle. Two issues with these approaches are that it can

not be ruled out that the ATP analog may be picked up and utilized by other distantly

related kinases, and that the structural change in the AS kinase may alter its in vivo

specificity. Another concern is the scalability of the assay for proteome-wide studies as

it is unclear presently whether AS mutants can be created for most kinases.

1.5 Computational analysis of phosphoproteomic data

Recent advancement in technologies described now permits the identification and quan-

tification of thousand of phosphorylation sites in a single experiment. The relative differ-

ences in phosphorylation level of multiple sites between cell samples subjected to different

treatments, or at different time points after treatment can now be surveyed in a high

throughput manner. Computational data analysis and modeling approaches are needed

to organize and interpret the large datasets of site- and context-specific in vivo phos-

phorylation events assembled in various HTP phosphoproteomic studies. One of the key

challenges is to delineate detected phosphorylation sites to their effector kinases. This

is important for inferring the kinase-substrate interaction networks that are essential for

mechanistic understanding of cell behavior and for therapeutic intervention [78, 133].

Here, I survey some of the computational data analysis and modeling approaches that

have been used to analyze large-scale phosphorylation data sets (see Figure 1.3 , and
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the computational tools for infering transient kinase-substrate interaction networks.

1.5.1 Clustering of phosphorylation sites with similar temporal

profiles

Surface receptor kinases belong to a class of protein kinases that assimilate extracellular

signals to initiate appropriate cell behaviors. Proteome-wide studies of phosphorylation

events initiated by one such receptor kinase, epidermal growth factor (EGF) receptor,

have been conducted where sites differentially phosphorylated at time points 1, 5, 10

and 20 min after EGF activation in HeLa cells were probed using quantitative phos-

phoproteomic techniques [129, 13]. These studies revealed the dynamic temporal nature

of protein phosphorylation in which many sites are either up- or down-phosphorylated

at different times after EGF stimulation. Phosphorylation sites with similar temporal

profiles were grouped using Fuzzy c-means (FCM) clustering to facilitate biological anal-

ysis and interpretation [129]. Unlike other hard-partition methods like k -means and
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self-organizing map (SOM), FCM allows an instance to belong to different clusters with

different scores that add up to 1.

In a similar work, the temporal dynamics of a large number of tyrosine phosphoryla-

tion sites were analyzed at four time points (0, 5, 10 and 30 min) after 5, 10 and 30 min

incubation of human mammary epithelial cell line with 25nM EGF using untreated cells

as a control [204]. SOM with U-matrix method [186] of visualizing was used to identify

coregulated phosphorylation sites. In essence, SOM is a technique for mapping high-

dimensional data (in this case, each phosphorylation site has 16 features corresponding

to the four time points under the four different treatments) to lower dimension, often

2-D, that facilitate manual grouping of clusters by visual inspection. An advantage of

SOM is it allows an overview of similarity between clusters.

1.5.2 Regression analysis of phosphorylation data to predict

cell fate

Partial least-square regression (PLSR) is a class of regression technique that combines

a data compression technique (through principal component analysis) with regression to

predict dependent variables using input variables from limited samples. In situations

where the number of input variables exceeds the number of observations, or when the

input variables exhibit multi colinearity (meaning some variables are highly correlated),

or when there are missing data, PLSR is an adequate choice for regression analysis over

other conventional regression techniques. In a landmark paper, PLSR was used to predict

cell fate of individual HT-29 cell with high accuracy after stimulation by combination of

three cytokines (tumor necrosis factor, EGF and insulin). The inputs to the PLSR are

the quantitative experimental readouts of 11 signaling proteins at multiple time points

after cytokine stimulation [71]. The work highlights the value of including the dynamic

response of signaling molecules upon cytokine stimulation in regression analysis, as using

only the input cytokine concentration failed to correctly predict cell fate. PLSR was also
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applied to correlate the temporal dynamics of phosphotyrosine sites with migration and

proliferation cell behaviors mediated by the ErbB2 family of tyrosine receptors [195, 88].

Other applications of PLRS include correlating multiple signaling events to observed cell

behaviors [115, 52]. Most importantly, these studies showed that apparently genetically

identical cells can react differently to the same stimulus depending on the physiological

state of the proteins in the cells.

1.5.3 Site prediction and motif discovery from phosphorylation

sites

Another common data analysis strategy is the identification of over-represented sequence

patterns among detected phosphorylation sites that may correspond to phosphorylation

motifs of some kinases. This strategy can be used to detect novel phosphorylation mo-

tifs of uncharacterized kinases [80] or novel binding motifs of phosphoresidue-binding

domains like SH2 and PTB [160]. Although phosphorylation or binding motifs could

be determined by in vitro methods such as protein microarray and degenerate oriented

peptide libraries (see below), these experiments are conducted in vitro and thus may not

fully reflect bona fide motifs. Motif discovery tools such as Gibbs motif samplers [92],

MEME [7], PRATT [77], TEIRESIAS [146] and D-STAR [181] can be used to discover

motifs [123] from sets of phosphorylation sites determined in phosphoproteomic experi-

ments. For example, PRATT was previously used to identify phosphorylation motifs of

kinases from the sequences of substrates detected in protein chip experiments [137].

Many generic motif discovery algorithms do not explicitly correct for unbalanced dis-

tribution of amino acids found in proteins that contribute to spurious motifs. To address

this shortcoming, MotifX, a recent motif discovery algorithm, incorporated background

frequencies of amino acids in proteins to improve the extraction of phosphorylation mo-

tifs from phosphoproteomic data [158]. MotifX was applied in various studies to identify

known and novel motifs in mammalian species [165, 132, 8] and in Arabidopsis [175].
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Motif patterns extracted by MotifX are restricted with either all amino acids or a sin-

gle amino acid at each position, thus motifs with degenerate positions like the pY-x-x-

[LIV] motif of JAK2 kinase [4] were excluded. Moreover, the greedy iterative nature of

the algorithm could potentially exclude the discovery of some motifs. MoDL is a motif

discovery algorithm created to extract degenerated motifs found in phosphorylation data

[148] using the principle of minimum description length.

Motif extraction from phosphorylation sites detected in HTP phosphoproteomic stud-

ies coupled with downstream experimental validation could lead to discovery of novel

in vivo phosphorylation motifs of protein kinases and phosphoresidue-binding domains.

This is exemplified in Miller et al. [113] where a novel binding motif for a SH2 domain

in inositol 5-phosphatase 2 (SHIP2) was discovered. In the work, 481 unique tyrosine-

phosphorylated peptides detected by tandem MS experiments in mammalian cell lines

were grouped into 20 clusters, followed by motif extraction using TEIRESIAS [146]. A

novel N-terminal hydrophobic motif [DE]-x-xx-[ILV]-[ILV]-pY was extracted from one of

the clusters, in which three out of the four peptides expressing the motifs were validated

to bind SHIP2 in pull-down assays. Mutational analysis on two amino acid positions

immediately N-terminal to the phosphotyrosine confirmed the generality of the motif.

Interestingly, proteins expressing the motif are enriched with cell surface receptor linked

signal transduction function, in agreement with known association of SH2-containing pro-

tein with receptor-linked signaling. The work is probably the first system-wide approach

that combined both bioinformatics analyses and experimental validation to discover novel

motifs.

1.5.4 Computational identification of protein kinases targeting

MS-derived phosphorylation sites

One of the key challenges is to delineate MS-derived phosphorylation sites to their effector

kinases. Here, I survey the computational methods and tools that have been developed or
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conceptually can be used for this purpose. Simple consensus motif searching using known

phosphorylation motifs of kinases can be used to associate MS-identified phosphorylated

sites or proteins to their effector kinases [166, 185, 110]. However, relying on simple

regular expression search can be highly unspecific [114]. Thus, several computational

methods had been developed to better identify potential targeting kinases (or kinase

family) of MS-identified phosphorylation sites.

Machine-learning approaches

A subset of these tools deployed machine-learning algorithms to predict novel phospho-

rylation sites. The basic methodology involves training machine-learning models using

known positive and negative examples of sites phosphorylated by kinases of interest,

and then testing the capability of the models to differentiate both positive and negative

samples in separate data sets. The resulting computational models can subsequently be

applied to new data to predict potential phosphorylation sites of specific kinases. Support

vector machines, a statistical machine learning method, have been used in KinasePhos

[196] and PredPhospho [84] for predicting kinase-specific phosphorylation sites. Simi-

larly, artificial neural networks and Bayesian Decision theory were employed in NetPhosK

[60, 15], GANNPhos [182] and PPSP [198] to predict kinase-specific phosphorylation sites.

MetaPredPS [192], a meta-predictor, combined predictions from GPS [199], KinasePhos,

PPSP, PredPhospho and Scansite [200] through a generalized weighted voting strategy

to improve prediction for phosphorylation sites targeted by four protein kinase families

(CDK, CK2, PKA and PKC).

Similarity based approaches

Alternative approaches have been adopted to predict kinase-specific phosphorylation

sites: GPS 2.0 predicts kinase-specific phosphorylation sites in a query sequence based

on the sequence similarity to known sites of kinases [199]. To improve prediction perfor-
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mance, a derivative of the BLOSUM 62 substitution matrix was derived for each kinase

group to optimize similarity comparisons between the sites. Predikin employs sequence-

structure analysis of protein kinases to infers phosphorylation motifs for uncharacterized

serine/threonine kinase sequences submitted by user [21]. The pkaPS method uses a

simplified analytical model to score physical and chemical requirements at amino acid

positions from 18 to 123 of phosphoacceptor residues to predict putative phosphorylation

sites of protein kinase A (cAMP-dependent kinase, PKA) [126].

Contextual modeling of kinase specificity – NetworKIN

Computational and in vitro experimental detection of kinase substrates and their phos-

phorylation sites often omit contextual factors like subcellular compartmentalization and

differentiated protein expression that can prevent phosphorylation. In addition, positive

factors that coregulate phosphorylation such as colocalization via anchoring proteins,

scaffolds and substrate capture by non-catalytic interaction domains and docking mo-

tifs are typically not captured in these experiments. These factors, in combination with

the challenges of mapping transient and context-dependent kinase-substrate interactions

using current protein-interaction assays, have in part led to a large gap between the

understanding of in vivo phosphorylation sites and the kinases that modulate them.

Currently, in the Phospho.ELM database [36], there are thousands of annotated in vivo

phosphorylation sites, of which only about 25% have been linked to at least one in vivo

kinase [99]. To address this problem, the NetworKIN algorithm was developed to pre-

dict in vivo kinases for identified phosphorylation sites [98]. The principle behind this

algorithm is to model kinase specificity using contextual information for phosphoproteins

and kinases in combination with sequence models of kinase consensus motifs [114]. By

combining probabilistic modeling of network context with the linear motifs recognized

by the catalytic kinase domain, it has been shown that NetworKIN can assign a specific

kinase to an observed in vivo phosphorylation site with a 2.5-fold higher accuracy than

22



previous methods such as Scansite and NetphosK.

The human kinome specificity atlas – NetPhorest

NetPhorest is a database containing specificity motifs of protein kinases and phosphoresidue-

binding protein domains derived using peptide arrays. The database currently contains

consensus motifs for 179 human protein kinases and 104 human SH2 and PTB domains.

It also consists of an ensemble of probabilistic classifiers for inferring which protein ki-

nase or phosphoresidue-binding protein domain likely targeted experimentally observed

phosphorylation sites. Hence, predictors in NetPhorest are unlike existing predictors

that were developed to predict novel phosphorylation sites of kinases or novel binding

sites of phosphoresidue-binding protein domains. NetPhorest has a framework to auto-

mate data set construction and training of sequence models for linear motifs involved in

phosphorylation mediated signaling.

1.6 Evolutionary and functional analysis of phospho-

proteomic data

As I seek to study the evolutionary dynamics of protein phosphorylation for interpreting

the importance and functions of newly discovered protein phosphorylation events, here,

I survey related work on the conservation of phosphorylation sites.

At the level of phosphoprotein conservation, Mann and colleagues [50] reported that

phosphoproteins are more likely to have homologs in other eukaryotes than proteins not

known to be phosphorylated, based on the phosphoproteomes identified by mass spec-

trometry in 5 eukaryotes (Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila

melanogaster and Mus musculus). Higher conservation of phosphoproteins over non-

phosphorylated proteins are also reported for prokaryotes for MS-identified phosphopro-

teins in Escherichia coli and Bacillus subtilis [107]. However, in another study, Mann
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and colleagues reported that phosphoproteins identified in 4 prokaryotes (Escherichia

coli, Bacillus subtilis, Lactococcus lactis and Halobacterium salinarium) are rarely ho-

mologous to each other and are relatively sparse compared to eukaryotes [50]. Conserva-

tion analysis of phosphoproteins in Saccharomyces cerevisiae also revealed that protein

phosphorylation may have been a factor influencing the retention of duplicated genes

after WGD (Whole Genome Duplication) in yeast [82].

In addition to higher conservation of phosphoproteins reported for both prokaryotic

and eukaryotic species, phosphorylation sites have been reported to be more conserved

than their non-phosphorylated counterparts. Gnad et al. reported higher conservation of

fly’s phosphoserines in human over other serines while Malik et al. [107] observed overall

higher conservation of human phosphorylation sites (without distinguishing between pS,

pT and pY) in rat, mouse, cow, chicken, zebrafish and Xenopus for 1744 phosphoryla-

tion sites identified on mitotic spindles isolated from cultured human cells. Similarly,

phosphorylation sites in Escherichia coli and Bacillus subtilis are reported to be more

conserved than other phosphorylatable residues in various species, although statistical

significance could not be established due to the small number of phosphorylation sites.

However, conservation rate of phosphorylation sites has been reported to be similar to

other solvent accessible phosphorylatable residues [75]. It should be noted that in this

particular study, conservation of phosphorylation sites and phosphorylatable residues

were not computed between homologous sequences and protein structures from across

diverse species. Observations from such a conservational analysis approach can therefore

be skewed by varying divergence rates of different lineages. In addition, occurrence of

most known phosphorylation sites in unstructured regions in proteins [75, 90, 62, 159],

which in general are evolving faster than structured protein regions [23], can contribute

to the lower conservation rate observed for phosphorylation sites over other phospho-

rylatable residues [90]. Boekhorst et al. [18] compared phosphorylation sites from six

eukaryotes to identify conserved phosphorylation events occurring at similar positions
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across homologous proteins, as determined from sequence alignments, and found the

overlap to be statistically significant.

While many studies analyzed the conservation of large sets of MS-identified phos-

phorylation sites, a few focused on the conservation of phosphorylation sites with char-

acterized functions. Conservational analysis of a set of 249 functionally characterized

phosphorylation sites in Saccharomyces cerevisiae across Saccharomyces bayanus, Sac-

charomyces paradoxus, and Saccharomyces mikatae revealed that phosphorylation sites

are generally more conserved than the residues flanking them on primary sequences [6].

Looking specifically at phosphorylation sites demonstrated experimentally to be tar-

geted by CDK1 (cyclin-dependent kinase 1) [185], Ba and Moses further observed that

the residues flanking the phosphorylated residues that are known to influence phospho-

rylation by CDK1 are more conserved than other flanking residues [6]. Comparing func-

tionally characterized to uncharacterized MS-identified phosphorylation sites on mitotic

spindles, Malik at al. [107] found that the former are significantly more conserved than

the latter but noted that potential preferences by experimentalists to study well-conserved

phosphorylation sites may have biased the observation. Similarly, Landry et al. [90] ob-

served that phosphorylation sites characterized to have functional roles as annotated in

HPRD (Human Protein Reference Database) are more conserved than phosphorylation

sites identified in large scale phosphoproteomic studies.

Many phosphoserines/threonines expressing similar consensus motifs were found lo-

cated in close proximity to each other as cluster on primary protein sequences, a phe-

nomenon that is not observed for phosphotyrosines [159]. Many proteins targeted by

CDK1 are known to contain clusters of CDK1 consensus phosphorylation motifs that

are observed across orthologs in different numbers and at different positions [120, 62].

Such phenomena have been exploited to improve identification of substrates targeted by

specific kinases [119, 6, 25]. In a systematic analysis on conservation degree and phos-

phorylation likelihood, Budovskaya et al. observed that proteins in which PKA (Protein

25



Kinase A) consensus motifs are conserved over longer evolutionary time are more likely

to be targeted by PKA based on in vitro assays [25].

Tracing CDK1 consensus motifs in known CDK1 targets and non-targets with their

inferred ancestral sequences across Saccharomyces cerevisiae, Saccharomyces bayanus,

Saccharomyces paradoxus, and Saccharomyces mikatae, Ba and Moses concluded that

the CDK1 consensus motifs are evolutionary conserved on bona fide targets of CDK1 [6]

which is not unexpected. However, they also observed constrained appearance of CDK1

consensus motifs in CDK1 bona fide targets compared to non-targets. The authors rea-

soned that this can arise if new CDK1 sites disrupt functions of CDK1 targets while

the appearance of CDK1 consensus motifs on non-targets are not evolutionarily con-

strained because CDK1 does not target these sites[6]. Correlating microarray expression

data across Homo sapiens, Saccharomyces cerevisiae, Schizosaccharomyces pombe and

Arabidopsis thaliana with phosphorylation data, Jensen et al. observed that although

periodically expressed and constitutively expressed subunits in evolutionary conserved

cell cycle protein complexes differ considerably among the four species, protein phospho-

rylation occurs preferentially on periodically expressed proteins in each species[73]. In

a comparative analysis of phosphoproteomes across three yeast species (Saccharomyces

cerevisae, Candida albicans and Schizosaccharomyces pombe), it was observed that the

intensity level of phosphorylation is highly conserved within different cellular activities

although the intensity can vary considerably among individual proteins within each func-

tional group across the three species [11].

1.7 Thesis summary

Mass spectrometry and related technologies have unveiled many novel phosphorylation

sites that can potentially provide insight to the regulation of cellular activities. How-

ever, many phosphorylation sites will need further experimental characterization to elu-
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cidate their functional roles. Following the rationalization behind the term ”functional

genomics”, a field that seeks to characterize the function of each gene, I termed this

research endeavor broadly as ”functional phosphoproteomics”. Some key issues can slow

down the discovery process. First, there could be many false positives in the present

set of phosphorylation sites from large-scale mass spectrometric screens [125, 35]. Sec-

ond, some phosphorylation events may be silent (as coined by Philip Cohen [31]) that,

although genuine, have no or little functional consequences. Lastly, the identification of

promising targets for studies from the large list of phosphorylation site is a daunting task

for biologists.

Hence, for my thesis research, I investigated the evolution of experimentally deter-

mined protein phosphorylation sites with the objective to assess the utility of sequence

conservation profiling for interpreting the importance and function of uncharacterized

phosphorylation sites. Specifically, I asked whether sequence conservation can be used

to identify functional phosphorylation sites. To begin, I identified a set of human phos-

phorylation sites in which similar positions in orthologous proteins, as determined by

sequence alignments, are phosphorylated in fly, worm or budding yeast. I subsequently

investigated the sequence conservation profiles of residues with such conserved phos-

phorylation events (Chapter 2). Some phosphorylation sites may have been identified

with the help of sequence conservation analysis. To exclude these sites in our analysis,

we specifically obtained phosphorylation sites identified in untargeted proteomic-wide

screens for our analysis. In the same work, I also explored and devised a non-alignment

approach to identify phosphorylation events on orthologous proteins that are likely me-

diated by orthologous protein kinases but may not occur at similar sequence positions

across orthologous proteins.

Next, I extended my conservational analysis to a larger set of human phosphorylation

sites (Chapter 3) for which I do not have data to validate that similar positions of

these sites in orthologous proteins are also phosphorylated. I reasoned that the larger
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dataset and rich annotation available for some of these sites could provide insight into

the evolution of phosphorylation sites. Specifically, for this part of my work, I seek

to understand how various factors, such as site prevalence (as gauged by its detection

frequency across multiple studies), stoichiometry and occurrence in disordered/ordered

protein regions influence its sequence conservation. I also seek to know whether sites

with characterized functions exhibit unique sequence conservation patterns. In the last

part of my work, I analyzed the maximum phosphorylation propensity (as gauged by

frequency of phosphorylatable residues) encoded in the proteomes of various metazoan

species with the aim of understanding how it might have shaped the frequency and

conservation patterns observed for the various phosphorylatable residues (Chapter 4).

In the last chapter, I summarized my findings and perspectives, and proposed future

research endeavors that may help identify more important phosphorylation events and

uncover their functions.
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Chapter 2

Comparative phosphoproteomics to

identify evolutionary conserved

phosphorylation events

Work presented in this chapter was published as:

C. S. Tan*, B. Bodenmiller*, A. Pasculescu, M. Jovanovic, M. O. Hengartner, C. Jørgensen,

G. D. Bader, R. Aebersold, T. Pawson, R. Linding, Sci Signal., 2(81):ra39, 2009 Jul.

I performed all the computational analysis in the paper except for 1) Section 2.2.10 and the

associated analysis presented in Figure 2.12, which were performed by A. Pasculescu, 2) Net-

worKIN and NetPhorest prediction in Section 2.2.8, which were generated by R. Linding, and

3) the generation of phosphorylation site data described in Section 2.2.2, which was carried out

by B. Bodenmiller and M. Jovanovic.

* denotes co-first authors
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2.1 Introduction

Protein kinases recognize and phosphorylate linear motifs in proteins [114]. These molec-

ular events can directly control the activities of other proteins and the dynamic assembly

of directional protein-protein interaction networks. In combination with phosphatases,

kinases regulate the phosphorylation dependent binding of linear motifs to modular pro-

tein domains, such as the Src homology 2 (SH2) domain that recognizes phosphorylated

tyrosine motifs and the BRCA1 C-terminal (BRCT) domain that recognizes phosphory-

lated serine and threonine motifs, and thereby create logic gates [38, 12] that enable the

cell to swiftly and precisely respond to both internal and external perturbations [160, 115].

Although interaction maps [150, 45, 172, 191] provide useful information, it is the network

dynamics and utilization that mediate cellular processing of environmental cues [65, 72].

Quantitative mass spectrometry (MS) measurements of phosphorylation networks and

their dynamics are now rapidly unraveling thousands of cellular phosphorylation sites

[194, 10, 17, 110, 147, 129]. With the functional and phenotypic characterization of pre-

viously unknown sites lagging behind their detection, a systematic way to highlight and

prioritize important phosphorylation events is needed to guide functional experimental

studies.

In addition, the conservation and evolutionary trace of most sites remain largely

unknown. Unlike protein domains, which are conserved over long evolutionary distances,

phosphorylation motifs are short and often reside in disordered fast-evolving regions

[100, 139, 124, 120, 73]. These properties render phosphorylation sites difficult to align

and trace evolutionarily [75, 107, 105, 18]. Here, I assembled human phosphorylation

sites previously identified in both large scale MS [high throughput (HTP)] and low-

throughput (LTP) targeted experiments [36, 64] and explored their conservation with

the phosphorylated proteins (phosphoproteomes) of three target model organisms (fly,

worm, and yeast) that were measured with a similar experimental and computational

pipeline. Through a combination of sequence-alignment and reconstructive, network-
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alignment approaches, I investigated the conservation of protein phosphorylation events

at two distinct levels: sites that are conserved at similar positions (termed positionally

conserved) in orthologous proteins between human and at least one target species (such

sites are termed “core sites” for the purpose of communication in this work) and those

that are involved in conserved kinase-substrate regulatory networks but that are not

necessarily constrained to the same location within phosphoproteins from humans and

the model organisms (such proteins are termed ”core net proteins” in this work).

To identify human sites that are conserved in distantly related model organisms

and thereby likely to be important for fundamental cellular activities, I first identi-

fied positionally conserved sites with a full-length (global) sequence-alignment algo-

rithm [81] to map the experimentally identified phosphorylation sites from the target

species (Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae)

to orthologous human phosphoproteins (Figure 2.1). This approach led to a conserva-

tive assessment of conserved sites because it requires the position of a site to be fixed

within a multiple-sequence alignment. However, kinases can regulate cellular activities

in ways that do not require their sites to occur at precise positions in protein sequences

[123, 120, 73, 62], as is the case in the threshold dependent regulation of the Sic1 pro-

tein [122], for which phosphorylation at each of several sites promotes binding to Cdc4.

Similarly, the ultrasensitive inactivation of Wee1 kinase is mediated by cyclin-dependent

kinase 1 (Cdk1) decoy sites in both Wee1 and other proteins that distract CDK1 away

from the causal sites in Wee1 [85]. Therefore, we aimed to identify conserved human

phosphorylation events that are not necessarily conserved at the same sites between or-

thologous kinases and substrates in the target species by deploying the NetworKIN [98]

algorithm in combination with NetPhorest [114] to infer the relevant protein kinases for

substrates identified in the phosphosphoproteomes of human and each target species. The

computationally reconstructed human kinase-substrate network was subsequently over-

laid with that of the target species to identify conserved kinase-substrate relationships.
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By taking two distinct approaches to assess phosphorylation conservation, we provide

insight into the evolution of phosphorylation-based regulation with potential impact for

our understanding of normal biological processes and complex diseases.

2.2 Materials and methods

2.2.1 Assembly of non-redundant human phosphorylaton data

Human phosphorylation sites were collected from the two major online databases Phos-

phoSite (release 2.0 [64]) and Phospho.ELM (release 7.0 [36]). As the two databases use

protein sequences from different releases of SwissProt to track the positions of phospho-

rylation sites, all data were mapped into a reference sequence set from Ensembl (release

46, 2007 [43]). This helped to resolve cases where identical sites had different positions

due to revisions of the SwissProt sequence referenced and to identify and remove redun-

dant sites. The mapping between SwissProt primary accessions and its corresponding

Ensembl human protein identifiers (release 46) was obtained from Ensembl through its

BioMart interface. Finally, the positions of the phosphorylation sites in the Ensembl pro-

tein sequences were identified by exact string matching (using the peptide from -7 to +7

surrounding the phosphorylated central residue as defined in the Phospho.ELMor Phos-

phoSite database). This procedure resulted in 23,977 nonredundant (at 100% identity

level) human phosphorylation sites for the comparative analysis.

2.2.2 Generation of phosphorylation data in fly, worm and yeast

Phosphorylation sites in D. melanogaster, C. elegans and S. cerevisiae were identified

using mass spectrometry by our collaborators, Bernd Bodenmiller and Marko Jovanovic,

from the University of Zurich, Switzerland. Here, I described the experimental procedures

they adopted.
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Generation of peptide samples

The D. melanogaster phosphorylation data was generated as follows: Kc167 cells were

grown in Schneiders Drosophila medium (Invitrogen) supplemented with 10% fetal calf

serum, 100 U penicillin (Invitrogen) and 100 g/ml streptomycin (Invitrogen, Auckland,

New Zealand) in an incubator at 25◦C. To increase the number of mapped phospho-

rylation sites, different batches of cells were pooled. Cells were either: 1) grown in

rich medium, 2) serum-starved, 3) treated for 30 min with 100 nM Rapamycin (LClabs,

Woburn, MA, USA) in rich medium, 4) treated for 30 min with 100 nM insulin (serum

starved), or 5) treated for 30 min with 100 nM Calyculin A (rich medium). Then the

cells were washed with ice-cold phosphate-buffered saline and resuspended in ice-cold

lysis buffer containing 10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM

dithiothreitol and a protease inhibitor mix (Roche, Basel, Switzerland). To preserve pro-

tein phosphorylation, several phosphatase inhibitors were added to a final concentration

of 20 nM calyculin A, 200 nM okadaic acid, 4.8 µm cypermethrin (all bought from Merck

KGaA, Darmstadt, Germany), 2 mM vanadate, 10 mM sodium pyrophosphate, 10 mM

NaF and 5 mM EDTA. After 10 min incubation on ice, cells were lysed by douncing.

Cell debris and nuclei were removed by centrifugation for 10 min at 4◦C at 5500 g. Then

the cytoplasmic and membrane fraction were separated by ultracentrifugation at 100000

g for 60 min at 4◦ C. The proteins of the cytosolic fraction (supernatant) were subjected

to acetone precipitation. The protein pellets were resolubilized in 3 mM EDTA, 20 mM

Tris-HCl, pH 8.3, and 8 M urea. The disulfide bonds of the proteins were reduced with

tris (2-carboxyethyl) phosphine at a final concentration of 12.5 mM at 37◦C for 1 h. The

produced free thiols were alkylated with 40 mM iodoacetamide at room temperature for

1 h. The solution was diluted with 20 mM Tris-HCl (pH 8.3) to a final concentration

of 1.0 M urea and digested with sequencing-grade modified trypsin (Promega, Madison,

WI) at 20 µg per mg of protein overnight at 37◦C. Peptides were desalted on a C18

Sep-Pak cartridge (Waters, Milford, MA) and dried in a speedvac.
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The S. cerevisiae phosphorylation data was generated as follows: Wild type (BY7092:

can1∆ his3∆ leu2∆ ura3∆ met15∆) were grown to OD ∼0.8 at 30◦C in synthetic dened

(SD) medium (per liter 1.7 g YNB, 5 g ammonium sulfate, 2% glucose, 0.03 g isoleucine,

0.15 g valine, 0.04 g adenine, 0.02 g arginine, 0.1 g leucine, 0.03 g lysine, 0.02 g methionine,

0.05 g phenylalanine, 0.2 g threonine, 0.02 g histidine, 0.02 g tryptophane, 0.03 g tyrosine,

0.02 g uracil, 0.1 g glutamic acid and 0.1 g aspartic acid). Cells were harvested at 30◦C

by centrifugation at 850 g and then washed once in SD medium. Finally, they were

collected by centrifugation and shock-frozen in liquid nitrogen. Pellets were thawed in

ice cold lysis buffer (20 mM Tris/HCl pH 8.0, 100 mM KCl, 10 mM EDTA, 0.1% NP40,

20 nM calyculin A, 200 nM okadaic acid, 4.8 µM cypermethrin (all obtained from Merck

KGaA, Darmstadt, Germany), 2 mM vanadate, 10 mM sodium pyrophosphate and 10

mM NaF) using 1 mL of lysis buffer per gram of yeast. The cells were lysed by glass-bead

beating (using acid-washed glass beads), the protein supernatant was precipitated using

ice-cold acetone, and the pellet was resuspended in 8 M urea, 20 mM Tris/HCl at pH 8.3.

After dilution to < 1.5 M urea with 20 mM Tris/HCl at pH 8.3, proteins were digested

using trypsin in a w/w ratio of 1:125 and puried using C18 reverse phase chromatography

(Sep-Pack, Waters).

The C. elegans phosphorylation data was generated as follows: Wild-type C. elegans

strain N2 (Bristol) was grown on 9-cm nematode growth medium (NGM) agar plates

seeded with a lawn of the E. coli strain OP50 or in 100-ml liquid cultures in S-basal

buffer in bevelled flasks (with concentrated E. coli NA22 as a food source). Worms

were harvested from plates or liquid culture and separated from the bacteria by washing

with M9 buffer three times. The worms were harvested by centrifugation at 500 g and

shock frozen using liquid nitrogen. Subsequently, the worms were homogenized with glass

beads (diameter of 212-300 µm, Sigma-Aldrich, St Louis, MO, USA) in the ratio of 1:1:2

(worms:beads:buffer) in a cell disrupter (FastPrep FP120, Thermo Savant, Qbiogene

Inc., Carlsbad, CA, USA) at 4◦C three times for 45 s at level 6. The buffer used was
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50 mM Tris/HCl, pH 8.3, 5 mM EDTA, 8 M urea. After glass bead beating treatment,

0.125% SDS was added and the homogenate was incubated for 1 h at room temperature

to solubilize proteins. Cell debris was removed by centrifugation. The peptides were

produced from the proteins in the supernatant as described above.

Peptide separation by isoelectric focusing

All peptides were separated according to their isoelectric point. For the D. melanogaster

this was performed using an free-flow electrophoresis instrument, type prometheus from

FFE Weber Inc. (now BD-Diagnostics, PAS) and FFE-Weber reagent basic kit (Prolyte

1, Prolyte 2, Prolyte 3 and Prolyte 4-7 and pI markers) (BDDiagnostics, NJ, USA).

The digested peptides were diluted in separation media containing 8 M Urea, 250 mM

Mannitol and 20% ProLyte solution at a concentration of 10 mg/ml. This sample was

loaded continuously for 1 h at 1 ml/h. Total collection time was 24 h and the volume

of each collected fraction was about 25 to 50 ml. A Thermo Orion needle tip micro pH

electrode (Thermo Electron Corporation, Beverly, MA) was used to measure the pH value

of each fraction. Peptides from the FFE fractions 18-60 were purified on a C18 Sep- Pak

cartridge (Waters Corporation, Milford, MA, USA) (1). For C. elegans and S. cerevisiae

the dried-down peptide samples (15 mg and 20 mg, respectively) were seperated with

an Offgel fractionator and therefore resolubilized to a final concentration of 1 mg/ml

in off-gel electrophoresis buffer containing 6.25% glycerol and 1.25% IPG buffer (GE

Healthcare). The peptides were separated on pH 3-10 IPG strips (GE Healthcare) with a

3100 OFFGEL fractionator (Agilent) as previously described (4; 5). We performed a 1-

hour rehydration at maximum 500 V, 50 mA, and 200 mW followed by the separation at

maximum 8000V, 100 mA, and 300 mW until 50 kVh were reached. Following isoelectric

focussing, the fractions were concentrated and cleaned up by C18 reversed-phase spin

columns according to the manufacturers instructions (Sep-Pack, Waters).
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Phosphopeptide isolation

Phosphopeptides were isolated using a titanium dioxide resin as follows: 1-3 mg of dried

peptides were reconstituted in 280 µl of a washing solution (WS), containing 80% ace-

tonitrile and 3.5% TFA, which is saturated with phtalic acid (∼100g phtalic acid per ml).

Then 1.25 mg TiO2 (GL Science, Saitama, Japan) resin was placed into a 1-ml Mobicol

spin column (MoBiTec, Gottingen, Germany) and was subsequently washed with 280

µl water, 280 µl methanol, and finally was equilibrated with 280 µl WS for at least 10

minutes. After removal of the WS by centrifugation using 500 x g, the peptide solution

was added to the equilibrated TiO2 in the blocked Mobicol spin column and was incu-

bated for > 30 min with end-over-end rotation. After this step, the peptide solution was

removed by centrifugation, and the resin was thoroughly washed two times each with

280 µl of the WS, with a 80% acetonitrile, 0.1% TFA solution, and finally with 0.1%

TFA. In the final step, phosphopeptides were eluted from the TiO2 resin using two times

150 µl of a 0.3 M NH4OH solution (pH ∼10.5). After elution, the pH of the pooled elu-

ents was rapidly adjusted to 2.7 with 10% TFA, and the phosphopeptides were purified

with an appropriate reverse-phase column suitable for up to 20 µg peptide. Besides the

separated peptides, this procedure was also performed on yeast and worm whole-cell or

whole-organism lysates.

Alternatively, phosphopeptides were also isolated with immobilization by metal affin-

ity chromatography (IMAC). In detail, 1-3 mg of peptides were reconstituted in 280 µl

of a WS, consisting of 250 mM acetic acid with 30% acetonitrile at pH 2.7. Then 60 µl

of uniformly suspended PHOS-Select iron affinity gel (Sigma Aldrich), corresponding to

∼30 µl resin, was placed into a 1-ml Mobicol spin column. The resin was equilibrated

three times with 280 µl of the WS. After removal of the WS by centrifugation at 500 x

g, the peptide solution was added to the equilibrated IMAC resin in the blocked Mobicol

spin column. To obtain reproducible results, it is crucial that the pH in all replicate

samples is maintained at ∼2.5. The affinity gel was then incubated with the peptide
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solution for 120 min with end-over-end rotation. After the incubation, the liquid was

removed by centrifugation and the resin was thoroughly washed two times with 280 µl of

the WS, and once with ultra pure water. In the final step, phosphopeptides were eluted

once with 150 µl of a 50 mM phosphate buffer (pH 8.9) and once with 150 µl of a 100

mM phosphate buffer (pH 8.9), each time incubating the resin < 3 min with the elution

buffer. Both elutes were pooled, the pH were rapidly adjusted to 2.7 using 10% TFA,

and the phosphopeptides were purified with an appropriate reverse-phase column. This

procedure was performed on separated fly and worm peptide samples and yeast whole-cell

lysates.

Finally, phosphoramidate chemistry (PAC) was used in the case of D. melanogaster for

phosphopeptide isolation on the peptide samples after isoelectric focusing (1; 2). Phos-

phopeptides were isolated with phosphoramidate chemistry as follows: 1 mg of dried

peptide was reconstituted in 750 µl of methanolic HCl, which was prepared by slowly

adding 120 µl of acetyl chloride to 750 µl of anhydrous methanol. The methyl ester-

ification was then allowed to proceed at 12◦C for 120 min. The solvent was quickly

removed in a cool vacuum concentrator and peptide methyl esters were dissolved in 40

µl methanol, 40 µl water, and 40 µl acetonitrile. Then 500 µl of a solution containing

50 mM N-(3-Dimethylaminopropyl)-N ethylcarbodiimide (EDC), 100 mM imidazole pH

5.6, 100 mM 2-(N-Morpholino)ethanesulfonic acid (MES) pH 5.6, and 2 M cystamine was

added to the peptide solution. The reaction was allowed to proceed at room temperature

with vigorous shaking for 8 hours. The solution was then loaded onto an appropri-

ate reverse-phase column and the derivatized peptides were subsequently: First, washed

with 0.1% TFA; second, treated with 10 mM TCEP (pH should be adjusted to ∼3 using

sodium hydroxide (NaOH)) for 8 minutes, in order to produce free thiol groups; third,

washed again with 0.1% TFA to remove residual TCEP. Finally, the derivatized pep-

tides were eluted with 80% acetonitrile, 0.1% TFA and the pH was adjusted to 6.0 with

phosphate buffer. Then acetonitrile was partially removed in the vacuum concentrator

37



to yield a final concentration of ∼30%, and the derivatized phosphopeptides were incu-

bated with 5 mg maleimide functionalized-glass beads for 1 h at pH 6.2 in a Mobicol

column. (The beads were synthesized by dissolving 120 µmol hydroxybenzotriazole, 120

µmol of 3-maleimidopropionic acid, and 120 µmol diisopropylcarbodiimide in 1 ml of

dry dimethylformamide, completely. After 30 minutes of incubation, 100 mg CPG beads

(Proligo Biochemie, Hamburg, Germany) corresponding to 40 µmol free amino groups

were added for 90 minutes. After the reaction, beads were washed with dimethylfor-

mamide and dried with a vacuum concentrator. Beads were stored dry at 4◦C. The

derivatized beads were washed two times sequentially with 300 µl 3 M NaCl, water,

methanol, and, finally, with 80% acetonitrile to remove nonspecifically bound peptides.

In the last step, the beads were incubated with 5% TFA, 30% acetonitrile for 1 h to re-

cover the phosphopeptides. The recovered sample was dried in the vacuum concentrator.

This procedure was also performed on yeast whole-cell lysates.

Mass spectrometry data analysis and sampling depths

The liquid chromatography-tandem mass spectrometry (LC-MS, on a Thermo Fisher

Scientic LTQ ORBITRAP XL) analysis and database searches were performed as de-

scribed in [17]. The S. cerevisiae and C. elegans MS spectra were searched against the

SGD (release October 10th 2007) and WormBase (release WS183) databases and the

D. melanogaster data were searched against the FlyBase database v4.3. In addition to

the data stored in the PhoshoPep database, we added in the case of S. cerevisiae elec-

tron transfer dissociation (ETD) fragmentation data from [29], although these data only

constitute 19% of the total dataset. In this study, the D. melanogaster phosphopep-

tide isolates were most extensively analyzed in terms of the total number of LC-MS/MS

runs employed and consequently larger coverage was achieved than for the other target

species. Finally, the expected sizes of the phosphoproteomes of yeast, worm, and fly

strongly differ, simply due to differences in their genome sizes and repertoires of kinases
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Figure 2.1: Number of phosphorylation sites assembled.

and phosphatases.

2.2.3 Identification of phosphorylated orthologs for human phos-

phoproteins in the three query species

Ortholog information of human phosphoproteins inferred by Ensembl (release 46) or-

tholog detection pipeline was obtained from Ensembls BioMart interface. Specifically,

Ensembl identifiers of genes orthologous to human genes together with identifiers of their

translated protein products were retrieved. The details of the ortholog detection pipeline

are described at http://aug2007.archive.ensembl.org/info/data/compara/homology meth

od.html. Briefly, gene families are identified from all sequences in the database by WU-

Blastp and Smith-Waterman searches, followed by construction of a phylogenetic tree
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for each gene family to identify orthology and paralogy relationships between gene pairs.

Finally, we used this information to identify human phosphoproteins with orthologs that

were phosphorylated in at least one of the target species (we termed these phospho-

orthologs). Subsequently, the sequences of these human phosphoproteins were aligned

with those of their target species phosphoorthologs to identify positionally conserved

phosphorylation events (such phosphorylation sites are termed “core” sites).

2.2.4 Identification of core sites

The phosphorylation core sites were detected from multiple sequence alignments (MSAs)

of each human phosphoproteinwith all its detected phosphoorthologs (as described above).

To improve each MSA, we included the protein sequence of the longest splice variant

(or an arbitrarily chosen longest if several exist with identical length) of one-to-one or-

thologous genes from 19 eukaryotic species spanning the evolution between Homo sapi-

ens and D. melanogaster (Aedes aegypti, Anopheles gambiae, Bos taurus, Canis famil-

iaris, Ciona intestinalis, Ciona savignyi, Danio rerio, Gallus gallus, Gasterosteus ac-

uleatus, Macaca mulatta, Monodelphis domestica, Mus musculus, Ornithorhynchus anat-

inus, Oryzias latipes, Pan troglodytes, Rattus norvegicus, Takigufu rubripes, Tetraodon

nigroviridis, and Xenopus tropicalis). For the sake of completeness, we also included

the orthologous protein sequences for each target species that had no detected phos-

phorylation. Finally, these sequences were aligned using the MAFFT (v6.240, E-INS-i

option with default parameters) algorithm on an IBM x366 running CentOS (LINUX).

The resulting MSAs were subsequently processed by a Perl script to identify the human

phosphoresidues that are aligned in the same column with a phosphoresidue observed in

any target species (we termed these phosphorylation sites core sites). We did not require

the aligned phosphoresidues to be identical amino acids to allow detecting cases where

one phosphoresidue is converted to another during evolution (for example, pT to pS or

pY).
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2.2.5 Assessing local alignment quality of core sites with shuf-

fled phosphoortholog sequences

We repeated the MSA with shuffled sequences of phosphoorthologs to identify spurious

core sites that could arise from poorly aligned regions in the sequence alignment by ran-

domchance alone. First, we identified pairs of aligned phosphoresidues lying in potential

poorly aligned regions, which we defined as those having less than 50% identity between

human and the target species in the sequence region −5 to +5 (excluding position 0)

relative to the human phosphoresidue. For each of these pairs of aligned phosphoresidues,

we then computed the BLOSUM62 alignment score between human and target species

of sequence region −5 to +5 relative to the human phosphoresidue, and repeated the

MSA, as outlined above, 500 times but with the sequence of the phosphoortholog shuf-

fled randomly each time. We then computed the empirical P value for the BLOSUM62

computed alignment score of the aligned phosphoresidues as the fraction of trials in which

the shuffled phosphoortholog sequence aligned to the same region in the human phos-

phoprotein to a phosphorylatable residue (S, T or Y) with equal or better BLOSUM62

score than the actual phosphoortholog sequence. Finally, we used these values to only

consider core sites that have an empirical P value < 0.05 resulting in 479 core sites.

2.2.6 Assessing the statistical significance on the number of ob-

served aligned phosphoresidues

We adopted a simple probabilistic model to estimate the statistical significance of the

number of observed aligned phosphoserine, phosphothreonine, and phosphotyrosine residues

between human and each target species. First, we computed the number of aligned phos-

phoresidues expected by random chance between human and each target species in the

nonshuffled MSA (separate analyses were performed for phosphoserine, phosphothreo-

nine, and phosphotyrosine). Here, we illustrate, as an example, how the number of aligned
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phosphotyrosines expected by random chance between human and fly was derived: Let

A be the set of human tyrosine-phosphorylated proteins whose orthologs in fly are ty-

rosine phosphorylated. Correspondingly, let B be the set of fly tyrosine-phosphorylated

proteins that correspond to A. Next, let PA and PB be the proportion of tyrosines in

protein set A and B, respectively, that are phosphorylated, and let NAB be the total

number of tyrosines in A that are aligned to tyrosines in B as observed in the MSA

(described above). It then follows that the number of human phosphotyrosines aligning

to phosphotyrosines in fly expected by random chance, assuming joint probability of two

independent events, is computed as PA × PB × NAB. Finally, we assessed the statistical

significance of the difference between expected random occurrence and observed number

of aligned phosphotyrosines by a X2 test. Similar analyses were then performed between

human and each target species for serine, threonine, and tyrosine separately.

2.2.7 Phosphorylation motif discovery from positionally con-

served phosphorylation sites

For every pair of aligned phosphorylated residues, a consensus sequence of the local align-

ment from −5 to +5 of the aligned phosphorylated residues is first defined. For example,

..RK.SP..D. is the consensus pattern of GTRKGpSPLKDE aligned to NERKVpSPDEDM.

Next, a consensus pattern S encoded as a vector set V = (v−5, v−4, , v4, v5) is defined,

where vector vi is a vector of the 20 elements coding for number of specific amino acids

appearing at position i among the consensus sequences. Cosine similarity is a measure

of similarity between two vectors by measuring the cosine of the angle between them.

The similarity between vector set Vx and Vy is computed as the sum of cosine similarities

of all corresponding vectors across the two sets, as follows. This serves to quantify how

similar are two set of consensus sequences based on frequency of amino acids observed

at each position of the consensus sequences. First, a vector set is encoded for every con-

sensus sequence. Next, the similarity between pairs of vector sets are computed, and the

43



Kinase-Substrate

Network

Conserved Human
Kinase-Substrate Network

P

P

PP

P

P

P

P

P

P

P

P

PP

P

P

P

P

P

P

P

P

Phospho-Proteins 

and Sites

Yeast 

Worm

Fly 

Human

NetworKIN + NetPhorest

Algorithms

Yeast Context Data 

Worm Context Data 

Fly Context Data 

Human Context Data
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were superimposed (or aligned) with each other. Finally, for each substrate, we defined a phos-
phorylation conservation propensity k of the number of phosphorylation events supported by
orthologous kinase-substrate phosphorylation in the target species.

most similar pair is then merged into a new vector set by summing up the corresponding

vectors across the two old sets. The previous step is iteratively performed, and if the two

most similar vector sets at each iteration encode 10 or more core sites, they are output

and removed from further computation. Lastly, core sites in human and target species

represented by output vector sets are then visualized separately with sequence logos for

manual inspection and classification.
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2.2.8 Computational reconstruction of conserved human kinase-

substrate networks

Many cellular processes and behaviors are mediated by protein kinases through phos-

phorylation of its substrate proteins. Identifying these kinase-substrate interactions will

help to construct the signaling networks that relay extracellular signals to elucidate cel-

lular responses. We seek to identify such kinase-substrate networks in human that are

evolutionarily conserved in our query species. We used the NetworKIN algorithm (v2.0b

[98, 99]) to predict the kinases that may phosphorylate the phosphorylation sites in the

four species (H. sapiens, D. melanogaster, C. elegans and S. cerevisiae), resulting in four

directed and weighted kinase-substrate networks. We used default parameters for Net-

worKIN, setting the ranking score cutoff to 0.7 for human and 0.5 for target species. This

setting was an empirical decision made on the basis of the relatively weak association

data in worm and fly compared to yeast and human. In addition, we expect conservation

to reduce spurious protein-protein associations. Many predictions from NetworKIN are

based on indirect probabilistic associations of proteins; thus, a direct physical interaction

is not an absolute prerequisite for the algorithm to associate a substrate with a kinase.

Because STRING [74] utilizes evidence transfer between the target species, our approach

will be somewhat biased toward these associations. However, the systematic analysis of

the phosphoproteomes of the target species and the use of linear motif from NetPhorest

[114] serve as unbiased starting material for the NetworKIN prediction algorithm, mini-

mizing this issue. NetPhorest database contain a set of probabilistic classifiers that infer

which protein kinase (or kinase family) and/or phosphoresidue-binding protein domain

most likely targeted a phosphorylation site given the known specificity of protein kinases.

Each edge in the networks represents a predicted kinase-substrate relationship. The

weight of the edge is proportional to the total number of sites among spliced variants of

the substrate gene product predicted to be phosphorylated by the kinase. The human
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kinase-substrate network is compared across the three target species to infer a network

of evolutionary conserved kinase-substrate relationships in human. Each inferred evolu-

tionary conserved kinase-substrate relationship in human is further scored (see Figure 2.4

for illustration). For each predicted human kinase-substrate relationship (a, b), kinase

a and substrate b that are orthologous to kinase-encoding gene set Ax and substrate-

encoding gene set Bx in target species x (fly, worm, or yeast), where Ax and Bx can be

an empty set. Let n be the edge weight of (a, b) and mx be the maximum edge weight

among kinase-substrate pairs from Ax and Bx in xs weighted kinase-substrate network.

The human kinase-substrate relationship (a, b) is considered conserved in target species

x if mx > 0 (kinase-substrate relationship between members of Ax and Bx is predicted

by NetworKIN based on phosphorylation data in target species x). The conservation

score Cx of kinase-substrate relationship (a, b) across target species x is then selected as

the smaller number of n and mx, essentially requiring every predicted kinase-substrate

relationship inferred in human to be supported by similar one inferred in target species.

The final conservation score Ctotal of kinase-substrate relationship (a, b) in human across

the three target species is the sum of Cfly , Cworm, and Cyeast which sum up the support

for the inferred kinase-substrate relationship from the 3 query species. Finally, the con-

served phosphorylation propensity k of a substrate b is calculated as the sum of Ctotal

of each conserved kinase-substrate relationship that b is implicated in. Finally, we chose

not to compress multiple orthologous kinases into a single node, such as JNK1 and JNK2

into a JNK group [114], because it is possible for functional divergence to occur after

duplication such that the initial set of substrates targeted by an ancient kinase become

uniquely targeted among the duplicated kinases.
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2.2.9 Assessing statistical significance of inferred conserved kinase-

substrate relationships

To assess the statistical significance of the human kinase-substrate relationships inferred

to be conserved in the target species, we repeated the procedure described above in

Section 2.2.8 2,000 times, using randomized kinase-substrate networks of the three tar-

get species with the predicted human kinase-substrate network. Each time, randomized

kinase-substrate networks in target species are created by switching all originally pre-

dicted substrates of each kinase with that of another randomly selected kinase within

the same species. The empirical P value is then computed as the fraction of trials that

have the same or more inferred conserved human kinase-substrate relationships than the

original analysis.

2.2.10 Prediction of intrinsic disordered regions in human phos-

phoproteins

We used the DISOPRED2 predictor (http://bioinf.cs.ucl.ac.uk/disopred/) [193] to pre-

dict disordered regions in human protein sequences by inputting these to the predictor.

The nonredundant (NR) protein sequence database required for the predictor to run was

obtained from the National Center for Biotechnology Information in November 2007.

The NR database was filtered for transmembrane protein regions with the pfilt program

provided with DISOPRED2. Subsequently, we analyzed the output with custom Perl

scripts and SQL queries.

2.2.11 Assembly of disease-associated gene data set

We obtained a list of cancer-associated genes annotated in four peer reviewed publi-

cations [56, 189, 116, 59] from CancerGene (http://cbio.mskcc.org/cancergenes) [59].

The first two publications reviewed genes important in cancer development, mainte-
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nance, and metastasis, and the last two reported genes with mutations causally im-

plicated in oncogenesis as observed in primary neoplasms. As the cancer-associated

genes reported in Futreal et al. [59] form the basis of cancer-associated genes in Can-

cer Gene Census (www.sanger.ac.uk/genetics/CGP/Census/), we obtained the latest list

from the database. Subsequently, the gene symbols and aliases obtained were mapped

to Ensembl gene entries with the alias mapping file provided by the STRING database

(http://string.embl.de) [190], resulting in a final set of 413 cancer-related genes. In ad-

dition we assembled a data set of genes involved in genetic diseases from the OMIM

database (www.ncbi.nlm.nih.gov/omim/). These genes were obtained from OMIM and

mapped to gene identifiers in the Ensembl database (release 46). This resulted in a total

set of 2174 human genes associated with disease.

2.2.12 Statistical and function enrichment analysis

Gene Ontology (GO) term enrichment analyses were performed with the BiNGO (v2.00)

[106] plugin for Cytoscape (v2.5.2) [164]. The GO annotations of human genes were

retrieved from Ensembl (release 48) and the statistical significance of overrepresented

GO terms was determined with hypergeometric distribution tests (corrected for multiple

hypothesis testing with false discovery rate). The statistical significance of GO terms

associated with core site genes was estimated by comparing the GO terms of two sets of

human genes encoding phosphoproteins: those that have orthologs in at least one target

species and its subset of genes that have phosphoorthologs in the target species. The

statistical significance of GO terms associated with human core net genes (substrates

with inferred conserved kinase-substrate relationships in target species) was estimated

by comparing it to the entire set of human genes encoding phosphoproteins that have

phosphoorthologs in at least one target species, and the phosphoorthologs that have

kinase-substrate relationship predicted by NetworKIN.
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Figure 2.5: Number of human phosphorylation sites at different stages of conser-
vation detection.

2.3 Result

A total of 23,977 human phosphorylation sites found across 6456 phosphoproteins en-

coded by 6293 genes were assembled from the two primary online databases PhosphoSite

(release 2.0) [64] and Phospho.ELM (release 7.0) [36]. For D. melanogaster, C. elegans,

and S. cerevisiae, we used phosphorylation site data that were generated with a similar

experimental and computational pipeline (see Methods and Supplementary Materials)

and are available via the PhosphoPep database (www.phosphopep.org) [17, 16]. Our

study included 12,654, 4519, and 5071 phosphorylation sites for D. melanogaster, C.

elegans, and S. cerevisiae, respectively. We observed an exceptionally high fraction of

phosphotyrosine sites in the assembled human phosphorylation data that can largely be

attributed to HTP phosphotyrosine antibody-based studies [147, 151]. The portion of

phosphoserine, phosphothreonine, and phosphotyrosine is shown in Figure 2.1.
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Figure 2.6: Target species source of the 479 core sites.

2.3.1 Positionally conserved phosphorylaton events in human

and function enrichment analysis

Of all the human sites assembled, 39.7% were in found in proteins orthologous to phos-

phoproteins detected in at least one target species (Figure 2.5). Deploying a sequence-

alignment protocol (Figure 2.2, see Methods) with the MAFFT program [81] on the

three target phosphoproteomes and the human phosphorylation set (see Methods), we

identified 479 sites (termed core sites) that were conserved between human and at least

one target species in 344 proteins encoded by 337 human genes (termed core site genes,

Figure 2.1). Of these core sites, 73.7% are phosphoserines, 16.9% are phosphothreonines,

and 9.4% phosphotyrosines (Figure 2.5). These sites make up 10.8% of the 4448 human

phosphoresidues that were aligned to phosphorylatable residues in at least one target

species, and in most cases, these numbers are significantly higher than expected by ran-

dom chance from observed alignments (table 2.1).

Among the 479 sites, 139 (≈29%) were found within 75 protein domain families

(compared to the global average of ≈20% for all 29,977 human phosphorylation sites), 57

were conserved in at least two target species, and 17 were conserved in all three target
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Table 2.1: Observed versus expected of core sites by chance.

Between human and fly

Residue Expected Observed Odd Ratio p-value

pS 55.53 325 5.85 2.2e-16

pT 6.43 64 9.95 6.9e-12

pY 11.23 33 2.94 1.1e-3

Between human and worm

Residue Expected Observed Odd Ratio p-value

pS 14.9 116 7.79 2.2e-16

pT 0.89 7 7.87 -

pY 2.99 13 4.35 1.2e-2

Between human and yeast

Residue Expected Observed Odd Ratio p-value

pS 9.54 46 4.82 1.0e-07

pT 0.73 2 2.74 -

pY 1.48 5 3.38 -
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species (Figure 2.6). We observed that core sites shared between humans and more than

one target species have an increased tendency to be located within protein domains: 9

of the 17 omnipresent core sites occurred in domains from 6 families (dehydrogenase

E1, phosphoglucomutase-phosphomannomutase, glycogen synthase, PhoX homologous,

Cdc37 N-terminal kinase binding, 60S acidic ribosomal, and serine-threonine protein ki-

nase catalytic domain), suggesting that the phosphorylation of these protein domains is of

ancient origin. It should be noted that not all the core sites identified are phosphorylated

by kinases; for example, phosphorylation of the core site Ser175 in the phosphoglucomu-

tase domain of human glucose-1,6-bisphosphate synthase likely happens by self-catalysis.

To analyze the functional context of core site genes, we constructed a functional

association network among these genes with the STRING resource (Figure 2.7). This

network revealed a tight cluster of functionally associated core site genes that encode

components of various protein complexes and signaling networks, as well as singleton

genes that were not confidently associated to any other core site gene. The β-catenin

destruction complex and clathrin coat proteins of coated pits appear to be heavily reg-

ulated by protein phosphorylation of ancient origin because they contain core sites in

four out of four and four out of five of their conserved protein components, respectively

(Table 2.3). Function enrichment analysis with Gene Ontology [5] annotation revealed

that core site genes are involved in fundamental cellular processes. For example, amino

acid phosphorylation, RNA splicing, cell division, and translation were statistically en-

riched over the super set of human phosphoproteins that have orthologs in target species

(P < 0.05, hypergeometric test, Benjamini and Hochberg false discovery rate correction).

Thus, the observed enrichment suggests that even processes not previously appreciated as

regulated by phosphorylation, such as the phosphorylation-mediated regulation of many

RNA splicing proteins observed in human cells, arose early during evolution before the

last common ancestor of fly and human.

Tracing the experimental sources of the core sites, we found that 65.3% of the core
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Table 2.2: Core sites identified in components of beta-catenin destruction complex.

Gene Symbol (HGNC) Ensembl Protein ID Residue Position Target Species Source Type

GSK3B ENSP00000264235 Y 216 WORM FLY YEAST HTP LTP

GSK3B ENSP00000264235 S 9 FLY HTP LTP

APC ENSP00000257430 S 1279 FLY HTP LTP

AXIN1 ENSP00000262320 T 79 FLY HTP

CTNNB1 ENSP00000344456 S 675 FLY HTP LTP

Table 2.3: Core sites identified in components of the clathrin coat of coated pits.

Gene Symbol (HGNC) Ensembl Protein ID Residue Position Target Species Source Type

CLTA ENSP00000242285 Y 94 WORM HTP

CLTC ENSP00000269122 Y 634 FLY HTP

AP2M1 ENSP00000292807 T 156 FLY HTP LTP

CLTB ENSP00000309415 Y 87 WORM HTP
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Figure 2.8: Experimental source of the 479 core sites identified in human.

sites were detected in HTP experiments reported in the past 5 years (Figure 2.8) [194, 10,

17, 110, 147, 36, 64]. Moreover, some of these newly discovered and highly conserved sites

appear in extensively studied proteins. For example, Thr187 in human Wee1 (a major

cell cycle regulator kinase) and Ser502 in human EEF2 (an essential factor for protein

synthesis) with highly conserved flanking regions (defined as the −5 to +5 positions of

a phosphorylated residue) of 80% and 100% identity, respectively, were conserved from

human to fly. These observations suggest that our systematic and comparative approach

reveals important clues for deciphering the functional phosphoregulatory events that

occur in fundamental cellular processes.

The NetPhorest atlas, which currently consists of 179 probabilistic classifiers trained

from known relationships between kinases and phosphorylation sites and in vitro pro-

teomics experiments [114], matches experimentally validated phosphorylation sites to

probabilistic sequence models of kinase consensus (specificity) motifs. To gain further in-

sight into the regulation of core sites, we deployed the NetPhorest algorithm to delineate

the kinases or kinase families that are likely to target human core sites. Although many

phosphorylation sites can be targeted by multiple kinases or kinase families [114, 36], here,

we restricted our analysis to the top three predictions from NetPhorest that exceeded

previously calibrated thresholds [114].

We found that CDK2 and CDK3 kinase family and casein kinase 2 (CK2) were the
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most frequently predicted kinases, each matching ≈29% of the human core sites. In

comparison, only ≈8% and ≈6% of all human phosphorylation sites were matched to

CDK2 and CDK3 kinase family and CK2, respectively. The high proportion of core

sites predicted to be targeted by CDK2 and CDK3 kinase family and CK2 is not unex-

pected, because these kinases are functionally pleiotropic [98] and are involved in several

fundamental cell processes such as cell survival, proliferation, and differentiation. In ad-

dition, we found that kinases involved in the cellular response to stress, such as p38 and

c-Jun N-terminal kinase (JNK) family members were predicted to phosphorylate ≈24%

and ≈19% of the core sites (compared to ≈7% and ≈5% for all human phosphorylation

sites), respectively. Although one might expect ancient kinase families to target the core

sites, we did not find strong evidence supporting this. Highly conserved core sites (sites

with at least 80% sequence similarity within the flanking region) were predicted to be

targeted by kinases of different evolutionary origin, such as the insulin receptor (InsR),

Eph family members EphA3 through 6, and the nonreceptor tyrosine kinase Src (all

of metazoan origin), and phosphoinositide kinase 1 (PDK1), serum- and glucocorticoid-

inducible kinase (SGK), and NEK3 [NIMA (never in mitosis gene a)-related kinase 3]

through 5 and 11 (all of primordial origin) [108].

Tracing the conservation of the 479 core sites across 19 eukaryotic species spanning hu-

man and the target species in evolution confirmed that the core sites are highly conserved,

implying that many core sites are under negative selection and are likely important for

fundamental cellular processes. For example, we found that 92.3% of the human core site

phosphoresidues were preserved in the distantly related Xenopus tropicalis compared to

73.6% of other phosphorylatable residues between the same species. When human and

mouse (Mus musculus) were compared, these numbers were 97.8% and 90.4%, respec-

tively (Figure 2.9 shows the conservation for the respective residue in selected species).

Human tyrosine residues in general are highly conserved probably because of their roles

in maintaining protein structure; thus, core site phosphotyrosines do not appear much
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more conserved than other tyrosines (Figure 2.9).

Although changes in the flanking regions could reveal diverged sequence specificities

of kinases that have evolved from yeast to human, such analysis is confounded by the

possibility that phosphorylation sites can evolve independently from their effector kinases.

For example, the presence of multiple sites on a single substrate targeted by a single

kinase could create functional redundancy that allows mutations to accumulate in the

phosphorylation sites [61]. Thus, using NetPhorest, we instead analyzed the conservation

of kinase (or kinase family) consensus motifs matching the core sites between human and

the target species. We estimated the proportion of aligned core site pairs with sufficient

conservation within the flanking region for the kinase (or kinase family) predicted for

each site of an aligned pair to be identical. This revealed that 67.4% of the aligned site

pairs had identical kinases (or families) assigned, and 70% of these sites were predicted

to be targeted by the CDK2, CDK3, or CK2 kinases.

Relaxing the analysis to include the top two or three best predictions showed that

81.6% and 86.8% of the core site pairs shared the same kinases or kinase families, re-

spectively. The kinases that regulate the remaining (≈13% to 18%) core sites may have

changed during evolution. This potential rewiring of the core phosphorylation networks

could enable cells to utilize the same core sites to relay signals from different kinases in

response to new environmental cues or stimuli. However, we cannot conclusively argue

this point because we do not have consensus motifs for all kinases and thus may miss

pairs of aligned sites that match conserved but hitherto unknown phosphorylation (ki-

nase consensus) motifs. To explore this further, we performed an orthogonal analysis

by clustering core sites on the basis of sequence similarity within their flanking regions

between human and target species to identify potential previously unknown phospho-

rylation (kinase consensus) motifs. First, we grouped aligned sites that shared similar

conserved flanking residues (see Methods). Next, we visualized the grouped core sites

as sequence motif logos [114] and manually organized them into proline-based, arginine-
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Figure 2.9: Sequence conservation of core sites. Proportion of conserved residues for different subsets of serine (S), threonine (T),
and tyrosine (Y) in human core site proteins across orthologous proteins in selected species (M. musculus, G. gallus, X. tropicalis, and
D. rerio) computed from MSAs (see Methods). Only human phosphoresidues with at least 20% identity from sequence position −5 to
+5 of the residue (excluding position 0) to the orthologous sequence in the target species are included in the statistics. Other residues
refers to those instances of the specified amino acid that are not known to be phosphorylated. Connectors linking two bars denote that
the difference observed is statistically significant (P < 0.05, Fishers exact test, one-tailed).
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Figure 2.10: Conserved motif analysis of core sites.
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Figure 2.11: Conservation of phosphorylatable residues in structured/unstructured
regions.. Intrinsic disordered regions in proteins are generally rapidly evolving and hard to
align. However, human phosphorylatable residues (serine, theronine, and tyrosine) in disordered
regions that are well-aligned to target species (defined as those with at least 50% identity in -5 to
+5 of the central residue) are less conserved than phosphorylatable residues in ordered regions
at the same identity threshold. Here, we deemed a phosphorylatable residue in human to be
conserved in target species if it is aligned to another phosphorylatable residue. The statistics
are computed only from human orthologs in target species that have one-to-one orthologous
relationship to avoid relaxation of conservation caused by duplicate genes

based, and acidic-based phosphoserine or phosphothreonine motifs (Figure 2.10). Most

of the revealed motifs resembled known human kinase consensus motifs [114], such as

that of PDK1, suggesting the possibility of exploiting comparative phosphoproteomics

to discover kinase consensus motifs.

2.3.2 Putative evolutionary conserved kinase-substrate phos-

phorylation network in human

Linear motifs, such as phosphorylation sites, often reside in disordered regions that can

change rapidly or undergo convergent evolution [100, 139, 124, 120, 73]. We observed

that ≈50% of human phosphorylation sites in proteins with orthologous phosphoproteins

were not aligned to phosphorylatable residues in any of the target species (Figure 2.5)
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and that ≈64% of the sites in these proteins were located in intrinsically disordered re-

gions, in agreement with previous reports [32, 90]. These observations suggest that many

phosphorylation sites are fast evolving and, therefore, do not exhibit strong evolutionary

conservation at the sequence position level in distantly related organisms. Even within

well-aligned regions (as assessed by the overall sequence identity of residues flanking the

phosphorylatable residues), we noticed that phosphorylatable residues in disordered re-

gions are less conserved than phosphorylatable residues in ordered regions (Figure 2.11).

These properties render phosphorylation sites (linear motifs) located in disordered re-

gions difficult to align and trace during evolution [75, 107, 105, 18], which is further

supported by the observation that core sites in disordered regions were underrepresented

(Figure 2.12).

A key role of kinases is to modulate cellular signaling networks (for example, by

creating binding sites for SH2 domains). Because these events may not require phos-

phorylation events to occur at precise positions in protein sequences [124, 120, 73, 61],

we investigated the evolutionary conservation of phosphorylation at the level of protein

networks rather than strictly focusing on the positionally conserved sites in individual

proteins. Specifically, we sought to identify phosphorylation events on orthologous pro-

teins that are mediated by orthologous kinases between human and the target species.

The NetworKIN algorithm can computationally reconstruct phosphorylation networks

[98] by modeling kinase specificity from contextual information for phosphoproteins and

kinases in tandem with sequence models of kinase consensus motifs. The kinome coverage

of NetworKIN was extended by the NetPhorest atlas [114]. A potential concern in using

these tools on nonhuman data relates to whether the orthologous kinases in yeast, worm,

and fly have similar consensus motifs. NetworKIN made reliable predictions in yeast [98]

and for several yeast kinases with known human orthologs, the motifs appear identical

(B. Turk, personal communication), which is in agreement with the observations reported

above for core sites. Furthermore, this conservation of kinase consensus motifs is expected
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Figure 2.12: Occurrence of core sites in structured/unstructured regions. Known
human phosphorylation sites occur more often in disordered regions than would be expected
by random chance. The boxplots (in black) display the distributions of in-order/in disorder
ratios for 100 randomly picked sets of serines, threonines, and tyrosines from human phospho-
proteins. Phosphosphorylated serines, threonines, and tyrosines might fall by random chance
into these sets as well. The size of each set equals that of the respective observed number of
phosphorylated residues. The colored bars denote the observed in-order/in-disorder ratio of
phosphorylated residues. Core sites occur more often in ordered or structured regions than do
other phosphorylation sites. To assess the significance of this observation, we sampled the dis-
tribution of in-order/in-disorder ratio with sets of randomly picked phosphorylation sites from
core site proteins. The distributions of the random sampling are shown as boxplots (in black)
and the colored bars denote the in-order/in-disorder ratio of core sites. Separate analyses were
performed for phosphoserine, -threonine, and -tyrosine.

from evolutionary principles: Consensus motifs of pleiotropic kinases [98] must be under

strong selective pressure because a motif change could potentially affect the complete

target and function space for that kinase. Finally, NetworKIN filters predictions on the

basis of context; thus, even if a motif falsely matches a site in a target species, it is not

likely that the context data would allow inclusion of this prediction.

By deploying the NetworKIN [98] algorithm in combination with NetPhorest [114],

we predicted protein kinases for all phosphoproteins identified in human and the target

species. We used the default parameters for NetworKIN (see Methods), which allows a

single site to be phosphorylated by multiple kinases and then overlaid the human phos-

63



phorylation network with those of the target species (Figure 2.3) to obtain a human

phosphorylation network limited to those phosphoproteins and kinases that were con-

served in at least one target species (core net). We further quantified phosphorylation

conservation by defining a propensity (denoted as k) for each human substrate, which rep-

resented the number of a human substrates phosphorylation events that were supported

by orthologous kinase-substrate relationships in target species (Figure 2.4). Thus, k

captures the phosphorylation events on a human protein that are supported by orthol-

ogous (conserved) kinase-substrate relationships predicted in the target species. Due to

gene duplication that occurred along the lineages of human and target species, multiple

kinase-substrate relationships in human may be supported by single kinase-substrate re-

lationship in target species. Conversely, a single kinase-substrate relationship in human

may be supported by multiple kinase-substrate relationships in target species.

The initial (k ≥ 0) human phosphorylation network contained 25,563 interactions

between 113 kinases and 5,515 substrates, whereas the human phosphorylation network

resulting from overlaying the networks from the target species, for k > 0, had 1,255 inter-

actions between 27 human kinases and 778 substrates (encoded by 759 genes, termed core

net genes), of which 1,105 interactions (88%) and 698 substrates (encoded by 682 genes)

were not attributed to core sites. Randomized network analysis (see Methods) revealed

that this overlap was unlikely to occur by chance (empirical P < 0.001; Figure 2.13).

Figure 2.14 shows the subset of the inferred conserved human phosphorylation network

with k > 6.

2.3.3 Association of identified ancient phosphoproteins with can-

cers and OMIM diseases

The two methods yielded different but somewhat overlapping sets of genes. The alignment-

based approach identified the 337 core site genes and the kinase-substrate, network-based

approach identified the larger set of the 759 core net genes, which included 525 genes that
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Figure 2.13: Distribution of number of human substrate relations observed as
conserved in target species based on randomized trials. The distribution from 2,000
random trials (see Section 2.2.9) is visualized here using box plot. The top and bottom of
the box are the 25th and 75th percentile of the observed distribution respectively while the
horizontal line in the middle of the box indicates the 50th percentile. The highest bar and
lowest bar perpendicular to the dotted line in the center indicate the highest and lowest data
point are within 1.9 interquartile range (IQR) of the upper and lower quartile respectively. The
red bar denotes the actual number of observed conserved human kinase-substrate relationships.

were not part of the core site gene set. We analyzed each of these gene sets to determine

if they were enriched in genes associated with cancer.

First, human genes encoding phosphoproteins were statistically enriched in cancer-

associated genes (see Methods) over the entire protein set (4.5% versus 1.8% background,

P < 0.05, hypergeometric test; Figure 2.15). However, the core site gene set was more

enriched in cancer-associated (see Methods) genes over the entire set of genes encoding

phosphoproteins (P = 0.05, hypergeometric test; Figure 2.15). This enrichment oc-

curred despite the fact that the subset of human genes encoding phosphoproteins with

orthologous proteins in target species was not more enriched in cancer-associated genes

than the entire set of human phosphoproteins, regardless of whether their orthologous

proteins are phosphorylated (4.1% versus 4.5%) or not (3.8% versus 4.5%). We spec-
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conserved (k>6)
 kinase-substrate network

(17 kinases, 73 substrates, 235 edges)

MAPK3/ERK1

MAPK10/JNK3

MAP4K4/NIK

MAPK1/ERK2

MAPK8/JNK1

MAPK9/JNK2

RPS6KB1/p70-S6K

AMPK1

Figure 2.14: Identified kinase-substrate interaction network involving conserved
phosphorylation protein hubs. Increasingly conserved human phosphorylation networks
could be isolated on the basis of increasing k. Here, we show a conserved human phosphory-
lation network of k > 6 . The thickness of the edges corresponds to the number of conserved
interactions between the kinase and substrate across the target species. Diamond nodes rep-
resent kinases predicted to target the phosphoproteins. Proteins known to be implicated in
cancer and other diseases are colored blue and green, respectively.
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Portion of cancer-associated genes in different subset of human genes
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Figure 2.15: Evolutionary conserved phosphorylation proteins are significantly encoded by cancer-associated genes.
Human phosphoproteins are enriched in cancer-related genes but both core site genes and core net genes (k > 0) are statistically more
enriched in cancer-associated genes than background phosphoproteins (top: hypergeometric test, with the protein group of the arrow
target used as background). In addition, we observed that core net genes with a higher k are more enriched in cancer-associated genes.
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ulate that some core sites in the products of these genes may be aberrantly regulated

in transformed cells. For example, phosphorylation of the core site Ser315 in FOXO3A

by SGK1 prevents FOXO3A from inducing cell cycle arrest and apoptosis [24], thereby

promoting cell proliferation. Hence, it is plausible that deregulated phosphorylation of

Ser315 in FOXO3A could contribute to neoplastic growth. Intriguingly, 15 core sites in

these cancer-associated genes were only recently detected in large-scale MS experiments

(Table 2.4) which suggests that investigation of these sites may provide clues to further

understand the functional role of these proteins in normal and malignant cells.

Similarly, core net genes were statistically enriched for cancer-associated genes (P =

1.5 × 10−2 when compared to all human genes encoding phosphoproteins and P =

6.2 × 10−4 when compared to human genes encoding phosphoproteins with orthologous

phosphoproteins in the target species, hypergeometric test; Figure 2.15), identifying ap-

proximately one fold more cancer-associated genes than did the alignment-based method

(47 versus 22) with a slight drop in specificity (6.5% versus 6.2%; Figure 2.15). This

suggests that the network comparison approach can identify potentially important phos-

phorylation events occurring in less conserved protein regions. Note that the predicted

conserved effector kinases of phosphoproteins from the 759 genes were not included in the

enrichment analysis unless they were among the 759 genes. In total, 52 unique cancer-

associated genes were identified in the combined set of core site and core net genes.

Analysis of the topological features of predicted human phosphorylation networks

revealed that the number of kinase-substrate relationships of human phosphoproteins

correlated positively with enrichment in cancer-associated genes in the entire human

phosphoproteome, as well as to a lesser degree in its HTP subset (Figure 2.17, top

graphs). A weaker positive correlation was observed for other diseases in general, as

defined in Online Mendelian Inheritance in Man (OMIM) (Figure 2.17, bottom graphs).

Hence, a highly phosphorylated regulatory hub protein is more likely to be encoded by

a gene implicated in disease. Moreover, there seems to be a strong linear correlation
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Table 2.4: Core sites identified in 22 cancer-associated genes.

Gene Symbol (HGNC) Ensembl Protein ID Residue Position Target Species Source Type

APC ENSP00000257430 S 1279 FLY LTP
CCDC6 ENSP00000263102 S 367 FLY HTP
CCDC6 ENSP00000263102 S 240 FLY HTP
CCDC6 ENSP00000263102 S 323 FLY HTP
CDK2 ENSP00000266970 T 160 FLY HTP LTP
CDK2 ENSP00000266970 Y 15 YEAST HTP LTP
CLTC ENSP00000269122 Y 634 FLY HTP
CREB1 ENSP00000236996 S 117 WORM LTP
CTNNB1 ENSP00000344456 S 675 FLY HTP LTP
DEK ENSP00000244776 S 230 FLY HTP
DEK ENSP00000244776 S 231 FLY HTP
DEK ENSP00000244776 S 306 FLY HTP
DEK ENSP00000244776 S 232 FLY HTP
FIP1L1 ENSP00000351383 S 85 FLY HTP
FOXO1 ENSP00000368880 S 319 WORM LTP
FOXO3 ENSP00000339527 S 315 WORM LTP
HSP90AA2 ENSP00000216281 S 231 FLY HTP LTP
HSP90AA2 ENSP00000216281 Y 627 FLY HTP
HSP90AB1 ENSP00000360709 Y 619 FLY HTP
HSP90AB1 ENSP00000360709 S 226 FLY HTP LTP
MAP2K4 ENSP00000262445 S 257 FLY HTP LTP
MLLT4 ENSP00000345834 S 1090 FLY HTP
FOX04 ENSP00000363377 S 262 WORM LTP
MSH6 ENSP00000234420 S 14 FLY HTP
RPS10 ENSP00000347271 T 101 YEAST HTP
SEPT6 ENSP00000341524 T 418 FLY HTP
SMAD2 ENSP00000262160 T 8 FLY HTP LTP
SUZ12 ENSP00000316578 S 583 FLY HTP
TCF12 ENSP00000267811 S 559 FLY HTP
VCP ENSP00000367954 S 748 YEAST LTP
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Portion of OMIM genes in different subset of human genes
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Figure 2.16: Evolutionary conserved phosphorylation proteins are significantly encoded by disease genes annotated in
OMIM. Human phosphoproteins are enriched in cancer-related genes but both core site genes and core net genes (k > 0) are statistically
more enriched in cancer-associated genes than background phosphoproteins (top: hypergeometric test, with the protein group of the
arrow target used as background). In addition, we observed that core net genes with a higher k are more enriched in cancer-associated
genes.
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Figure 2.17: Increasing disease enrichment of phosphorylation protein hubs. Genes
encoding human signaling hub proteins are enriched in disease genes. A directed kinase-
substrate regulatory network is first inferred from assembled human phosphorylation data by
NetworKIN. A phosphorylation propensity score n is computed for each gene, which is the sum
of weighted incoming edges of kinases phosphorylating the genes products. The weight of an
incoming edge from each kinase to a gene is defined as the number of sites in the genes products
inferred to be targeted by a kinase. Human genes are then filtered by this score n to assess
association with cancer-associated and disease genes from OMIM. n is computed from the entire
set of human phosphorylation, as well as its subset from HTP studies. NF: not filtered.
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between this likelihood and the signal integration properties of the proteins. A concern

was that this observation could stem from ascertainment bias because disease genes are

extensively studied. We therefore interrogated the human phosphoproteome with the

conservation phosphorylation propensity (k) associated with each human protein, given

that the measure is computed with target phosphoproteomes from unbiased systematic

studies. We found that k correlated positively with cancer-associated genes and OMIM

disease genes (Figure 2.15 and 2.16). Thus, it appears that genes encoding proteins that

receive and integrate many signaling events have an increased tendency to be implicated

in disease, which agrees with similar suggestions [184, 141], and that their signal integra-

tion properties are conserved in the target species. Another possibility is that these genes

encode products that need to be tightly regulated by protein phosphorylation in human

and target species and that are vulnerable to deregulation likely caused by mutations or

changes in protein abundance.

Accordingly, we identified in the core net proteins that are involved in several complex

diseases, which may be suitable for experimental and therapeutic studies. We identified

proteins related to Alzheimers disease, SEPT1 (k = 4) and DBN1 (k = 7), which are

supported by evidence that misregulation of phosphorylation is important in neurological

disorders (44). We identified proteins related to viral infection, the human immunode-

ficiency virus 1 (HIV-1) infection-related proteins SFRS2, SFRS5, and SFRS7 (k = 13,

6, and 13, respectively). We identified proteins associated with the cell polarity, TJP1,

TJP2 and MINK1 (k = 10, 17, and 7, respectively). We identified proteins implicated

in controlling cell and organ size, the Hippo-associated protein YAP1 (k = 12), and

metabolism, the insulin receptor substrate proteins IRS1 and IRS2 (k = 16 and 14, re-

spectively). All these proteins are predicted substrates for the following kinases that

are involved in the same set of diseases: CDK2 (cancer and HIV infection), MAP4K4

(cancer and insulin resistance), ATM (cancer), PRKACA and GSK3 (diabetes, cancer,

Alzheimers disease, and HIV), MAPK8 (HIV infection and Alzheimers disease), and
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Table 2.5: Correlation of cancer-associated genes with conserved phosphorylation propensity k computed for individual query species.

Fly + Worm + Yeast Fly Worm Yeast

k Cancer Total % Cancer Total % Cancer Total % Cancer Total %

Genes Genes Genes Genes Genes Genes Genes Genes

≥ 1 47 759 6.2% 44 631 7.0% 3 96 3.1% 6 215 2.8%

≥ 2 25 450 5.6% 21 344 6.1% 1 49 2.0% 3 101 3.0%

≥ 3 15 271 5.5% 15 209 7.2% 0 17 0.0% 1 41 2.4%

≥ 4 12 192 6.2% 12 138 8.7% 0 14 0.0% 1 25 3.6%

≥ 5 11 143 7.7% 10 93 10.8% 0 6 0.0% 1 15 6.7%

≥ 6 10 103 9.7% 8 70 11.4% 0 3 0.0% 1 9 11.1%

≥ 7 8 73 11.0% 7 47 14.9% 0 3 0.0% 0 7 0.0%

≥ 8 4 54 7.4% 4 31 12.9% 0 3 0.0% 0 5 0.0%
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Table 2.6: Correlation of OMIM disease genes with conserved phosphorylation propensity k computed for different query species.

Fly + Worm + Yeast Fly Worm Yeast

k Cancer Total % Cancer Total % Cancer Total % Cancer Total %

Genes Genes Genes Genes Genes Genes Genes Genes

≥ 1 99 759 13.0% 85 631 13.5% 8 96 8.3% 27 215 12.6%

≥ 2 55 450 12.2% 42 344 12.2% 5 49 10.2% 14 101 13.9%

≥ 3 34 271 12.5% 26 209 12.4% 1 17 5.9% 7 41 17.1%

≥ 4 24 192 12.5% 20 138 14.5% 1 14 7.1% 4 25 16.0%

≥ 5 23 143 16.1% 19 93 20.4% 0 6 0.0% 3 15 20.0%

≥ 6 18 103 17.5% 16 70 22.9% 0 3 0.0% 3 9 33.3%

≥ 7 15 73 20.5% 14 47 29.8% 0 3 0.0% 2 7 28.6%

≥ 8 13 54 24.1% 10 31 32.3% 0 3 0.0% 1 5 20.0%

≥ 9 11 41 26.8% 5 20 25.0% 0 2 0.0% 0 4 0.0%

≥ 10 10 35 28.6% 4 16 25.0% 0 2 0.0% 0 4 0.0%

≥ 11 8 27 29.6% 4 11 36.4% 0 2 0.0% 0 1 0.0%

≥ 12 7 24 29.2% 4 11 36.4% 0 1 0.0% 0 1 0.0%

≥ 13 7 22 31.8% 4 9 44.4% 0 1 0.0% 0 0 0.0%

≥ 14 7 20 35.0% 4 6 66.7% 0 1 0.0% 0 0 0.0%

≥ 15 4 16 25.0% 3 5 60.0% 0 1 0.0% 0 0 0.0%
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RPS6KB1 (RNA splicing and HIV infection).

2.3.4 Function enrichment analysis

Given the disease associations observed in both core site and core net gene sets, we inves-

tigated the prevalence of phosphorylation conservation at both the site and the network

levels across different cellular functions. That is, we aimed to identify cellular processes

in which phosphorylation events are preferentially positionally conserved across orthologs

or preferentially mediated by orthologous kinases (conserved kinase-substrate relation-

ship). Specifically, we compared functions of core site genes and core net genes against

the complete set of human phosphoproteins that are orthologous to known phosphopro-

teins in the target species. There are a total of 337 core site genes and 758 core net

genes with 233 common genes between the two gene sets. We find that core site genes

are statistically enriched (hypergeometric test, Benjamini and Hochberg false discov-

ery rate correction) in genes encoding proteins involved in amino acid phosphorylation

(P = 8.0 × 10−5) and RNA splicing (P = 1.9 × 10−3) and encoding cytosolic ribosomal

proteins (P = 2.0 × 10−2). Manual inspection revealed that of the core sites present in

protein kinases, 26 are located within activation loop regions, which are important for

the regulation of kinase activity (Figure 2.18). Hence, some core sites are structurally

constrained for allosteric regulation, suggesting why this particular subset is positionally

conserved.

In contrast, core net genes were enriched (hypergeometric test, Benjamini and Hochberg

false discovery rate correction) in genes associated with the cell cycle (P = 1.4 × 10−4),

chromosome organization and biogenesis (P = 5.4×10−4), DNA-dependent regulation of

transcription (P = 3.3×10−3), macromolecular complex assembly (P = 2.4×10−3), and

protein targeting (P = 1.6 × 10−2). In 403 out of 688 core net genes with localization

annotation, core net genes were strongly enriched in genes encoding proteins that localize

to the nucleus (P = 1.7×10−15), which correlates with the finding that core net genes are
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CDK7 (1UA2)

Figure 2.18: Core sites identified in activation loops of protein kinases. Top: A
multiple sequence alignment of activation loop regions in protein kinases with core sites marked
in red. Gene symbols, kinase names, and the sequence coordinates for each activation loop is
shown on the left. Bottom: The corresponding region from panel A is highlighted (yellow) on
the protein structure of CDK7.
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strongly associated with chromosome organization and biogenesis and DNA-dependent

regulation of transcription. Correspondingly, our results support the notion that func-

tional conservation of phosphorylation does not necessitate positional conservation: For

example, protein phosphorylation in cell cycle associated proteins in yeast can be con-

served, yet dynamic as a result of site relocation [73]. Correspondingly, our analysis of

the core net sites has identified more cellular activities that may be subject to a similar

mode of evolution in phosphorylation regulation.

2.4 Discussion

To assess the evolutionary history of phosphorylation sites, it is essential to appreciate

that the lack of evidence for a phosphorylation event does not infer a nonphosphorylated

site. Rather, the site could be phosphorylated but below the limits currently detectable;

alternatively, phosphorylation may depend on a missing environmental cue or the site

may become dephosphosphorylated under the experimental conditions used. In addition,

some sites are only phosphorylated in specific cell types, rendering their detection even

more difficult. Thus, phosphorylation events are highly context dependent [98, 78] and

dynamic [194]. Indeed, Gygi and co-workers derived a phosphoproteome from fly embryos

and compared it to the one used here (derived from the Kc-167 cell line) [203] and found

about 25% overlap despite the fact that the same species was analyzed. Although this dif-

ference can partly be explained by different experimental and computational pipelines, it

undoubtedly also reflects differences between the biological systems studied (for example,

complete embryos contain many specialized cells in contrast to the defined Kc-167 cell

line). This highlights that a large number of additional phosphorylation sites are likely

to be discovered by continued and improved phosphoproteomic analysis. In particular,

studies of the utilization, dynamics, and functional roles of the sites will be important

[88, 154], because these reflect cellular information processing much more directly than
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the number of sites itself.

Although we began with over 40,000 combined phosphorylation sites in both human

and the target species (yeast,worm, and fly), we only identified 479 positionally conserved

phosphorylation events in human. About 45% (10,969) of the non-core sites were found

in human phosphoproteins with no detectable orthologous proteins in any of the target

species. Of the remaining 13,008 human phosphoresidues, only 4448 aligned to phospho-

rylatable residues in at least one target species, of which 479 are aligned to phosphorylated

residues (Figure 2.5). This limited overlap is presumably due to the large evolutionary

distance (more than 600 million years [57]) and actual physiological differences between

human and the target species and the incomplete coverage of the phosphorylation map-

ping data sets due to mass spectrometer limitations (for example, sensitivity) and the

limited number of experimental conditions or biological contexts analyzed (for example,

developmental stages).

The incompleteness of the data is illustrated by the composition of the phosphory-

lated residues of the human phosphoproteome analyzed here (Figure 2.1), which is biased

toward pY [39% observed versus an average of about 4% observed in the target species

phosphorylation data and in other large-scale phosphoproteomic studies [129, 203]]. This

overrepresentation of pY can be attributed to the use of pY-antibodies in several HTP

studies [for example, [147] and to the notion that phosphotyrosine peptides are more eas-

ily detected with MS than are phosphoserine- or phosphothreonine containing peptides

[10]. Therefore, this pY-overrepresentation can be used to estimate a lower bound on the

coverage of the human phosphorylation data, by computing how many additional (pS

and pT) sites are needed to dilute the fraction of pY down to the large-scale average of

4% phosphotyrosine (which is likely an overestimate). Thus, we estimate that there are

at least 200,000 more pS and pT sites yet to be discovered in the human phosphopro-

teome. This estimate will rise with additional discovery of pY sites. A caveat here is

that many phosphorylation events are detected in transformed cells, or cells exposed to
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growth factors or other stimuli [10, 129], which is likely to change the relative amounts

of pY, pT, and pS compared to those of nonstimulated cells, as observed by Hunter

and co-workers [67]. Nonetheless, this estimate illustrates the incompleteness of current

phosphoproteomic data. In addition, 160 core sites were only found in one target species,

although phosphorylatable (S, T, or Y) residues are present at orthologous positions in

at least one other target species.

Our analysis supports the notion that many phosphorylation sites evolve quickly

[90, 11] and, therefore, lack strong conservation at the sequence and position levels –

65% of human phosphorylated residues in proteins with orthologous proteins in target

species were not aligned to phosphorylatable residues. Some of the missed phospho-

rylation sites could be phosphorylation events that need not be positionally conserved

[124, 120, 73, 122, 85]. To this end, we investigated the conservation of sites involved in

regulatory networks by overlaying predicted kinase-substrate relationships. The two com-

plementary approaches (network versus site alignment) highlight phosphorylation events

that are conserved across species spanning long evolutionary distances and, hence, are

likely functionally important for fundamental cellular activities. The utility of these ap-

proaches is highlighted by the identification of multiple low-abundance signaling proteins

and disease-related genes. Consequently, we identify genes encoding products that need

to be tightly regulated by protein phosphorylation in human and target species and that

are vulnerable to deregulation likely caused by mutations or changes in protein abun-

dance. We did not see any enrichment in disease association in the subset of human

phosphoproteins with orthologs that are phosphorylated in our phosphoproteomes over

the background set of all human phosphoproteins. In contrast, both the network and

the site alignment approaches identified a subset of genes encoding phosphoproteins that

were significantly more enriched in disease-associated genes over the entire set of hu-

man phosphoproteins. We also noticed that core site genes were not enriched in OMIM

disease genes compared to the global set of genes encoding phosphoproteins with orthol-
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ogous proteins in the target species, regardless of whether the orthologous proteins are

phosphorylated or not. On the contrary, cross-species signaling hubs among the core net

genes (those with high k) had an increased tendency to be implicated in both cancer

and other diseases. This suggests that core site genes are implicated in a narrower set of

diseases than are core net genes.

Whereas earlier work [18] has studied the conservation of phosphorylation sites across

diverse species where the data have come from diverse experimental approaches, our work

focused on querying human phosphorylation sites with phosphoproteomes from three

model organisms generated on a similar experimental and computational platform. This

resulted in a higher coverage of conserved phosphorylation events, as exemplified by the

identification of substantially more positionally conserved phosphorylation sites identified

between human and yeast than the previous study (51 versus 1) [18]. Our comparison is

still relatively rough as we, for example, compare a full multicellular organism (worm), a

single-cell organism (yeast), and various cell lines (fly and human). Therefore, we expect

the numbers of conserved phosphorylation sites to increase as comparative phosphopro-

teomics develops in the future. Reports on the investigation of the sequence conservation

of phosphorylation sites have reached conflicting conclusions: Gnad et al. [51] and Malik

et al. [107] reported that experimentally validated phosphorylated residues were more

conserved than other phosphorylatable residues; whereas Jimenez et al. [75] suggested

the opposite. Furthermore, it has been suggested that sites identified with large-scale

MS are less likely to be functionally important unless they display conservation at the

sequence level [90, 51]. However, we argue that such strategies will filter away many bi-

ologically important phosphorylation sites that need not be positionally conserved. Our

network-alignment approach enables studies of phosphorylation events that are not neces-

sarily positionally conserved and underlines the importance of assessing phosphorylation

conservation at both site and network level.
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2.5 Conclusion

In summary, we have systematically investigated the conservation of phosphorylation

sites in human regulatory networks by comparison to distantly related model organisms.

We identified cross-species phosphorylation events that occur on proteins that have an

increased tendency to be implicated in diseases caused by mutations. This result sug-

gests that a similar approach could be taken to identify networks misregulated in cancer,

diabetes, or mental illnesses. We note that multiple diseases seem to converge on the

conserved regulatory network (core net). Therefore, we argue that it is important to

consider conserved kinase-substrate relationships rather than just conservation of phos-

phoproteins when searching for disease-related genes. Furthermore, these results suggest

that multiple diseases might be targeted using common therapeutic agents [41]. This

idea is supported by a recent study in mice indicating that type 1 diabetes can be sup-

pressed by imatinib [103], a small-molecule tyrosine kinase inhibitor developed as a cancer

drug. Similar supportive evidence is emerging related to the role of the kinase AMPK

(adenosine monophosphate-activated protein kinase) in cancer and diabetes. Therefore,

we envisage human regulatory network analysis similar to those used here may be useful

for identifying signaling networks for therapeutic intervention.[133].
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Chapter 3

Evolutionary dynamics of

phosphorylation sites with different

functions and structural features
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3.1 Introduction

Previously, I identified a set of human phosphorylation sites which corresponding po-

sitions on orthologous proteins in fly, worm and yeast are also phosphorylated. I then

characterized the conservation of these phosphorylated residues in human across selected

vertebrate species. In this chapter, I extend my analysis to encompass human phosphory-

lation sites for which I do not have data to validate that their corresponding positions (as

determined by sequence alignment) on orthologous proteins are also phosphorylated. I

reasoned that residue conservation analysis of large sets of phosphorylation sites, grouped

based on their features, could provide further insight into the evolution of cellular reg-

ulation by protein phosphorylation. In addition, I seek to delineate some of the factors

that could influence the evolvability of phosphorylated residues and confound the inter-

pretation of functionally important phosphorylation sites by sequence conservation. In

this chapter, I report analysis on the conservation of phosphorylated residues grouped

according to sites’ i) characterized functions, ii) prevalence (as gauged by detection fre-

quency across multiple HTP studies), iii) stoichiometry, iv) occurrence in structurally

disordered/ordered protein regions, v) occurrence in proteins of various abundance and

vi) occurrence in proteins with different protein interaction propensity. The conservation

of human phosphorylated residues across 19 vertebrate species with sequenced genomes

are analyzed. To complement this analysis and to identify potential universal trends in

the evolution of protein phosphorylation, I also assembled phosphorylation sites reported

in S. cerevisiae (budding yeast) and characterized their residue conservation across 31

fungal species. Lastly, I analyzed the sequence conservation of published phosphorylated

residues in M. musculus (mouse) proteins detected from 9 mouse tissues to investigate

how their conservation could potentially differ from phosphorylated residues detected in

free-living single cells of S. cerevisiae and human cell lines.

Each set of grouped phosphorylated residues can have a different composition of ser-

ine, threonine and tyrosine, distributed differently among structurally disordered/ordered
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regions, and occur in different proteins, all of which are likely under different evolution-

ary constraints unrelated to protein phosphorylation. Hence, comparing the absolute

conservation rate across sets of phosphorylated residues can be misleading. For exam-

ple, some sets of phosphorylated residues may appear to be more conserved than others

because they occur largely in highly conserved proteins. It is therefore important to

”normalize” for these confounding factors to facilitate comparative analysis of different

sets of phosphorylated residues. In this chapter, I devise a method that considers the

above-mentioned confounding factors for comparing the conservation of phosphorylated

residues across different sets.

3.2 Materials and Methods

3.2.1 Assembly of non-redundant human phosphorylaton data

Human phosphorylation sites annotated in PhosphoSitePlus and Phospho.ELM were

downloaded from the two online databases in September 2009. As the two databases use

protein sequences from different releases of the SwissProt database to track the positions

of phosphorylation sites, all data were mapped to a reference human sequence set from

the Ensembl online database (release 55, 2009). Phosphorylation sites were mapped to

the longest translation of each human gene in the Ensembl database (release 55) when-

ever possible. This helped to resolve cases where identical sites had different positions

due to revisions of the SwissProt sequence referenced and to remove redundant sites. The

mapping between SwissProt primary accessions and its corresponding Ensembl human

protein identifiers (release 55) was obtained from Ensembl through its BioMart interface.

Finally, the positions of the phosphorylation sites on protein sequences from Ensembl were

identified by exact string matching (using the peptide sequence spanning from -7 to +7

position of phosphorylated residue that was extracted from protein sequence in the Phos-

pho.ELM or PhosphoSite database). This procedure resulted in 51,448 non-redundant
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human phosphorylation sites consisting of 32,014 phosphorylated serines (62.2%), 9,292

phosphorylated threonines (18.1%) and 10,142 phosphorylated tyrosines (19.7%).

3.2.2 Assembly of human phosphorylation sites with annotated

functions

Human phosphorylation sites with characterized molecular or cellular functions are an-

notated in the PhosphoSitePlus database. A custom perl script was written to search

for such information from web pages describing each human phosphorylation site on the

PhosphoSitePlus website. The list of characterized functions annotated on 50 or more

phosphorylation sites are listed in Table 3.1. Many phosphorylation sites are annotated

with multiple function terms that may be related. To investigate the extent of this,

we computed the Dice’s coefficient (D) for the overlap of phosphorylation sites between

function terms listed in Table 3.1.

The Dice’s coefficient (D) is defined as

D =
2 |X

⋂
Y |

|X| + |Y |

where X and Y are the set of sites annotated with molecular/cellular function x and

y respectively.

3.2.3 Assembly of human phosphorylation sites with stoichiom-

etry information

Phosphorylation sites in HeLa S3 cells at different cell cycle stages were detected by Olsen

et al. [130]. Information on these sites was retrieved from the online supplementary data

of the publication. The phosphorylation sites were reported on protein sequences from

the International Protein Index (IPI) database (release 3.37). To facilitate comparison
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Table 3.1: List of function terms that have been each annotated on 50 or more human phosphorylation sites from the
PhosphoSitePlus database. The number of genes encoding proteins with each set of phosphorylation sites are listed in bracket. Gene
count is used as a phosphorylation site can be found on different spliced variants.

Function No. of sites (genes) Function No. of sites (genes)

regulates molecular association 1260 (569) cytoskeletal reorganization 206 (118)

altered intracellular location 617 (317) protein stabilization 161 (83)

regulates transcription 575 (239) regulates cell motility 160 (81)

activation 452 (229) enzymatic inhibition 149 (89)

enzymatic activation 448 (208) altered conformation 125 (79)

regulates cell growth 307 (162) receptor internalization 92 (37)

phosphorylation 306 (160) altered receptor desensitization 84 (35)

regulates cell cycle 295 (136) regulates cell adhesion 80 (59)

inhibition 265 (143) ubiquitination 70 (41)

regulates apoptosis 256 (129) regulates cell differentiation 61 (34)

protein degradation 236 (122)
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with dataset assembled from PhosphoSitePlus and Phospho.ELM, the phosphorylation

sites detected by Olsen et al. were mapped to human protein sequences from the Ensembl

database (release 55) using exact string matching of phosphorylated peptides given in the

supplementary data of the publication. The protein mapping between IPI primary acces-

sions and its corresponding Ensembl human protein identifiers (release 55) was extracted

from the IPI data file obtained at ftp://ftp.ebi.ac.uk/pub/databases/IPI/old/HUMAN/.

A total of 22,311 out of 24,714 phosphorylation sites identified by Olsen et al. were

mapped to the reference protein sequence set from Ensembl. Of the phosphorylation

sites that are not mapped, many are because the Ensembl protein identifiers provided by

IPI database are not present in release 55 of the Ensembl database. Some sites are also

not mapped because sequence of the same protein varies across the two databases. Using

a combination of quantitative mass spectrometry techniques, Olsen et al. were also able

to quantify the average stoichiometry during mitosis for a subset of identified phospho-

rylated sites. Among the mapped phosphorylation sites, 4,324 have site stoichiometry

information which was used for residue conservation analysis.

3.2.4 Preprocessing of M. musculus phosphorylaton sites

Published phosphorylation sites identified in nine mouse tissues using MS-based methods

were obtained from the authors of the study [69]. The nine tissues are brain, brown fat,

heart, liver, lung, kidney, pancreas, spleen and testis. The phosphorylation sites were

reported on mouse protein sequences from the IPI database (version 3.6). In the IPI

database, mapping of protein sequences to corresponding gene accession ID from Ensembl

are provided for most proteins. For each phosphorylation site detected, I extracted

subsequences containing the phosphorylated residue with 10 amino acids (less when the

site is located near N- or C-terminal) flanking the phosphorylated residue at each side.

This subsequence was then mapped to the longest protein translation (Ensembl release

55, 2009) of the Ensembl gene provided in the IPI database. This identifies the location
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of the same site on protein sequence from the Ensembl database. A total of 30,494 out

of the 35,965 sites were mapped onto corresponding mouse protein sequences in Ensembl

database (release 55, 2009)

3.2.5 Assembly of non-redundant S. cerevisiae phosphorylaton

sites

Phosphorylation sites in S. cerevisiae identified in 11 recent high-throughput (HTP) phos-

phoproteomic studies were assembled for residue conservation analysis (Table 3.2). These

phosphorylation sites were extracted from supplementary data hosted on the journal web-

site of each publication. Phosphorylation sites annotated in the PhosphoGRID online

database [169] were also retrieved from the database website in February 2010 to supple-

ment the data assembled from HTP studies. As there might be variation in the protein

sequences used in various HTP studies to map the positions of detected phosphorylation

sites, all phosphorylation sites assembled were mapped to S. cerevisiae protein sequences

housed in the Ensembl database (release 55). Phosphorylation sites were mapped to the

sequences in the reference set with exact string matching using the peptides with localized

phosphorylated residues provided by each HTP studies. Table 3.2 lists the number of

phosphorylated serines, phosphorylated threonines and phosphorylated tyrosines mapped

for PhosphoGRID and each HTP studies. In total, 21,355 phosphorylation sites consist-

ing of 16,055 phosphorylated serines (75.2%), 4,545 phosphorylated threonines (21.3%)

and 755 phosphorylated tyrosines (3.5%) were assembled.

3.2.6 Collection of protein interaction and abundance data of

S. cerevisiae proteins

To understand how the protein interaction propensity of phosphorylated proteins influ-

ences the conservation of phosphorylated residues on them, the high quality pairwise
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Table 3.2: List of phosphoproteomic studies reporting S. cerevisiae phosphorylation sites assembled. Phosphorylation sites
annotated in PhosphoGRID online database, which are mostly from conventional directed biological studies, were used to supplement
data assembled from high-throughput (HTP) studies. The number of phosphorylated residues identified by each studies are listed except
for PhosphoGRID where the actual number of non-redundant sites used to supplement HTP data are listed.

Ref Title pS pT pY Total

[62] Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. (2009) 8090 1976 342 10408

[168]Global analysis of the yeast osmotic stress response by quantitative proteomics. (2009) 4608 1334 164 6106

[180]Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple dis-

eases. (2009)

4833 963 208 6004

[2] A multidimensional chromatography technology for in-depth phosphoproteome analysis. (2008) 4922 893 64 5879

[49] High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in

yeast. (2009)

3025 549 39 3613

[166]Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. (2007) 2100 429 0 2529

[96] Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. (2007) 1218 243 14 1475

[11] Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. (2009) 929 317 19 1265

[29] Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dis-

sociation (ETD) mass spectrometry. (2007)

659 119 1 779

[55] Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. (2005) 557 101 4 662

[42] Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.

(2002)

221 50 3 274

[169]PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the

budding yeast Saccharomyces cerevisiae. (2010)

2355 577 30 2962
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interaction among S. cerevisiae proteins detected by Yu et al. [201] using yeast two-

hybrid (Y2H) method were used. The dataset, referred to as CCSB-YI1 in the publi-

cation, consisting of 1809 pairwise protein-protein interactions among 1278 proteins was

obtained at http://interactome.dfci.harvard.edu/S cerevisiae/download/CCSB-Y2H.txt.

To understand how protein abundance affects protein phosphorylation and the conserva-

tion of phosphorylated residues, abundance information derived by Ghaemmaghami et

al. [47] on S. cerevisiae proteins at log-phase growth was downloaded from the online

supplementary data of the publication. In the work, S. cerevisiae proteins are tagged

with high-affinity epitope, expressed under the control of their natural promoters and

their absolute abundances measured using quantitative western blot analyses.

3.2.7 Collection of protein sequences of selected metazoan and

fungal species

Sequences of known and inferred proteins of 20 vertebrate species, including Homo sapi-

ens, with 6X or more genome coverage were retrieved from the Ensembl online database

(release 55) at their FTP website (http://jul2009.archive.ensembl.org/info/data/ftp/ in-

dex.html). These 20 metazoan species are Homo sapiens (Human), Pan troglodytes

(Chimpanzee), Pongo pygmaeus (Orangutan), Cavia porcellus (Guinea Pig), Rattus norvegi-

cus (Rat), Mus musculus (Mouse), Monodelphis domestica (Opossum), Canis familiaris

(Dog), Bos taurus (Cow), Equus caballus (Horse), Ornithorhynchus anatinus (Platy-

pus), Gallus gallus (Chicken), Taeniopygia guttata (Zebra Finch), Anolis carolinensis

(Anole Lizard), Xenopus tropicalis (Frog), Oryzias latipes (Medaka), Gasterosteus ac-

uleatus (Stickleback), Tetraodon nigroviridis (Tetraodon), Takifugu rubripes (Fugu) and

Danio rerio (Zebrafish).

Sequences of known and inferred proteins in 32 fungal species, including S. cerevisiae,

were obtained from various online sources. Table 3.3 lists the 32 fungal species and the

source of their proteome sequences.
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Table 3.3: List of fungal species used to analyze the conservation of phosphorated
residues in S. cerevisiae. The source of proteome sequences of each species is also listed.

Species Database Species Database

Ashbya gossypii EMBL-EBI Kluyveromyces waltii YGOB

Aspergillus nidulans BROAD Lodderomyces elongisporus BROAD

Aspergillus niger BROAD Saccharomyces bayanus SGD

Candida albicans BROAD Saccharomyces castelli SGD

Candida glabrata Gnolevures Saccharomyces cerevisiae SGD

Candida guilliermondii BROAD Saccharomyces kluyveri Gnolevures

Candida lusitaniae BROAD Saccharomyces kudriavzevii SGD

Candida parapsilosis BROAD Saccharomyces mikatae SGD

Candida tropicalis BROAD Saccharomyces paradoxus SGD

Coccidioides immitis BROAD Schizosaccharomyces japonicus BROAD

Coccidioides posadasii BROAD Schizosaccharomyces octosporus BROAD

Debaryomyces hansenii Gnolevures Schizosaccharomyces pombe BROAD

Fusarium graminearum BROAD Uncinocarpus reesii BROAD

Kluyveromyces lactis Gnolevures Verticillium dahliae BROAD

Kluyveromyces polysporus YGOB Yarrowia lipolytica Gnolevures

Kluyveromyces thermotolerans Gnolevures Zygosaccharomyces rouxii Gnolevures

3.2.8 Identification of orthologous sequences

The InParanoid algorithm [142] (version 2.0) was used to infer orthologous sequences of

human and mouse proteins across 19 vertebrate species with sequenced genomes using the

BLOSUM80 scoring matrix with default parameters. Similarly, the InParanoid algorithm

was also used to infer protein sequences in 31 fungal species orthologous to Saccharomyces

cerevisiae proteins but the BLOSUM62 scoring matrix was used instead with default

parameters. BLAST software (version 2.2.12) [3] needed by Inparanoid was obtained from

NCBI’s FTP website. In all cases, only the longest translation of each known/inferred

genes were input into InParanoid for ortholog prediction. BLOSUM80 and BLOSUM62

were used as recommended in InParanoid for vertebrate species and eukaryotic species

respectively.
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3.2.9 Prediction of intrinsic disordered regions in proteins

The DISOPRED2 predictor [http://bioinf.cs.ucl.ac.uk/disopred/] [193] was used to iden-

tify structurally (intrinsic) disordered and ordered regions in known phosphorylated hu-

man and S. cerevisiae proteins. The non-redundant (NR) protein sequence database

required for the predictor was obtained from the National Center for Biotechnology In-

formation in November 2007. The NR database was ltered for transmembrane protein

regions with the plt program provided with DISOPRED2. Subsequently, the output was

extracted with custom Perl scripts.

3.2.10 Computing the normalized relative divergence rate of

phosphorylated residues

Multiple sequence alignments were carried out to determine the conservation of serine,

threonine, tyrosine and their phosphorylated subsets. The sequence of each phospho-

rylated protein in human, mouse or S. cerevisiae was grouped with their orthologous

protein sequences in other species (vertebrate species for human proteins and fungal

species for S. cerevisiae proteins). The MAFFT (v6.240, E-INS-i option with default

parameters) [81] multiple sequence alignment algorithm was used to align each set of

orthologous protein sequences.

Conservation of serine, threonine, tyrosine and their phosphorylated subsets on hu-

man, mouse or S. cerevisiae proteins across other species were then computed from the

resulting sequence alignments using custom Perl scripts. To avoid possible accelerated

sequence divergence arising from gene duplication which could confound conservation

analysis, only protein sequences with one-to-one orthology relationship to phosphorylated

proteins, as inferred by the InParanoid algorithm, were included for sequence alignment.

Between a phosphorylated protein and each orthologous protein, residues on phospho-

rylated protein were omitted from the conservation analysis when less than three of its
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ten adjacent flanking residues are aligned to identical amino acids on the other protein

sequence. When computing the conservation of residues across orthologous proteins, two

scenarios are considered in this work. One scenario considers serine and threonine equiv-

alent in terms of phosphorylation propensity and effects. Hence, observed substitution

of serine by threonine or vice versa is considered conserved. The other scenario considers

that serine, threonine and tyrosine as different from each other such that one cannot

be substituted by the other two phosphorylatable residues in terms of phosphorylation

propensity and effect. Different scenarios are considered for each set of phosphorylated

residues.

A measure termed relative divergence rate (RD) is defined in this work to quantify

the relative conservation (or evolvability) of phosphorylated residues compared to back-

ground phosphorylatable residues. A RD of 0.5, for example, tells us that for every 100

background phosphorylatable residues that have changed, 50 phosphorylated residues

would also have changed, while a RD greater of 2 tells us that for every 100 background

phosphorylatable residues that have changed, 200 phosphorylated residues would also

have changed. Hence, a RD above one indicates phosphorylated residues are changing

faster than background phosphorylatable residues while a RD below one means phospho-

rylated residues are more conserved than background phosphorylatable residues. The RD

for a set of residues phosphorylated in species x across species y can be computed as:

RD =
Dphos

Dbackground

where Dphos and Dbackground are the portion of phosphorylated residues and back-

ground phosphorylatable residues in species x not conserved in species y. Note that

residues on phosphorylated proteins were omitted from computation when less than 3

of its 10 adjacent flanking residues are aligned to identical amino acids on the other

protein sequence. Instead of computing Dbackground from all phosphorylatable residues,
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Dbackground is computed from randomly selected phosphorylatable residues in phospho-

rylated proteins, but maintaining the same number of serines, threonines and tyrosines,

and the same distribution across structurally disordered/ordered protein regions as was

observed for the phosphorylated residues in each phosphorylated protein. Dbackground

is averaged over 1,000 random selection trials. The RD computed using this random

sampling approach is termed normalized RD in this work.

While the normalized RD of phosphorylated residues can be computed for each pair of

species, the Dphos and Dbackground obtained for each pair of species were used to fit a linear

model of Y = BX where Y and X is the divergence rate of phosphorylation residues

(Dphos) and background phosphorylatable residues (Dbackground), and B is the coefficient

or the gradient of the best fit line. We used B as our estimate for the most prevalent

normalized RD across the various species analyzed. The linear model of Y = BX is fitted

using the glm function under the Generalized Linear Model package in the R statistical

tool.

To find out to what extent the normalized RD, derived using the linear model, can

vary due to the random selection of background phosphorylatable residues, I computed

the normalized RD for the entire set of functionally annotated human phosphorylation

site but repeated the procedure 20 times. The observed standard deviation is 0.00018,

indicating that our computed measures are stable. There are 2911 human phosphoryla-

tion sites with annotated functions. I repeated this analysis on smaller datasets of 236

and 61 human phosphorylation sites implicated in ”protein degradation” and ”regulates

cell differentiation” respectively. The observed standard deviation for the two data sets

are 0.00037 and 0.00177 respectively. In this work, I restricted the minimum number of

sites for any dataset to 50. Hence, the normalized RD values computed in this work are

robust to randomization to at least 2 decimal places.
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3.3 Results

3.3.1 Human phosphorylated residues with characterized func-

tions are well-conserved
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Figure 3.1: Extent of site overlap between different functions quantified using
Dice’s coefficient. The functions are ordered according to their number of sites with reg-

ulate cell differentiation and regulate molecular association having the least and most sites
respectively.

Sequence conservation analysis of phosphorylated residues could be used to identify

physiologically important phosphorylation events. This is based on the premise that if

residues which phosphorylation arises early in evolution that is beneficial for survival (or

propagation), their removal by mutation is likely not favored during evolution. Hence,

95



these residues are more likely to be conserved in other species. Here, I first carried out

conservation analysis on the set of human phosphorylated residues for which functional

effects of phosphorylation have been experimentally characterized. This is to quantify the

extent to which functional roles of phosphorylation affect the conservation of phosphory-

lated residues in other species. Information on human phosphorylation sites with char-

acterized functions as annotated in PhosphoSite was retrieved from the online database

for this purpose.

A total of 2,910 non-redundant human phosphorylation sites of known function were

obtained and 21 function terms were found annotated for 50 or more phosphorylation

sites each (see Table 3.1). To determine which molecular or cellular effect of protein

phosphorylation are possibly constrained to the similar protein positions across ortholo-

gous sequences, I analyzed subsets of these phosphorylation sites organized by functions

listed in Table 3.1 except for terms ”activation” and ”inhibition” which I personally, as

a biologist, deemed too vague about the functions of the phosphorylation sites for mean-

ingful interpretation. Many phosphorylation sites are annotated under multiple function

terms possibly due to semantic overlap of the terms, and because phosphorylation sites

can have multiple functional effects. The extent of site overlap between pairs of function

terms listed in Table 3.1 is quantified using Dice’s coefficient and visualized in Figure 3.1.

Average Dice’s coefficient of site overlap between all pairs of functions listed in Table 3.1

is 0.091 (std. dev. = 0.071). For pairs of function terms with high site overlap (arbitrarily

defined as those with Dice’s coefficient of 0.25 or more), many are not unexpected based

on our present understanding on the function of protein phosphorylation. For example,

kinases are known to “regulate transcription” by “alter[ing] intracellular location” of

transcription factor through phosphorylation, and phosphorylation is known to promote

“ubiquitination” that tag proteins for “protein degradation” that can explain the high

site overlap observed between these two pairs of functions.

In this work, I define a measure termed relative divergence rate (RD) to quantify
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the conservation of phosphorylated residues compared to background phosphorylatable

residues. Briefly, the RD for a set of residues phosphorylated in species x across species

y can be computed as RD =
Dphos

Dnonphos
where Dphos and Dnonphos are the portions of

phosphorylated and other phosphorylatable residues in species x respectively that are

not conserved in species y. In this text, the D of a set of residues is referred to as

its divergence rate. Hence, RD is the ratio between divergence rate of phosphorylated

residues and background phosphorylatable residues between 2 species. A RD above one

indicates that phosphorylated residues are changing faster than background phosphory-

latable residues while a RD below one means phosphorylated residues are more conserved

than background phosphorylatable residues.

The conservation of human phosphorylated residues across 19 vertebrate species with

sequenced genomes are analyzed. However, instead of computing the normalized RD of

residues phosphorylated in human for each of the 19 species of which some may vary sub-

stantially, a linear regression approach is used to estimate the normalized RD most preva-

lent (or “average” for intuitive understanding) among the 19 species (see section 3.2.10

for more details). This linear regression approach is more robust to outliers than taking

the average of normalized RD across the 19 species.

For this analysis, I considered the scenario that serine and threonine are equivalent in

terms of phosphorylation potential and effect. Hence, a serine substituted by threonine

and vice versa at the same position on an orthologous protein is considered conserved.

The computed normalized RD for all phosphorylated residues with characterized func-

tion is 0.56 (see top left-hand plot in Figure 3.2), indicating that residues in which

phosphorylation have functional effects are generally diverging at half the rate of back-

ground phosphorylatable residues. This indicates that beneficial functional consequences

of phosphorylation promote the conservation of phosphorylated residues.

All analyzed subsets of phosphorylated residues under different function have nor-

malized RD of less than one, indicating that all are more conserved than background
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Figure 3.2: Normalized relative divergence rate (RD) of human phosphorylated
residues of different characterized function across 19 vertebrate species. The di-
vergence rate of phosphorylated residues and background phosphorylatable residues in human
across each of the 19 vertebrate species are computed and plotted for each function. The di-
vergence rate is the portion of residues in human not conserved in each species as determined
from multiple sequence alignment of sets of orthologous protein sequences. A best fit line was
determined for each plot using linear regression. The most prevalent normalized RD across
the 19 species is the coefficient shown on the line. Excluding the two phylogenetically nearest
species, the blue shadings highlight the maximum and minimum divergence rate at each axis.
As the number of residues aligned differs among species due to variations in orthologs inferred
and sequence alignment quality, the number of phosphorylated residues aligned to chimpanzee’s
protein sequences is used to indicate the size of each data subset. This number is denoted at
the bottom right corner of each plot and color-coded accordingly.
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phosphorylatable residues with median RD of 0.51 (Figure 3.2) which can be interpreted

that if 100 background phosphorylatable residues are found mutated, only 51 phosphory-

lated residues will be mutated. Among the different functions, phosphorylated residues

that are implicated in enzymatic activation are most conserved with a normalized RD

of 0.37. These phosphorylated residues are found on proteins encoded by a total of 208

human genes, of which 125 encode protein kinases. As many protein kinases are known

to play important roles in regulating diverse cellular activities, it is not unexpected that

phosphorylated residues on them that are implicated in their activation are strongly

conserved across other species. In addition, as discussed in chapter 2, many activation

sites on protein kinases need to be positionally conserved for allosteric regulation of pro-

tein kinases. However, it is possible that the function of some of these phosphorylation

sites are inferred based on homology or sequence conservation, and thus contribute to

higher sequence conservation observed. Among the least conserved subsets of phosphory-

lated residues, but nevertheless still more conserved than background phosphorylatable

residues, are those implicated in “altered receptor desensitization”, “receptor internal-

ization” and “cytoskeletal reorganization” with normalized RD of 0.88, 0.81 and 0.78

respectively. The rest of the functions have sites with normalized RD between 0.43 to

0.68. Closer scrutiny confirmed that many sites under “altered receptor desensitization”

and “receptor internalization” are observed on receptor proteins. A number of non-

exclusive reasons can explain the general weaker conservation of phosphorylated residues

implicated in these functions. It is possible that phosphorylation regulation of these func-

tions are less positionally constrained to similar positions across orthologous proteins or

more phosphorylated residues implicated in these functions have appeared uniquely along

the human lineage.
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3.3.2 Frequently detected human phosphorylated residues are

more conserved

Here, I assessed the conservation of phosphorylated residues detected by high throughput

(HTP) experimental studies using determined normalized RD of functionally character-

ized phosphorylated residues as a base for comparison. I also assessed whether phos-

phorylated residues detected more frequently in HTP studies are more conserved. This

is based on the reasoning that some phosphorylated residues detected by multiple stud-

ies are less likely to be false positive sites or spurious phosphorylation events. I only

considered data from HTP studies to minimize residues selected by experimentalists for

phosphorylation characterization due to their strong conservation. I first considered the

scenario that serine and threonine are equivalent in terms of phosphorylation potential

and effect, and assessed conservation of phosphorylated serines and threonines collectively

as a group. Phosphorylated residues are progressively filtered by the minimum number

of HTP studies that reported them. I considered a publication to be a HTP study if

the publication reported more than 500 phosphorylation sites in our assembled list of

phosphorylation sites. Similar to previous analyses, we computed the divergence rate of

randomly selected phosphorylatable residues maintaining the same number of serine and

threonine, and the same distribution in structurally disordered/ordered protein regions

as the phosphorylation sites observed for each phosphorylated protein.

I found that phosphorylated serines and threonines detected by HTP studies have a

normalized RD of 0.85 (see Figure 3.3) indicating that, overall, phosphorylated serines

and threonines are diverging slower than background serine and threonine but are not as

conserved as functionally characterized phosphorylation sites. The normalized RD pro-

gressively dropped to 0.72, 0.64 and 0.58 for phosphorylated residues reported in at least

two, at least three and at least four HTP studies respectively. A noteworthy observation

is phosphorylated residues detected in at least four HTP studies have similar normalized
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Figure 3.3: Conservation of human phosphorylated residues filtered by their detec-
tion frequency. Phosphorylated residues are progressively filtered according to the number
of HTP studies reporting them. Blue, green, orange and red circles are for phosphorylated
residues detected in ≥1, ≥2, ≥3, ≥4 HTP studies respectively. The best fit regression line
and its coefficient is shown for each subset of phosphorylated residues. The coefficient is the
normalized RD across computed for across the 19 vertebrate species. For the top left-hand
plot, serine-threonine substitution are considered conserved and phosphorylated serines and
phosphorylated threonines are collectively analyzed. The remaining three plots consider each
amino acid individually. Filtered data sets that with less than 50 phosphorylated residues are
omitted from analysis. As the number of residues aligned differs among species due to variations
in orthologs inferred and sequence alignment quality, the number of phosphorylated residues
aligned to chimpanzee’s protein sequences is used to indicate the size of each data subset. This
number is denoted at the bottom right corner of each plot and color-coded accordingly.
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RD with functionally characterized phosphorylation sites. I repeated the above analysis

considering the scenario that serine, threonine and tyrosine cannot substitute for each

other in term of phosphorylation potential and functional effects. This complementary

analysis also revealed that more frequently detected phosphorylated residues are more

conserved (Figure 3.3).

There are a number of non-exclusive explanations for this observation. It is possible

that less frequently detected phosphorylation sites are more likely to result from spurious

phosphorylation events that do not have important functional consequences. A related

explanation is that less frequently detected phosphorylation sites are more likely to be

false positives identified by individual labs using different spectra analysis algorithms

while real phosphorylation sites are identified more consistently. Another plausible ex-

planation is that more frequently detected phosphorylation sites are effecting stronger or

more persistent functional consequences that are favored across species.

3.3.3 Higher stoichiometry sites in human observed during mi-

tosis are not more conserved

A recent HTP study by Olsen et al. [130] on HeLa S3 cells using quantitative mass spec-

trometry techniques managed to obtain site stoichiometry information for about 4,500

phosphorylation sites on human proteins [130]. Using this set of phosphorylation sites,

I investigated whether phosphorylated residues of sites with observed higher stoichiome-

try are more conserved than those of lower stoichiometry. I considered serine-threonine

substitution as conserved for this analysis. The computed normalized RD of phospho-

rylated residues with >20%, >40% and >60% site stoichiometry are 0.97, 0.98 and 0.93

respectively (Figure 3.4). Hence, this set of phosphorylated residues with site stoichiom-

etry information are only slightly more conserved than background phosphorylatable

residues and, unexpectedly, phosphorylated residues of higher site stoichiometry are only

marginally more conserved than phosphorylated residues of lower site stoichiometry. To
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Figure 3.4: Conservation of human phosphorylated residues filtered by site stoichiometry. Red circles represent phosphory-
lated residues with site stoichiometry information obtained by Olsen et al. [130]. Cyan circles represent phosphorylated residues detected
by ≥2 HTP studies (excluding Olsen et al.) on the same set of phosphorylated proteins at each site stoichiometry threshold. A best fit
line was determined for each set of phosphorylated residues using linear regression and the most prevalent normalized RD across the 19
species is the coefficient shown on the line. As the number of residues aligned differs among species due to variations in orthologs inferred
and sequence alignment quality, the number of phosphorylated residues aligned to chimpanzee’s protein sequences is used to indicate the
size of each data set. This number is denoted at the bottom right corner of each plot and color-coded accordingly.
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investigate whether phosphorylated residues on the phosphorylated proteins are generally

weakly conserved regardless of site stoichiometry, I analyzed the conservation of phospho-

rylated residues on the same set of phosphoproteins at each site stoichiometry threshold

that are detected in 2 or more HTP studies (excluding Olsen et al. [130]). I found that

the sets of phosphorylated residues detected by multiple HTP studies are more conserved

even when compared to phosphorylated residues with >60% site stoichiometry.

It is possible that the detection method adopted in the HTP study had identified

many false phosphorylation sites leading to the weak conservation observed. About

24,000 phosphorylation sites were actually detected in the HTP study but site stoichiom-

etry information was only obtainable for a subset of them. To investigate whether the

phosphorylation sites detected in the study are in general not well-conserved regardless

of site stoichiometry, I analyzed the residue conservation of all the phosphorylation sites

detected in the study including with site stoichiometry information. I found that they

have a normalized RD of 0.86 which is very similar to the combined set of phosphorylated

residues detected in other HTP studies (≈0.85). This result suggests that the portion of

false positive and spurious phosphorylation sites detected in the study is unlikely to be

higher than other studies. Hence, it seems that high stoichiometry phosphorylation sites

are not necessarily more conserved or the experimental methods used for quantifying site

stoichiometry may not be robust.

3.3.4 Phosphorylated residues are relatively more conserved in

structurally disordered than in structurally ordered pro-

tein regions

Here, I analyzed the conservation of phosphorylated residues within structurally disor-

dered (a.k.a intrinsic disordered) regions and structurally ordered regions of proteins as

predicted by the DISOPRED algorithm [193]. I first performed the analysis on the set of

104



0 0.1 0.2 0.3 0.4 0.5

0
0

.1
0

.2
0

.3
0

.4
0

.5

D
iv

e
rg

e
n
c
e
 r

a
te

 o
f 
p
h
o
s
p
h
o
ry

la
te

d
 r

e
s
id

u
e
s

Divergence rate of randomly selected 
serines, threonines and tyrosines

0.560.56

(1589)

(1098)

Figure 3.5: Conservation of human phosphorylated residues with characterized
functions in structurally disordered and ordered protein regions. The conservation
of phosphorylated residues of sites with experimentally characterized functions are analyzed
according the protein regions they are embedded in. Red circles and cyan circles represent
phosphorylated residues occurring in inferred structurally disordered and ordered protein re-
gions, respectively. A best fit line was determined for each set of phosphorylated residues using
linear regression and the most prevalent normalized RD across the 19 species is the coefficient
shown on each line. Excluding the two most phylogenetically closest species, the red and cyan
rectangles respectively bound the maximum and minimum divergence rate at each axis for the
two sets of phosphorylated residues. As the number of residues aligned differs among species
due to variations in orthologs inferred and sequence alignment quality, the number of phospho-
rylated residues aligned to chimpanzee’s protein sequences is used to indicate the size of each
data set. This number is denoted at the bottom right corner of the plot.

phosphorylation sites with experimentally characterized functions that were previously

analyzed in Section 3.3.1 and considered serine-threonine substitution to be conserved.

Overall, phosphorylated residues of functionally characterized sites in structurally disor-

dered protein regions seem less conserved than that of functionally characterized sites in

structurally ordered protein regions (judging by the distribution of red and cyan circles

on the x-axis in Figure 3.6). However, both sets of phosphorylated residues have normal-

ized RD of 0.56 suggesting that important functional consequences of phosphorylation

impose a similar degree of evolutionary constraint on phosphorylated residues across the

two protein regions (see Figure 3.5). This is somewhat not unexpected as the functional
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Figure 3.6: Conservation of human phosphorylated residues in structurally disordered and ordered protein regions.
Plots in the orange panel consider serine-threonine substitution as conserved, and analyzed phosphorylated serines and phosphorylated
threonines collectively as a group. Plots in the green panels consider the conservation of phosphorylated serines, phosphorylated threonines
and phosphorylated tyrosines individually and that each cannot be substituted by the other phosphorylatable residues in terms of
phosphorylation propensity and effect. Red circles and cyan circles represent phosphorylated residues in structurally disordered and
structurally ordered protein regions, respectively. The normalized RD most prevalent across the 19 species as inferred using linear
regression is the coefficient shown on each line. Excluding the two most phylogenetically closest species, the red and cyan rectangles
respectively bound the maximum and minimum divergence rate at each axis for the two sets of phosphorylated residues. As the number of
residues aligned differs among species due to variations in orthologs inferred and sequence alignment quality, the number of phosphorylated
residues aligned to chimpanzee’s protein sequences is used to indicate the size of each data set. This number is denoted at the bottom
right corner of each plot and color-coded accordingly.
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constraint imposed on these residues, resulting from their phosphorylation, should be

very similar overall regardless of the protein regions they are embedded in.

Next, I examined the conservation of phosphorylated residues across intrinsic disor-

dered protein regions and structured protein regions using all human phosphorylation

sites assembled from the PhosphoSitePlus and Phospho.ELM databases,. I first consid-

ered the scenario where serine and threonine is equivalent in term of phosphorylation

potential and effect (yellow panel in Figure 3.6), and analyzed conserved phosphorylated

serines and phosphorylated threonines collectively as a group. I also filtered the phos-

phorylated residues by the number of HTP studies that reported them. I observed that

phosphorylated serines and threonines in structured regions are overall not more con-

served than other serines and threonines from the same type of protein regions (normal-

ized RD = 0.99). However, the subset of phosphorylated residues detected in 2 or more

HTP studies are more conserved with a normalized RD of 0.86. In comparison, phos-

phorylated serines and threonines in structurally disordered regions are well-conserved

with normalized RD of 0.82 and 0.71 for the entire set and the subset detected in 2 or

more HTP studies. This analysis was repeated for phosphorylated serine, phosphory-

lated threonine and phosphorylated tyrosine individually, and a similar phenomenon is

observed (green panels in Figure 3.6).

Overall, the result suggests that more spurious phosphorylation events were occurring

in structurally ordered protein regions. One possible explanation is that serines and

threonines in structurally ordered regions are typically less accessible (located within

the protein core, for example) to protein kinases but are increasingly phosphorylated by

protein kinases when they are denatured or broken down into peptides under artificial

conditions prevalent in HTP studies. For example, denaturing reagents like urea and

sodium dodecylsulfate (SDS) are commonly used in protein assays. Another reagent that

can possibly increase phosphorylation on residues that are typically surface inaccessible

is dithiothreitol (DTT). This chemical is frequently used in lysis buffers and restriction
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enzyme buffers to preserve the activities of enzymatic proteins. It is also used in MS-

based proteomic analysis to improve protein fragmentation by reducing disulfide bonds

in proteins. However, breakage of disulfide bonds can disrupt the tertiary structure of a

protein and expose typically surface inaccessible residues to protein kinases unnaturally.

Phosphorylated tyrosines, on the other hand, are conserved consistently across the two

protein regions with normalized RD of ≈0.86. Interestingly, I did not observe stronger

conservation of more frequently detected phosphorylated tyrosines, for unknown reasons.

3.3.5 S. cerevisiae phosphorylation residues are only well-conserved

in phylogenetically close species

In the previous section, I observed that more frequently detected phosphorylation sites

on human proteins are generally more conserved. To verify whether this is a possible

universal trend, I assembled phosphorylation sites on S. cerevisiae proteins reported by

HTP studies. Again, we consider studies reporting more than 500 sites as HTP. For

S. cerevisiae, phosphorylated tyrosines are excluded from analysis because the number

of phosphorylated tyrosines is small. Based on this criteria, a total 20,172 phosphory-

lated serines and threonines are identified in HTP studies. The conservation of these

sites across 31 fungal species (3 Taphrinomycotina, 7 Pezizomycotina and 21 Saccha-

romycotina species) were analyzed. I progressively filtered phosphorylation sites based

on their detection frequency. Based on 31 species, phosphorylated residues detected on

S. cerevisiae proteins are not conserved with normalized RD of 0.99, meaning phospho-

rylated residues are lost at the same pace as background serines and threonines (Figure

3.7, top left plot). Moreover, more frequently detected phosphorylation sites are only

marginally more conserved. For example, phosphorylation sites detected in 4 or more

HTP studies only have a normalized RD of 0.95 (Figure 3.7, top left plot). Closer vi-

sual inspection revealed that phosphorylation residues are conserved in phylogenetically

close species but not in distantly related species. To validate this observation, I analyzed
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Figure 3.7: Conservation of S. cerevisiae phosphorylated residues filtered by their
detection frequency across different groups of fungal species. Phosphorylated serine
and phosphorylated threonine are analyzed collectively as a group and serine-threonine substi-
tution is deemed conserved. Green, blue, orange and red circles are for phosphorylated serines
and phosphorylated threonines detected in ≥1, ≥2, ≥3, ≥4 HTP studies respectively. The best
fit regression line is shown for each subset of phosphorylated residues while the coefficient of
line are shown for ≥1 and ≥4 HTP studies only. The top left plot considers data points from
31 fungal species for regression analysis. Subsequently, only subsets of the species of decreasing
phylogenetic distance to S. cerevisiae are analyzed. As the number of residues aligned dif-
fers among species due to variations in orthologs inferred and sequence alignment quality, the
number of phosphorylated residues aligned to protein sequences from S. paradoxus is used to
indicate the size of each data set. This number is denoted at the bottom right corner of each
plot and color-coded accordingly.
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the conservation of S. cerevisiae phosphorylation sites in phylogenetically closer species.

Considering only species in the Saccharomycotina clade, the normalized RD is 0.93 and

0.83 for sites detected in at least one and in at least four HTP studies respectively. Fur-

ther restricting analysis to the four nearest species in the Saccharomyces genus improved

normalized RD to 0.88 and 0.72 for sites detected in at least one and in at least four

HTP studies respectively. Hence, it seems that S. cerevisiae sites are only well-conserved

in close species. The conservation signal is weaker than that for phosphorylated residues

observed in human. For example, the set of phosphorylated serines and threonines de-

tected in four or more HTP studies on human proteins has a normalized RD of 0.58

across 19 vertebrate species, spanning an estimated 450 million years compared to 0.72

for the same class of sites in yeast across the 4 nearest species in the Saccharomyces

genus. The fishes (O. latipes, G. aculeatus, T. nigroviridis, T. rubripes and D. rerio)

are the phylogenetically most distant species from human among the 19 vertebrates that

are estimated to have diverged from the human lineage ≈ 450 million years ago [57]. In

contrast, S. cerevisiae has diverged from the 4 nearest Saccharomyces species less than

150 million years ago [44]. Regardless, the trend that more frequently detected sites

are more conserved is still observed for S. cerevisiae sites, although we observed that S.

cerevisiae sites are weakly conserved compared to those detected in human.

3.3.6 S. cerevisiae phosphorylated residues are more conserved

in more promiscuous interacting proteins

Next, I obtained data on pairwise protein-protein interaction among S. cerevisiae pro-

teins detected by Yu et al. [201] using a yeast two-hybrid (Y2H) method to determine

how protein interaction promiscuity of proteins influence the conservation of phospho-

rylated residues on them. Yu et al.’s dataset is used to estimate the protein interaction

promiscuity because they explicitly tested every bait protein against every protein in a

prey protein set, hence the data is minimally influenced by ascertainment bias. I reasoned
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Figure 3.8: Conservation of S. cerevisiae phosphorylated residues on proteins fil-
tered by their number of protein interaction partners. Phosphorylated serine and
phosphorylated threonine are analyzed collectively as a group and serine-threonine substitu-
tion is deemed conserved. Green, blue, orange and red circles are for phosphorylated serines
and phosphorylated threonines detected on proteins with ≥1, ≥2, ≥3, ≥4 protein interaction
partners respectively as determined in [201]. As the number of residues aligned differs among
species due to variations in orthologs inferred and sequence alignment quality, the number of
phosphorylated residues aligned to protein sequences from S. paradoxus is used to indicate the
size of each data set. This number is denoted at the bottom right corner of each plot and
color-coded accordingly.

that phosphorylated proteins with more interacting protein partners are more likely to

have more functional phosphorylation events implicated in protein-protein interactions,

hence more phosphorylated residues on them should be conserved. Therefore, I progres-

sively filtered phosphorylated proteins based on a minimum number of interacting protein

partners and analyzed the conservation of phosphorylated residues on them. I consid-

ered the scenario that serine and threonine are equivalent in phosphorylation propensity

and effect. As previous conservation analysis on the entire set of assembled phosphory-

lated residues in S. cerevisiae revealed that 4 and 13 closest Saccharomycotina species

provided the most unique information, the normalized divergence rate across 4 and 13

closest Saccharomycotina species were computed for this analysis. Comparing conser-

vation of phosphorylated residues in S. cerevisiae across 13 nearest Saccharomycotina
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species revealed that phosphorylated proteins that interact with more protein partners

progressively have lower normalized RD (see Figure 3.8). However, this is not observed

for the 4 nearest Saccharomycotina species. It is unclear why stronger conservation is

only observed for more distantly related species for phosphorylated residues occurring in

proteins that interact with more proteins.

3.3.7 S. cerevisiae phosphorylated residues on less abundant

proteins are more conserved

Intuitively, proteins of higher abundance are more likely to be spuriously phosphory-

lated due to increased random encounters with protein kinases. Consequently, proteins

of higher abundance can have more phosphorylated trypsinized peptides that facilitate

their detection by mass spectrometry. Hence, proteins of higher abundance could have

more non-functional phosphorylation sites. To find out whether this is a possibility, I col-

lected published information on protein abundance of S. cerevisiae proteins determined

at log growth phase [47] and analyzed conservation of phosphorylated residues on pro-

teins progressively filtered based on their abundance. Phosphorylation sites on proteins

of higher abundance are progressively analyzed at >100, >1,000, >10,000 and >100,000

molecules per cell. I found that for phosphorylated residues on proteins with >100 copies

per cell, they are weakly conserved across the 13 nearest Saccharomycotina species with a

normalized RD of 0.94 (Figure 3.9). I observed that phosphorylated residues on proteins

with higher abundance showed weaker conservation with normalized RD greater than 1

for those on proteins with >10,000 copies per cell. This phenomenon is more pronounced

for conservation across the 4 nearest Saccharomycotina species, starting from normal-

ized RD of 0.90 at >100 copies per cell that progressively increases with higher protein

abundance to normalized RD of 1.24 at >100,000 copies per cell.

To further validate the above observation, I repeated the analysis across proteins with

>10,000 molecules per cell and across those with <1,000 molecules per cell (Figure 3.9,
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Figure 3.9: Conservation of S. cerevisiae phosphorylated residues on proteins fil-
tered by protein abundance. Phosphorylated serine and phosphorylated threonine are ana-
lyzed collectively as a group and serine-threonine substitution is deemed conserved. For plots on
yellow background, green, blue, orange and red circles are for phosphorylated serines and phos-
phorylated threonines detected on proteins with >100, >1,000, >10,000, >100,000 molecules
per cell. For plots on green background, orange circles are for phosphorylated residues detected
in ≥1 HTP studies on proteins with >10,000 molecules per cell, red circles are for those detected
in ≥2 HTP studies on proteins with >10,000 molecules per cell, light blue circles are for those
detected in ≥1 HTP studies on proteins with <1,000 molecules per cell, dark blue circles are for
those detected in ≥2 HTP studies on proteins with <1,000 molecules per cell. As the number
of residues aligned differs among species due to variations in orthologs inferred and sequence
alignment quality, the number of phosphorylated residues aligned to protein sequences from S.

paradoxus is used to indicate the size of each data set. This number is denoted at the bottom
right corner of each plot and color-coded accordingly.
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green panel). I also analyzed the subsets of phosphorylated residues on these proteins

that have been detected by 2 or more HTP studies. Across both the 13 nearest and the

4 nearest Saccharomycotina species, phosphorylated residues on low abundance proteins

(those less than 1,000 molecules per cell) show strong conservation, with a stronger signal

for the subset of phosphorylated residues detected in multiple HTP studies. However,

phosphorylated residues on high abundance proteins (those greater than 10,000 molecules

per cell) are not well-conserved with normalized RD greater than 1, even for the subset

of phosphorylated residues detected in multiple HTP studies. Hence, it is plausible that

highly abundant proteins have proportionally more spurious phosphorylation sites than

lower abundant proteins. Until now, all sets of phosphorylated residues analyzed are

changing either at the same pace or slower than background phosphorylatable residues.

Hence, the observation that the set of phosphorylated residues on highly abundant yeast

proteins are potentially changing faster than background phosphorylatable residues is

interesting. However, more tests and analysis are needed to assess whether these sites

are under positive selection.

3.3.8 M. musculus phosphorylated residues detected from tis-

sues are highly conserved

So far, the HTP phosphorylation sites analyzed were identified in free-living single cells

from the unicellular organism S. cerevisiae and human cell lines. Using recently published

phosphorylation sites detected in nine mouse tissues using MS-based experimental meth-

ods, I investigated the potential difference in conservation for phosphorylated residues

detected in tissues and free-living single cells of unicellular organism S. cerevisiae and

human cell lines. I computed the normalized RD for phosphorylation sites detected in

each mouse tissue across 19 vertebrate species which include human. Interestingly, M.

musculus phosphorylated residues across the nine tissue are conserved at similar rates

with RD ranging from 0.64 to 0.67. These RD rates are lower (more conserved) than
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that observed for global HTP phosphorylation sites from human cell lines (RD ≈ 0.85,

Figure 3.3) and S. cerevisiae (RD = 0.88 across the four nearest species, Figure 3.7).

Most importantly, the conservation rate of functionally characterized human phosphory-

lation sites (RD = 0.56) are more similar to that of M. musculus phosphorylation sites

(RD ≈ 0.66) than to HTP human phosphorylation from cell lines (RD ≈ 0.85). This

result suggests that a large portion of the phosphorylated residues detected from M. mus-

culus tissues are under evolutionary constraint and hence more likely to be functionally

important.

The underlying experimental procedure and site localization algorithm(s) adopted in

the mouse project might have produced cleaner data (less false positive sites) leading to

the observed low RD. In comparison, the set of human phosphorylated residues detected

in cell lines by two or more HTP studies has a higher RD (see Figure 3.3). Assuming that

most of the false positive sites had been removed in this set of phosphorylated residues,

the result suggests other factors may be at play. One other plausible and non-exclusive

explanation is that phosphorylation events in tissues are more tightly regulated and

hence less likely to be sporadic compared to those detected in free-living single cells. For

phosphorylation sites detected in human cell lines, it is possible that a portion of them

arose from deregulated protein kinases and impaired phosphatases. However, frequently

detected sites in S. cerevisiae, such as those detected in 4 or more HTP studies, are

weakly conserved across very closely related species (see Figure 3.7, bottom right plot)

compared to the conservation rates of phosphorylated residues in mouse and human. Not

withstanding that unicellular organisms like S. cerevisiae are possibly diverging faster

than multicellular organisms, this comparison among sites from mouse tissues, human cell

lines and S. cerevisiae overall suggests that stochastic (non-determisitic) phosphorylation

events could be prevalent in free-living single cells.
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Figure 3.10: Normalized relative divergence rate of M. musculus phosphorylated
residues detected in different tissues.The divergence rate of phosphorylated residues and
background phosphorylatable residues in M. musculus across each of the 19 vertebrate species
are computed and plotted for sites detected in each tissue. The divergence rate is the portion
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highlight the maximum and minimum divergence rate at each axis.
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3.4 Discussion

As most of the phosphorylation sites assembled for this study are identified in HTP stud-

ies using mass spectrometry, it helps for result interpretation to understand the basic

techniques and procedures behind the detection method. The basic steps in the method

are: (1) the breaking down of proteins in a sample into peptides, often by trypsin, (2) the

enrichment of phosphorylated peptides from non-phosphorylated peptides, (3) the frac-

tionation of phosphorylated peptides using separation techniques like high-performance

liquid chromatography (HPLC), (4) fragmentation of separated peptides to produce mass

spectra and (5) finally, the matching of mass spectra produced uniquely by different pep-

tides to a spectra ”fingerprint” database to identify peptide sequences and the localization

of phosphorylation sites on peptides.

Phosphorylation sites on a peptide can be easily falsely localized if multiple phospho-

rylatable residues are present on the peptide. Hence, falsely identified phosphorylation

sites can contribute to lower conservation observed for phosphorylation sites identified

in mass spectrometric screens particularly in HTP studies where localized sites are often

not validated by manual inspection of spectra. This hypothesis seems to be supported

by the observation that phosphorylated residues of sites detected in multiple HTP stud-

ies are more conserved, based on the reasoning that phosphorylation sites detected with

different site-localization algorithms across multiple HTP studies are more likely to be

true sites. However, another possible and non-exclusive explanation for the lower con-

servation observed for HTP phosphorylation sites is spurious or random phosphorylation

events. It is plausible that phosphorylation sites identified by multiple HTP studies pos-

sibly under different physiological conditions are less likely to be the result of spurious

phosphorylation events. The observation that more commonly detected phosphorylation

sites are more conserved is consistent for human and S. cerevisiae sites although for S.

cerevisiae, it is only observed for phylogenetically very close yeast species.

I observed that functionally characterized phosphorylation sites on human proteins
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are equally conserved across structurally disordered and ordered regions which suggest

similar evolutionary constraints imposed by functional phosphorylation sites across the

two types of protein regions. However, phosphorylated serines and phosphorylated thre-

onines detected in HTP studies are more conserved in structurally disordered regions

than in structurally ordered regions in proteins, even for more frequently detected subset

of phosphorylation sites. I expected proportionally more spurious phosphorylation events

to occur on structurally disordered regions which, in general, should be more accessible

to the catalytic site of protein kinases. However, the result suggests that proportion-

ally more phosphorylation sites detected within structurally ordered protein region are

spurious. It is plausible that phosphorylatable residues in structurally ordered region

are typically less accessible to protein kinases than those from structurally disordered

regions, but are spuriously targeted by protein kinases when proteins are broken down

into peptides by trypsin in typical mass spectrometric screens. On the other hand, phos-

phorylatable residues in structurally disordered regions, being more readily accessible by

protein kinases, may have evolved mechanisms to reduce spurious phosphorylation, such

as changing the amino acids flanking phosphorylatable residues that discourage contact

with the catalytic site of protein kinases. For reasons that are unclear, phosphorylated

tyrosines across structurally disordered and ordered protein regions seem to diverge at

the same rate even for the more frequently detected subset of sites.

One of the more interesting observations is that phosphorylation sites on proteins of

high abundance are seemingly less conserved than those on proteins of low abundance if

we compared their conservation rate relative to background phosphorylatable residues.

Assuming the probability of spurious phosphorylation occurring on any phosphorylatable

residue on any protein is X%, highly abundant proteins will have, in absolute number,

more peptides with spurious phosphorylation sites. More phosphorylated peptides should

translate into a higher probability of detection in mass spectrometric screens. This can

explain the lower conservation of phosphorylation sites observed on proteins of high
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abundance. In fact, phosphorylation sites on proteins of high abundance seem to be

changing faster than background phosphorylatable residues suggesting that some of them

are under positive selection, hence may be involved in cell biology unique in S. cerevisiae.

I reasoned that phosphorylation sites of higher stoichiometry should be less likely to

result from spurious phosphorylation events. However, I observed that phosphorylated

residues of higher site stoichiometry are only marginally more conserved than those of

lower site stoichiometry. One plausible explanation is the site stoichiometry information

is not derived accurately. As the phosphorylation sites are identified in HeLa cells, an-

other explanation is that site stoichiometry had changed uniquely in cancerous cells like

HeLa as a result of deregulated protein kinases. Hence, phosphorylation sites of high

stoichiometry identified from a cancerous cell line may not be important for physiolog-

ical and morphological development of a multicellular organism. A somewhat related

observation is that S. cerevisiae phosphorylation sites are only more conserved than

background phosphorylatable residues in phylogenetically close species (Figure 3.7). In

general, human phosphorylation sites seems to be more conserved than phosphorylation

sites in S. cerevisiae perhaps because phosphorylation sites in multicellular organisms

are subjected to stronger evolutionary constraints needed to prevent cell anarchy in a

multicellular context.

3.5 Conclusion

In this analysis, we have identified many factors that influence the conservation of phos-

phorylated residues detected in one species across other species. A portion of the non-

conserved phosphorylated residues could have been falsely identified or a result of spu-

rious phosphorylation. Some of the spurious phosphorylation events could have been

introduced by experimental treatments. Also, some of the non-conserved phosphoryla-

tion sites could be unique in cancerous cells as a result of deregulated protein kinases.
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Although spurious phosphorylation sites or those occurring uniquely in cancerous cells are

less conserved than background phosphorylatable residues, their non-conservation does

not necessarily mean they do not affect cellular activities. Conservation analysis can

be used to identify phosphorylation events that are potentially evolutionarily conserved

for fundamental or conserved cellular activities. The converse, that is non-conserved

phosphorylation events do not have functional roles or are not functionally important, is

not necessarily correct as new phosphorylation events may be implicated in the unique

biology of a species.
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Chapter 4

Evolutionary dynamics of

phosphotyrosine signaling systems in

metazoan, yeast and choanoflagellate

Half of the work presented in this chapter (Section 4.3.1 and associated Materials and Methods)

was published in:

C. S. Tan, A. Pasculescu, W. A. Lim, T. Pawson, G. D Bader, R. Linding. Positive selec-

tion of tyrosine loss in metazoan evolution. Science, 325(5948):1686-8, 2009 Sep.

The other half of the work presented in this chapter (Section 4.3.2 and associated Materials and

Methods) will be published in Science magazine as a response to a technical comment raised for

above publication. All work presented in this chapter were carried out by me except 1) domain

prediction described in Section 4.2.4 which was carried out by R. Linding but I processed

the result, and 2) NetPhorest prediction described in Section 4.2.6 and analysis presented in

Figure 4.11 which was carried out by E. Schoof and P. Creixell but I conceived the experiment

and interpreted the result.
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4.1 Introduction

It is a biological paradox that organism complexity shows limited correlation with gene

repertoire size for metazoan species [178]. For example, there are ≈ 22,000, 20,000 and

14,000 inferred genes in human, C. elegans and D. melanogaster respectively based on

release 51 of the Ensembl database although human seemingly looks much more complex

than C. elegans in term of size and morphology. However, it has been observed that

the occurrence of some protein domain families do correlate positively with organism

complexity in metazoan as approximated by the number of cell types in each species

[188, 179], especially those involved in regulation of cellular process. Of interest relating

to protein phosphorylation are the protein domain families that make up the phosphoty-

rosine signaling machinery in metazoan. One of the domain families consists of tyrosine

kinases which catalyze the transfer of a phosphate from ATP to hydroxyl group on ty-

rosine residues. Tyrosine kinases are believed to facilitate multicellularity in metazoan

because their known roles in cell-cell communication and tissue boundary formation in

conjunction with their almost unique presence in metazoan. While tyrosine kinases trans-

fer phosphate from ATP to tyrosine, tyrosine phosphatases catalyze the reverse to keep

the level of tyrosine phosphorylation in check. Some phosphorylated tyrosines become

temporal binding sites for phosphotyrosine binding protein domains such as SH2 (Src ho-

mology) and PTB (phosphotyrosine binding) domains. The evolution of phosphotyrosine

signaling machinery has been studied in terms of occurrences and associated domain ar-

chitecture of tyrosine kinase, tyrosine phosphatase and phosphotyrosine-binding protein

domains as a whole system. However, there has been no systematic attempts to under-

stand the evolution of phosphotyrosine signaling system contributed by the changes in

tyrosine frequency.

For the last part of my dissertation work, I analyzed the maximum phosphorylation

potential encoded in the proteomes of various metazoan species, S. cerevisiae, S. pombe

and the choanoflagellate M. brevicollis. This is in contrast to my previous works where
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I analyzed known phosphorylation sites. Here, I analyzed how the number of protein

kinases could influence the maximum phosphorylation potential in various species as

approximated by the frequencies of various phosphorylatable residues.

4.2 Materials & Methods

4.2.1 Collection of protein sequences and coding DNA sequences

Known and inferred protein sequences of budding yeast (S. cerevisiae), fission yeast (S.

pombe), worm, (C. elegans), sea squirt (C. intestinalis), fly (D. melanogaster), mosquito

(A. gambiae), zebrafish (D. rerio), tetraodon pufferfish (T. nigroviridis), Japanese puffer-

fish (T. rubripes), frog (X. tropicalis), chicken (G. gallus), dog (C. familiaris), cow (B.

taurus), mouse (M. musculus), rat (R. norvegicus), chimpanzee (P. troglodytes), and hu-

man (H. sapiens) were obtained from Ensembl online database (release 51). The known

and inferred protein sequences of M brevicolliss under the Filtered Models (”best”) were

obtained from http://genome.jgi-psf.org/Monbr1/Monbr1.home.html at the DOE Joint

Genome Institute. Sequence sets are processed to retain the longest protein translation

of each gene for each species. For data sets obtained from Ensembl online database,

the coding DNA sequence for the longest protein translation of each gene is extracted

from corresponding cDNA sequence given in Ensembl using custom perl script. Similarly,

the coding DNA sequence for each M brevicollis protein is extracted from corresponding

DNA transcript obtained from http://genome.jgi-psf.org/Monbr1/Monbr1.home.html.

4.2.2 Identification of tyrosine-phosphorylated human proteins

Experimentally determined phosphotyrosine sites in human proteins were obtained from

the Phospho.ELM [36] and PhosphoSitePlus [64] databases in November 2008 and mapped

to obtained human protein sequences. In total, the dataset contains 12,659 phosphoty-

rosines in 6450 proteins. A human protein is classified as tyrosine-phosphorylated (pTyr)
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if any of its tyrosines is phosphorylated in our assembled phosphorylation data, or oth-

erwise classified as Non-pTyr protein.

For each human gene product, all known and predicted splice variants were aligned

using the AMAP multiple sequence alignment software [157], and non-redundant amino

acid residue counts were computed from the alignments. We found no substantial differ-

ence in tyrosine residue counts using an alternative approach considering only the longest

translation of each human gene. Genes coding 200 amino acids or less are excluded from

computation to reduce sizable, but non-significant percentage changes in tyrosine content

due to small protein size.

4.2.3 Identification of human-yeast orthologous sequence pro-

tein pairs

All known and predicted human, S. cerevisiae and S. pombe protein sequences retrieved

from Ensembl (release 51) are processed to retain only the longest protein translation of

each gene. Human-yeast orthologous proteins were then inferred using the Inparanoid

algorithm [142] (version 2.0) using BLOSUM62 as recommended for eukaryotic species

and the downloaded sequences, based on stringent bi-directional best BLAST [3] hits

with the processed human and yeast protein sequences.

4.2.4 Computing occurrence of protein domains

First, all HMM models from SMART protein domain database [95] were input into the

SMART text-mode pipeline of HMMER to scan the set of longest protein translation

of each gene in each species. The occurrence of tyrosine kinase (SMART ID: TyrKc),

serine/threonine kinase (SMART ID: S TKc, S TK X) , SH2 (SMART ID: SH2) and PTB

(SMART ID: PTB) protein domains in each species were then computed based on a E-

value cutoff of 1.0E-3 for observed sequence similarity score. Inferred orthologs of human
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MEK and MLK kinases across the 16 species were retrieved from Ensembl/Compara for

the analysis.

4.2.5 Computing amino acid substitution rate between human-

yeast orthologous protein pairs

Pairwise sequence alignments between orthologous human-S.cerevisiae and human-S.pombe

protein pairs are performed using MAFFT with default parameters [81]. To avoid ac-

celerated sequence divergence due to functional redundancy of paralogs, only protein

pairs with an inferred one-to-one orthologous relationship between human and S. cere-

visiae/S. pombe are aligned. We then computed the frequency of mutated phenylalanine

and tryptophan from yeast to human and vice versa being substituted by tyrosine. To

reduce error due to faulty alignments, residues with less than 5 identical aligned flanking

residues out of 10 positions (5 on each side) are excluded.

4.2.6 Predicting phosphorylation propensity of tyrosine con-

served between human and yeast

For tyrosines that are conserved at the same positions on orthologous human-S. cere-

visiae protein pairs as identified from pairwise sequence alignments, they are input to

NetPhorest algorithm to investigate their phosphorylation propensity by human tyrosine

kinases. The phosphorylation propensity of aligned tyrosines in human and S. cerevisiae

as determined by the amino acids flanking them as inferred by NetPhorest is compared.

4.2.7 Statistical analysis

All statistical tests were performed using the R statistical package. Differences in tyro-

sine, phenylalanine, tryptophan quantity (either as frequency or as absolute count) of

humanyeast orthologous protein pairs were computed and distributions of the computed
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differences for the pY and Non-pTyr proteins are assessed using the Mann-Whitney test.

4.3 Result and Discussion

4.3.1 Positive selection of tyrosine loss in metazoan evolution

As phosphotyrosine signaling system is implicated in cell-cell communication and tis-

sue boundary formation in metazoan, it likely facilitates the emergence of multicellular

metazoan and contributed to organism complexity among metazoan species. Studies

have focused on the co-expansion of components in phosphotyrosine signal machinery,

such as tyrosine kinase and phosphotyrosine binding domains, across different species.

However, the tyrosine phosphorylation potential of a biological is partially determined

by frequency of tyrosine present in the proteome, in addition to tyrosine kinases. To gain

insight into the relationship between maximum tyrosine phosphorylation potential of a

biological system and organism complexity, I analyzed the correlation of genomic tyrosine

frequency using the number of cell type in species as a proxy for organism complexity.

I observed a striking negative correlation of genomic tyrosine frequency with the

number of distinct cell types in 15 metazoan species [188] and S. cerevisiae (Spearman’s

r = –0.89, P ≈ 3.0 × 10−6; Pearson’s r = –0.89, P ≈ 4.0 × 10−6 Figure 4.1). I included

S. cerevisiae as a unicellular eukaryote for comparison. The genomic tyrosine frequency

is the portion of amino acids of all known and inferred proteins in each species that

are tyrosine residues. Thus, metazoans with more cell types have proportionally less

potential phosphotyrosine. Similarly, we observed that the number of tyrosine kinase

domains correlates negatively with genomic tyrosine frequency (Spearman’s r = -0.68,

P ≈ 3.7 × 10−3; Pearson’s r = –0.81, P ≈ 1.3 × 10−4, Figure 4.2). Including dual-

specificity mixed lineage kinases (MLKs) and mitogen-activated protein kinase kinases

(MEKs) revealed a similar pattern (Figure 4.2).

I also observed statistically significant negative correlation of the number of distinct
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Figure 4.1: Correlation of cell type number with genomic serine, threonine and tyrosine frequencies across 14 metazoan
species and S. cerevisiae. The budding yeast (S. cerevisiae) is included as a unicellular eukaryote for comparison. The species analyzed
are yeast (S. cerevisiae), worm, (C. elegans), sea squirt (C. intestinalis), fly (D. melanogaster), mosquito (A. gambiae), zebrafish
(D. rerio), tetraodon pufferfish (T. nigroviridis), Japanese pufferfish (T. rubripes), frog (X. tropicalis), chicken (G. gallus), dog (C.

familiaris), cow (B. taurus), mouse (M. musculus), rat (R. norvegicus), chimpanzee (P. troglodytes), and human (H. sapiens).
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Figure 4.2: Correlation of genomic tyrosine frequencies with the number of pre-
dicted tyrosone kinase domain in metazoan and yeast species. Although dual-
specificity mixed lineage kinases (MLKs) and mitogen-activated protein kinase kinases (MEKs)
are not dedicated tyrosine kinases, they are also analyzed because they can phosphorylate
tyrosine albeit less efficient than dedicated tyrosine kinase.

cell types with genomic threonine frequency (Spearman’s r = –0.85, P ≈ 3.7 × 10−5;

Pearson’s r = –0.84, P ≈ 5.3 × 10−5) but not with genomic serine frequency (Figure 4.1).

The number of inferred serine/threonine kinase domains also seems to correlate negatively

with genomic threonine frequency (Spearman’s r = –0.51, P ≈ 4.5 × 10−2; Pearson’s r

= –0.70, P ≈ 2.4 × 10−3, Figure 4.3) and not with genomic serine frequency (Spearman’s

r = –0.46, P ≈ 7.5 × 10−2; Pearson’s r = –0.26, P ≈ 3.4 × 10−1, Figure 4.3). As the

negative correlation observed for genomic threonine frequency with number of cell type

and with the number of serine/threonine kinase domain is relatively weaker than the

trend observed for genomic tyrosine, I focus on characterizing the evolutionary dynamics

of tyrosine and how it is associated with phosphotyrosine signaling.

The expression of Src tyrosine kinase in the unicellular S. pombe and S. cerevisiae,

whose genomes encode no tyrosine kinase, is found to be toxic due to deleterious tyrosine

phosphorylation [176, 177]. This together with the observed negative correlation of tyro-
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Figure 4.3: Correlation of genomic serine and threonine frequencies with the num-
ber of predicted serine/threonine kinase domain in metazoan and yeast species.

sine kinase number with tyrosine frequency suggest an evolutionary model in which the

acquisition of a tyrosine kinase results in systems-level adaptation to remove deleterious

phosphorylation events that cause aberrant cellular behavior and diseases [66]. Assum-

ing that a cell begins with a single tyrosine kinase, which is subsequently duplicated, it

follows that the kinases may functionally diverge, as a result of relaxation in evolutionary

constraints, to phosphorylate new substrates. Emerging kinase specificities could be re-

tained if new substrates confer selection advantage. However, it is unlikely that every new

phosphorylation event is beneficial. I hypothesize that optimization of newly emerged

signaling networks would follow [202] through the elimination of detrimental phosphory-

lation events by tyrosine-removing mutations. Even if many new phosphorylation sites

are not deleterious, an organism with minimized noisy signaling systems is likely to have

a fitness advantage. This scenario is repeated with the subsequent duplication of tyrosine

kinases leading to more tyrosine residues lose (7).

Despite several recent systematic phosphoproteomic studies [78], many human pro-

teins have no observed phosphotyrosines. Our model suggests that tyrosine loss has

occurred predominantly in these proteins in order to minimize tyrosine phosphorylation.

129



Y Kinase Other protein Tyrosine residue 
Beneficial 

phosphorylation 

Detrimental 

phosphorylation 

Y

YY

Y
Y

Y

Y

Y
Y

YY

Y Y

Y

YY

Y
Y

Y

Y

Y
Y

YY

Y Y
Y

YY

Y
Y

Y

Y

YY

Y

Y

YY

Y
Y

Y

Y

Y

YY

Y Y

Y

“single tyrosine kinase in cell” 

“tyrosine kinase duplicated” “specificity of kinase diverge” “tyrosine residues lost” 

Y

YY

Y
Y

Y

Y

Y
Y

YY

Y Y
Y

YY

Y
Y

Y

Y

Y
Y

YY

Y Y

Y

Y

Y

Y

Y

Y

Y

“ancestor cell” “tyrosine residue lost” 

Figure 4.4: Proposed evolutionary model leading to observed tyrosine depletion in metazoan. The blue-green panel is
extension to the original evolutionary model proposed (green panel). As expression of Src tyrosine kinase in the unicellular S. cerevisiae

and S. pombe, whose natural genomes encode no tyrosine kinase, is toxic due to deleterious tyrosine phosphorylation, it is plausible an
initial tyrosine depletion occurred to permit the appearance of the first tyrosine kinase. When a tyrosine kinase is duplicated, and evolved
new specificity to target different tyrosine that is overall beneficial to survival and propagation, the new kinase will be retained during
evolution. However, it is plausible some new tyrosine phosphorylation events might be deleterious which can be eliminated through
removal of specific tyrosines while retaining the beneficial phosphotyrosine sites. With more tyrosine kinase, more tyrosine are removed
and same time exert a stronger constraint on the appearance of new tyrosine.

130



0% 2.0% 4.0% 6.0% 8.0%

0
%

2
.0

%
4

.0
%

6
.0

%
8

.0
%

pTyr Proteins

H.sap

S
.c
e
r

0% 2.0% 4.0% 6.0% 8.0%

0
%

2
.0

%
4

.0
%

6
.0

%
8

.0
%

Non−pTyr Proteins

H.sap

Figure 4.5: The tyrosine frequency in human-yeast ortholog protein pairs. Every
point in the scatter plot represents a human-yeast ortholog protein pair where the (x, y) values
denote the tyrosine content in human and yeast proteins, respectively. For simplicity, only
proteins with an inferred one-to-one orthologous relationship between human and yeast are
analyzed (for example, to avoid accelerated sequence divergence due to functional redundancy
of paralogs). Orthologous protein pairs lying above the red diagonal (x = y) lines have higher
tyrosine composition in yeast than in human. The left scatter plot is for 437 human proteins
conserved in yeast and known to be tyrosine phosphorylated, and the right plot is for 647 human
proteins conserved in yeast not known to be tyrosine phosphorylated.

To test this hypothesis, we investigated differences in tyrosine loss between these proteins

(Non-pTyr) and those that are tyrosine phosphorylated (pTyr). Comparing members of

these two groups to their orthologous proteins in S. cerevisiae, which lack conventional

tyrosine kinases, enabled us to assess the degree of tyrosine loss that may be triggered

by the onset of phosphotyrosine signaling in metazoans.

A significantly smaller fraction of amino acids are tyrosines in human proteins than

in their yeast orthologs (P ≈ 3.5 × 10−4, paired Wilcoxon signed rank test, Figure 4.5).

However, this phenomenon was statistically more pronounced in non-pTyr proteins than

in pTyr proteins (P ≈ 5.1 × 10−9, Mann-Whitney test, Figure 4.5). A similar trend

was observed on the basis of absolute tyrosine residue counts (P ≈ 2.0 × 10−7, Mann-
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Figure 4.6: Correlation of genomic tyrosine frequencies with the number of pre-
dicted SH2 and PTB domains in metazoan and yeast species.

Whitney test) and on a higher confidence subset of pTyr proteins that either have multiple

phosphotyrosines or have sites observed in multiple studies (P ≈ 1.3 × 10−7, Mann-

Whitney test).

Thus, tyrosine loss was strongly favored in human protein evolution, most notably

in protein subsets that are not known to be tyrosine-phosphorylated. Genetic drift [197]

is unlikely to account for these differences observed in a large number of evolutionarily

distant human-yeast protein orthologs. Because tyrosine is an essential and the most

expensive amino acid to biosynthesize [140] after tryptophan and phenylalanine, essen-

tiality and biosynthetic cost could be major factors in the observed loss. However, this

is unlikely because we observed a strong positive correlation of number of cell types with

tryptophan and a weaker negative correlation for phenylalanine.

Thus, I propose that positive selection of tyrosine-removing mutations occurred in the

metazoan lineage to reduce adventitious tyrosine phosphorylation, at least in part. This

optimization process probably shaped signaling networks crucial for the development of
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multicellular animals. Additionally, this could provide a mechanism to prevent unspecific

phosphorylation events that operates with the evolution of domains, consensus motifs

[200], and contextual factors to colocalize kinases with their substrates [200, 98, 114].

We observed a slightly stronger negative correlation of genomically encoded tyrosine

content with the number of inferred phosphotyrosinebinding domains than tyrosine kinase

domain count (Spearman’s r = -0.81, Pearson’s r = -0.88, Figure 4.6), which is in

agreement with the notion that tyrosine phosphorylation exerts parts of its functional

effects through creating binding sites for phosphobinding domains like Src homology 2

(SH2) and phosphotyrosine binding domain (PTB) [160].

The choanoflagellate Monosiga brevicollis, which is a member of the only known

unicellular lineage with canonical tyrosine kinases [86], is an outlier in the cell-type

correlation studied above. This observation is consistent with the emerging picture

that choanoflagellates represent a distinct evolutionary branch from metazoans in which

phosphotyrosine-signaling systems have been used for divergent functions [135, 109]. Nev-

ertheless, the Monosiga analysis is still consistent with optimization of phosphotyrosine

signaling in this lineage; compared with the metazoans analyzed here, Monosiga has

higher numbers of tyrosine kinases (127) and lower genomically encoded tyrosine content

(2.3%).

4.3.2 Effect of GC directional force on tyrosine frequency

Elevated GC content (G+C) has been observed in some metazoan species, especially

among the warm-blood mammals. Biased A/T → G/C nucleotide substitution due to

various factors is postulated to cause this phenomenon. As tyrosine is encoded by two

AT-rich codons (TAT, TAC), the observed tyrosine depletion in metazoan species might

have been facilitated by biased A/T → G/C nucleotide substitution. Here, I investigated

whether the observed tyrosine depletion has been passively driven, in the absence of

natural selection for amino acid changes, by 1) the mutational forces behind high GC
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Figure 4.7: GC content at the 3rd codon position (GC3) for each set of four-fold
degenerate codons in different species. The four-fold degenerate codon set of each amino
acid are GCN (Alanine), CGN (Arginine), GGN (Glycine), CTN (Lecuine), CCN (Proline),
TCN (Serine), ACN (Threonine) and GTN (Valine). The species are sorted with decreasing
evolutionary distance from human. The GC3 content for these eight amino acids are highly
correlated with each other (average Pearson’s r = 0.85, standard deviation = 0.11). GC3
content for all sets of four-fold degenerate codons are summed up to derive the GC4 content for
each species. The GC4 content is strongly correlated with GC3 content of these eight amino
acids across the species analyzed (average Pearson’s r = 0.96, standard deviation = 0.036).

content, and 2) the selection for their effects at the nucleotide level (e.g. transcription

and translation) that I collectively termed GC directional force.

I first computed a GC content measure minimally influenced by selection for amino

acid change that is the GC content at the 3rd position of all four-fold degenerate codons

(conventionally referred to as GC4) which nucleotide substitutions are synonymous. I

then correlated tyrosine frequency with the computed GC4 content in each species to

quantify how much the observed tyrosine depletion could have been passively driven

by GC directional force on protein-coding regions that can directly affect amino acid

changes. There are eight amino acids encoded by four-fold degenerate codons (Alanine,

Arginine, Glycine, Leucine, Proline, Serine, Threonine and Valine). I found that the

GC content at the 3rd position (conventionally referred to as GC3) for each of these

amino acids showed strong pair-wise correlation with each other (average Pearson’s R
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Figure 4.8: Correlation of genomic tyrosine frequency with GC4 content and num-
ber of predicted tyrosine kinases across multiple metazoan species, S. cerevisiae

and M. brevicollis . The number of tyrosine kinase is predicted as previously described in
Material and Method except for M. brevicollis which is based on [13].

= 0.85, std dev. = 0.11, see Figure 4.7) which indicate the presence of a global and

uniform GC directional force acting on coding regions within each species. The species

analyzed is the same set analyzed in the previous section but I added choanoflagellate M.

brevicollis as it is the fully sequenced species currently known to have the most number of

tyrosine kinases. As M. brevicollis is from an unicellular lineage that branched off before

the metazoan lineage, including M. brevicollis in my analysis could also allow me to

assess the generality of any observed correlation across multiple lineages. The computed

GC4 content showed strong pairwise correlation with the GC3 content of each of the

eight amino acids (average Pearson’s R = 0.96, std dev. = 0.036). Thus, I conclude

that computed GC4 content is a robust readout of global GC directional force that is

minimally influenced by natural selection for amino acid change. I also computed GC

content at all codon positions (conventionally referred to as GC123) for comparison.

I found that variation in GC4, GC123 and tyrosine kinase number can individually and

maximally account for up to 37.6%, 56.2% and 73.4% of variation in tyrosine frequency
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respectively (Figure 4.8, R2 analysis). I observed that the GC4 content of a subset of

species does correlate negatively with tyrosine frequency (Figure 4.8, left plot, yellow

ellipse) but the trend is reversed for many species (Figure 4.8, left plot, blue ellipse).

A. gambiae, for example, has the highest GC4 content but the 4th highest tyrosine

frequency. In contrast, the frequency of tyrosine co-varies more consistently with the

number of tyrosine kinases (Figure 4.8, right plot). I note that this analysis cannot

exclude the possibility that GC directional force might indeed be passively contributing

to the observed tyrosine depletion in a subset of the species analyzed but, in general, the

observed tyrosine frequency co-varies more consistently with the tyrosine kinase number

than with GC directional force.

While I previously acknowledged that other mechanisms may have contributed to

the observed tyrosine depletion, I have supported my proposal with empirical data that

human proteins with no detectable phosphotyrosines (non-pTyr proteins) have lost con-

siderably more tyrosines than known tyrosine-phosphorylated proteins (pTyr proteins) as

compared to their S. cerevisiae orthologs. Here, I extended the analysis to S. pombe and

reached the same conclusion (Figure 4.9). The two yeast species are compared because

they are the known eukaryotes phylogenetically closest to human that lack a dedicated

phosphotyrosine-signaling system, and we implicitly assume both species are informative

of the ancestral tyrosine frequency.

In addition, I also performed similar analysis for phenylalanine and tryptophan as

both amino acids are physicochemically similar to tyrosine. While I observed propor-

tionally more tyrosine is depleted in human non-pTyr proteins than in known human

pTyr proteins as compared to their S. cerevisiae (P ≈ 5.1 × 10−9, Mann-Whitney test,

Figure 4.9) and S. pombe orthologs (P ≈ 2.2 × 10−9, Mann-Whitney test), neither pheny-

lalanine nor tryptophan is lost preferentially in either protein groups (Figure 4.9). As

phenylalanine and tyrosine are structurally identical except for a phosphorylatable hy-

droxyl group on tyrosine, and are likely subjected to a similar degree of GC directional
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Figure 4.9: Frequency of tyrosine, phenylalanine and tryptophan in human pro-
teins and their orthologues in S. cerevisiae and S. pombe. Human proteins are di-
vided into known tyrosine-phosphorylated (pTyr Protein) and those not known to be tyrosine-
phosphorylated (non-pTyr Protein). Only proteins with inferred one-to-one orthologous rela-
tionship are analyzed. Statistical significance indicated are for differences in the distribution
of observed differences in amino acid frequency of human-yeast orthologous protein pairs be-
tween pTyr and Non-pTyr protein sets computed with Mann-Whitney test (one-tailed) using
R statistical software.

force given both are encoded by two AT-rich codons each (Phe: TTT, TTC; Tyr: TAT,

TAC), the observed preferential loss of tyrosine is due to the presence of its phosphory-

latable hydroxyl group. This observation strongly supports my proposal that signaling

fidelity is a driving force behind the observed tyrosine depletion. I included tryptophan in

this analysis because tryptophan is physicochemically somewhat similar to phenylalanine

and tyrosine.

During evolution, phenylalanine and tyrosine are commonly substituted by each other

due to their similar physicochemical properties and encoding codons (see BLOSUM ma-

trices, for example [58]). I investigated their substitution pattern from yeast to human.
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Figure 4.10: Observed substitution of phenylalanine and tryptophan by tyrosine
between human and yeasts. Pairwise sequence alignments between orthologous protein
pairs are performed using Mafft with default parameters [15]. To reduce error due from faulty
alignments, residues with less than 5 identical aligned flanking residues out of 10 positions (5
on each side) are excluded. Statistical significance of observed differences are computed with
Fisher’s exact test (one-tailed) using R statistical software

As expected, tyrosines in yeast are most frequently substituted by phenylalanine ( 35%)

in human, whereas phenylalanine and tryptophan in yeast are frequently substituted by

tyrosine in human (Figure 4.10). We observed the substitution rate of phenylalanine by

tyrosine from yeast to human is similar to the rate for human to yeast for pTyr proteins.

However, we observe that the substitution of phenylalanine and tryptophan in yeast by

tyrosine in human is significantly under-represented in non-pTyr proteins compared to

pTyr proteins (P ≈ 1.5 × 10−7, Fisher’s exact test, one-tailed, Figure 4.10). This phe-

nomenon is minimally influenced by GC directional force as only T ↔ A substitution is

required to directly switch between phenylalanine and tyrosine. We detected no statisti-

cal difference (P < 0.01, Fisher’s exact test, two-tailed) in the substitution of tyrosine in
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yeast by phenylalanine and tryptophan in human between the two protein groups. How-

ever, the rate is significantly lower for non-pTyr from yeast to human. Thus, constrained

substitution of phenylalanine and tryptophan by tyrosine is possibly another mechanism

contributing to observed tyrosine depletion, and support my observation that there is

selection pressure to remove tyrosines for signaling fidelity.

Next, for the set of tyrosines that are conserved between human and S. cerevisiae

as identified from sequence alignments, we applied the NetPhorest algorithm [114] to

investigate their propensity to be phosphorylated by human tyrosine kinases that are

influenced by residues flanking the tyrosines on primary sequences. In general, we found

that tyrosines from human are less phosphorylatable by human tyrosine kinases than the

corresponding tyrosines from S. cerevisiae (P ≈ 5.3 × 10−5, Wilcoxon Test, Figure 4.11).

This suggests there is selection force(s) favoring mutations flanking tyrosines that reduce

tyrosine phosphorylation.

4.4 Conclusion

Through investigating the maximum phosphorylation potential encoded in the proteomes

of various metazoan species and budding yeast, I observed a strong negative correlation

of tyrosine frequency with the number of cell type and the number of inferred tyrosine

kinases found in each species. Thus, it seems that species that have more tyrosine kinases

have proportionally less tyrosines encoded in their genome. I proposed an evolutionary

model to explain the observed negative correlation of tyrosine frequency with tyrosine

kinase number. Based on this model, I hypothesized that human proteins presently not

known to be tyrosine-phosphorylated (non-pTyr) have experienced higher tyrosine loss

during evolution than known tyrosine-phosphorylated human proteins (pTyr). To test

this hypothesis, I compared members of these two groups to their orthologous proteins

in S. cerevisiae and S. pombe, unicellular organisms with no known dedicated tyrosine
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Figure 4.11: Lower phosphorylation propensity of tyrosines in human compared
to S. cerevisiae. Tyrosines conserved between human and S. cerevisiae , as identified from
pairwise sequence alignments, are tested for their phosphorylation propensity by human tyro-
sine kinases using the NetPhorest algorithm. Proteins with experimentally observed phospho-
tyrosines (pTyr) are tested separately from proteins that have no experimentally observed
phospho-tyrosines (non-pTyr). The median probabilities are labeled for each dataset, and the
indicated p-values were calculated using the Wilcoxon test.

kinase, to assess the degree of tyrosine loss that may be triggered by the onset of phos-

photyrosine signaling in metazoans. I observed proportionally less tyrosines in human

proteins over orthologous proteins in yeast, but the observed tyrosine depletion is sta-

tistically more prominent in non-pTyr over pTyr human proteins which supports our

hypothesis. I also observed preferential loss of tyrosine over phenylalanine in non-pTyr

proteins than pTyr proteins and amino acid substitution flanking tyrosine in non-pTyr

proteins that generally disfavor tyrosine phosphorylation.

A factor that could contribute to the observed tyrosine depletion is that the amino

acid cannot be synthesized de novo in mammals; it is synthesized from phenylalanine

which is obtained from the diet. In bacteria, fungi and plants, the three amino acids

phenylalanine, tyrosine and tryptophan are synthesized de novo from chorismate pro-

duced by the shikimate pathway [144]. Hence, tyrosine and phenylalanine are essential

in most, if not all, of the metazoan species analyzed but are not essential in S. cerevisiae
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and S. pombe. This difference in essential amino acids may play a part in the tyrosine

depletion observed between human and the two yeast species. However, it cannot read-

ily explain the differences in tyrosine frequency within the metazoan species analyzed

particularly for the more closely related species. It may be plausible that more com-

plex organisms, as assessed based on the number of unique cell types, evolved to reduce

reliance on essential amino acids. However, this is not likely the case as tryptophan

frequency, another essential amino acid, positively correlates with the number of unique

cell types among the species analyzed in this work. In addition, it also cannot explain

the difference in tyrosine depletion observed between textitpTyr and non-pTyr human

proteins.

As the observed tyrosine depletion might have been passively driven by biased A/T

→ G/C nucleotide substitution in the absence of natural selection for amino acid change,

I analyzed the GC4 content of coding DNA sequences to quantify how much of the ob-

served tyrosine depletion could have been contributed by passive A/T → G/C nucleotide

substitution. We observed a weaker correlation of GC4 content with tyrosine frequency

than with tyrosine kinase frequency, indicating that the observed tyrosine depletion is

not predominantly caused by passive A/T → G/C nucleotide substitution. As genetic

mutations is required to generate phenotypic variation for selection forces to act upon,

biased A/T → G/C nucleotide substitution during metazoan evolution likely facilitate

tyrosine depletion needed for the expansion of tyrosine kinase and the optimization of

phosphotyrosine signaling. Our tyrosine-phenylalanine substitution analysis also suggests

that the presence of tyrosine kinases could impose constraints on the appearance of new

tyrosines that favor change in tyrosine frequency in one direction (like a ratchet that

turns in one direction).

Taken together, our findings reveal there is a positive selection of tyrosine loss in

metazoan to reduce deleterious tyrosine phosphorylation. At a higher lever, the observa-

tion suggests that phosphotyrosine signaling by dedicated tyrosine kinases, as a biological
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innovation that probably assisted in the development of multi-cellular animals, required

system-level adaptive mutations. This phenomenon highlights a general principle of adap-

tive evolution pertaining to the introduction of new components into a complex system

and serves as an important framework when considering the evolution of complex bio-

logical systems. In addition, this revelation provides additional insight into why tyrosine

phosphorylation is a relatively rare event in vivo compared to serine phosphorylation.

Furthermore, it can account for, at least partially, why human tyrosine residues, whether

phosphorylated or not, are generally very conserved in other species, as the appearance

of new tyrosines is expected to be suppressed during evolution in metazoa.

Other factors, such as tyrosine sulfation, could have contributed to the observed

tyrosine depletion, which raises the question of whether other post-translational modi-

fications and regulatory mechanisms are under similar evolutionary selection that could

also explain genomic GC conversion. The numbers of genomically-encoded threonines

showed strong negative correlations with serine/threonine kinases and cell-type numbers,

although these trends were not observed with serines (Figure 4.1 and 4.3.
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Chapter 5

Summary and future directions

Perspectives presented in Section 5.2.2 and 5.2.3 were published in:

C. S. Tan, C. Jørgensen, R. Linding. Roles of junk phosphorylation in modulating

biomolecular association of phosphorylated proteins? Cell Cycle, 9(7):1276-80, 2010 Apr.

As part of the future work described in Section 5.2.7, I initiated and worked with Xiaojian Shao

from the Bader lab to develop computational methods for inferring interaction changes between

protein domains and their peptide ligands given their primary sequences, with the intention to

extend it to protein kinases and phosphoresidue-binding domains. A pilot project toward this

goal was published in:

X. Shao*, C. S. Tan*, C. Voss, S. S. Li, N. Deng, G. D. Bader. A regression framework

incorporating quantitative and negative interaction data improves quantitative prediction

of PDZ domain-peptide interaction from primary sequence. Bioinformatics, 27(3):383-90,

2011 Feb.

* denotes co-first authors
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5.1 Summary

Protein phosphorylation is a prevalent reversible post-translational modification that

influences structural conformation, enzymatic activities, molecular association and sub-

cellular localization of proteins. In eukaryotic cells, protein kinases transfer a phosphate

group from ATP to the side-chain hydroxyl group of a specific set of serine, threonine

and tyrosine residues in the proteome. Identifying these phosphorylated residues and the

protein kinases that targeted them are crucial for understanding the dynamic regulation

of cellular activities by protein phosphorylation. Phosphoproteomic technologies allow

proteome-wide quantitative detection of proteins and residues phosphorylated under dif-

ferent physiological conditions [110, 173, 195, 79], and have been applied to unveil the

phosphoproteomes of several model organisms [16, 203]. The functional consequence of

the majority of these phosphorylation events are unknown; this calls for endeavors to

characterize their molecular functions and effects on cellular decision processes. System-

atic approaches to categorize phosphorylation events, pinpoint their potential functions

and generate testable hypothesis will help prioritize phosphorylation sites for experimen-

tal characterization. For my research, I analyzed the evolutionary dynamics of protein

phosphorylation sites and assessed the utility of conservation analysis to interpret func-

tionally important phosphorylation events.

5.1.1 Comparative phosphoproteomics

Phosphorylation events that are conserved across orthologous proteins, especially those

that are across distantly related species, are arguably under evolutionary constraint due

to their involvement in fundamental cellular processes. Based on this assumption, I iden-

tified phosphorylation events on human proteins that are conserved at similar sequence

positions on orthologous proteins from fly, worm and yeast (my query species). Phospho-

rylation sites on human proteins were assembled from two major phosphorylation site
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databases (PhosphoSite and PhosphoELM) while phosphorylation sites on fly, worm and

yeast proteins were obtained by our collaborators using untargeted MS-based phospho-

proteomic screens. In total, I obtained around 24,000 human phosphorylation sites and

around 22,000 sites from my query species but managed to identify only 479 phospho-

rylation events on 344 human proteins that are positionally conserved on orthologous

proteins from at least one query species. For ease of communication, the 344 human

proteins are termed core site proteins.

About 45% of the human phosphorylation sites assembled occurred on proteins that

have no detectable ortholog in our query species as based on Ensembl’s ortholog in-

ference algorithm. Another 15% of the assembled phosphorylation sites occurred on

human proteins which putative orthologous sequences in the query species are not found

phosphorylated in our MS-based phosphoproteomic screens. The remaining 40% of the

assembled phosphorylation sites are found on human proteins which orthologs are phos-

phorylated in at least one query species. About half of these phosphorylated residues (≈

19% globally) are aligned to phosphorylatable residues in our query species of which less

than 14% are found phosphorylated in our MS-based screens; the last number suggests

that our assembled phosphorylation data for the query species are likely not comprehen-

sive. Hence, more positionally conserved phosphorylation sites will be uncovered when

more phosphorylation sites in query species are identified.

We are aware of cases where a protein kinase regulates protein function in ways that

the precise location of phosphorylation on a substrate is not crucial, but targeting of the

substrate by the protein kinase is nevertheless evolutionarily conserved. I identified 778

phosphorylation events on 698 human proteins that are potentially conserved in such a

manner in my query species. For ease of communication, the 698 human proteins are

termed core net proteins. I found both core site and core net protein sets were enriched

in proteins encoded by disease-associated genes. Unlike what I expected, I found that

human phosphoproteins with an identified phosphorylated ortholog in any query species

145



are not enriched in proteins encoded by disease-associated genes. This may be because

there are many spurious phosphorylation sites in the assembled data sets. An interesting

finding is human proteins with more phosphorylation sites are more frequently encoded

by disease-associated genes and this phenomenon is observed for evolutionary conserved

phosphorylation hubs identified in my study.

I found that cytosolic ribosomal proteins and proteins involved in amino acid phos-

phorylation and RNA splicing are over-represented in the core site protein set. We

speculated that some phosphorylation events are conserved across orthologous proteins

at the same position to induce conformational changes that probably required precisely

coupled interactions between added phosphate and surrounding residues. This is evident

in the set of positionally conserved phosphorylation events observed on the activation

loops of protein kinases that are known to induce conformational changes on the loops.

On the other hand, the core net protein set is over-represented in proteins associated

with the cell cycle, chromosome organization and biogenesis, DNA-dependent regulation

of transcription, macromolecular complex assembly and protein targeting. In particular,

core net proteins are also statistically enriched with protein- and DNA-binding annota-

tion compared to the superset of human phosphoproteins with phosphorylated orthologs

in query species. This suggests that many non-positionally conserved phosphorylation

events may be regulating the molecular association of phosphorylated proteins with DNA

and other proteins.

5.1.2 Factors affecting conservation of phosphorylated residues

For the next part of my research, I performed sequence conservation analysis of hu-

man phosphorylated residues across vertebrates that have genomes fully sequenced. I

also performed similar analysis across various fungal species for phosphorylation sites

identified in S. cerevisiae. A measure is derived to quantify how conserved are phospho-

rylated residues compared to randomly selected phosphorylatable residues in the same
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set of proteins. This measure accounts for the intrinsic conservation rate of proteins and

phosphorylatable residues minimally influenced by protein phosphorylation. I further

grouped phosphorylated residues based on some meaningful features for such analysis in

an attempt to delineate factors that could influence the conservation of phosphorylated

residues, and conversely how these factors affect the interpretation of functional sites

through sequence conservation analysis.

I found that human phosphorylated residues detected by multiple HTP studies are

overall more conserved than those detected by one HTP study. This trend is also ob-

served for phosphorylated residues in S. cerevisiae across closely related yeast species.

This might be because frequently detected phosphorylation sites are less likely to be

stochastic phosphorylation events or less likely to be falsely identified by peptide identi-

fication or site localization computer algorithms used to interpret MS spectra. It is also

likely that many frequently detected phosphorylation sites are highly conserved because

they are targeted by multiple kinases and hence the phosphorylated residues are under

stronger functional constraint. Unlike what I expected, I found that supposedly high

stoichiometry sites observed in HeLa cells during mitosis are not more conserved than

lower stoichiometry sites. One explanation is that the method used to quantify site stoi-

chiometry is inadequate. Another plausible explanation is that many high stoichiometry

phosphorylation sites observed in HeLa cells are by phosphorylated dysfunctional protein

kinases that do not occur typically in normal cells.

My conservation analysis suggests that a larger percentage of the assembled HTP

phosphorylation sites in structured protein regions are spurious than the set of phos-

phorylation sites in intrinsic disordered protein regions. One possible explanation for

this is that the experimental procedures or conditions employed in some HTP studies

might have unnaturally exposed phosphorylatable residues in the protein interior to pro-

tein kinase, such as when proteins are denatured or broken down into peptides. For

examples, denaturing reagents like urea and sodium dodecylsulfate (SDS) are commonly
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used in protein assays. Dithiothreitol (DTT) is frequently used in lysis and restriction

enzyme buffers to reduce oxidation of a protein sample, and preserve the activities of

enzymatic proteins. In proteomic analysis by mass spectrometry, DTT is often used to

reduce disulfide bonds in protein for better protein fragmentation. Since the chemical

reduces disulfide bonds, it can disrupt the tertiary structure of protein thereby exposing

typically surface inaccessible residues unnaturally to protein kinases. The effects of de-

naturing reagents and DTT on detecting non-natural phosphorylated residues could be

systematically investigated by varying their concentration in experiment protocols and

analyzing the resulting relative divergence rates of phosphorylated residues detected. If

the relative divergence rate of phosphorylated residues detected is lower (i.e. more con-

served) when less denaturing reagents and/or DTT are used, then it is definitely plausible

that many surface inaccessible phosphorylated residues had been unnaturally exposed to

protein kinases in some phosphoproteomic experiments.

A very important finding, in my opinion, is that background phosphorylatable residues

are as conserved as their phosphorylated residues on the most abundant yeast proteins.

This observation implies that without normalizing for the intrinsic conservation rate of

phosphorylatable residues on high abundant proteins, phosphorylated residues from these

proteins will be interpreted as highly conserved but this can be because the sequences

of high abundant proteins are overall highly conserved. This observation also suggests

that stochastic phosphorylation events on highly abundant proteins are more readily

detected by mass spectrometers because more randomly phosphorylated peptides from

these proteins are available for detection. A caveat in this argument is that functionally

important phosphorylation sites on highly abundant proteins are also expected to be

more frequently detected unless there are many more random phosphorylation sites than

genuine functional sites on high abundant proteins.

Another very interesting finding is that HTP phosphorylated residues detected in

mouse tissues are as conserved as functionally characterized human phosphorylated residues
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while the HTP phosphorylated residues from human cell lines and from unicellular S.

cerevisiae are less conserved. This observation suggests kinase activity is more tightly

regulated in normal cells of multicellular organisms than in free-living single cells of uni-

cellular organism or cell line. Correspondingly, this implies that phosphorylation sites

detected in unicellular organisms or from cell lines are more likely to be spurious than

those detected from normal cells in multicellular organisms. Another possibility is that

the experimental procedures and site identification analysis employed for the mouse tissue

project produce less spurious phosphorylation sites. One way to assess whether more spu-

rious phosphorylation occurred in a unicellular context is to apply the same site-detection

protocols and mass spectrometric analysis on fly (or its embryo) and fly cell lines. The

relative divergence rate of phosphorylation sites detected from the different samples can

then be compared. Also, mutant kinases such fusion and constitutively active kinases

could be introduced into cells to assess whether newly appeared phosphorylation sites

are less conserved than sites identified before the introduction.

5.1.3 Selection against spurious tyrosine phosphorylation in meta-

zoan

For the last part of my research, I computed the frequencies of phosphorylatable residues

(serine, threonine and tyrosine seperately) in S. cerevisiae and across different metazoan

species to determine the theoretical maximum phosphorylation capacity of each species.

I then analyzed the relationship between the theoretical maximum phosphorylation ca-

pacity and the number of unique cell types of each species as a proxy for organismal

complexity. An interesting result is observed for the theoretical maximum capacity of

tyrosine phosphorylation. I expected higher tyrosine frequency in proteomes of species

with more cell types and and with more genes encoding tyrosine kinase (TK), reasoning

that a greater portion of tyrosine are phosphorylated and hence under evolutionary con-

straint in these species. However, a negative correlation of tyrosine frequency with the
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number of cell type and the number of tyrosine kinase is observed. This does not imply

that functional phosphotyrosines are not under evolutionary constraint but suggests that

selection against phosphotyrosine is stronger or more pervasive than the selection for

functional phosphotyrosines. I proposed that the observed depletion of tyrosine helps to

abate deleterious phosphotyrosine that could otherwise be brought about by the expan-

sion of TK-encoding genes observed in metazoan species. An experimental support of

this hypothesis is that the expression of Src tyrosine kinase in the unicellular S. cere-

visiae and S. pombe, whose genomes encode no tyrosine kinase, is toxic due to aberrant

tyrosine phosphorylation [176, 177]. Hence, in addition to tyrosine phosphatase and

the spatio-temporal and contextual regulation of tyrosine kinases, deleterious tyrosine

phosphorylation is probably also minimized by the observed tyrosine depletion in meta-

zoan proteins. Although the negative correlation of tyrosine frequency with cell type

observed for metazoan species broke down in unicellular choanoflagellate M brevicollis,

my proposed TK-tyrosine evolutionary model is nevertheless consistent; the species has

the lowest tyrosine frequency and largest number of gene encoding tyrosine kinase among

the species analyzed.

I also investigated how much A/T → G/C nucleotide substitution observed in some

metazoan species could have contributed to the observed tyrosine depletion in the ab-

sence of selection pressure. Based on the species analyzed, I found that GC content

variation, in the absence of selection for amino acid changes, can only maximally account

for 38% of the observed tyrosine frequency variation while tyrosine kinase content varia-

tion can account up to 73% of the observed tyrosine frequency variation. In addition to

biased A/T → G/C nucleotide substitution that can facilitate tyrosine depletion, I also

identified other mechanisms that can reduce tyrosine phosphorylation. This includes the

restrained substitution of phenylalanine by tyrosine that is independent of biased A/T

→ G/C nucleotide substitution, and the removal of phosphorylation-promoting residues

flanking tyrosines on primary sequence. It has been reported that proteins can evolve
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to disfavor interactions [145, 202, 1, 101]. The observed negative selection of tyrosine

phosphorylation suggests that selection against promiscuous interaction of a specific pro-

tein or a family of proteins can occur at the system level involving many other proteins.

Conversely, this implies that natural selection acted to reduce promiscuous interaction

as much as to promote specific interaction, if not more, and this can occur in cis on an

interacting protein or in trans on other proteins. My observation also suggests genome-

wide adaptive evolution may be required to optimize an initial overall beneficial genetic

perturbation such as the expansion of tyrosine kinase.

5.2 Perspectives and Future Directions

5.2.1 False positive, technical and biological noise in existing

phosphorylation site data

Current phosphorylation datasets likely contain many spurious phosphorylation sites

falsely identified by computer algorithms that identify peptide sequence and infer phos-

phorylation site from MS/MS spectra. This problem is likely to abate in the future with

better spectrum-analysis computer algorithms. If source spectra of existing MS-identified

phosphorylation sites are available, new and improved spectrum-analysis computer algo-

rithms can be redeployed on them to filter out potentially false sites. In addition, con-

tinued improvement of mass spectrometers with higher mass accuracy should generate

better quality spectra that facilitate better peptide identification and site localization.

On other hand, genuine but random in vivo phosphorylation events can be increas-

ingly detected in the future MS-based phosphoproteomic studies with more sensitive MS

instrumentation. It can be challenging to differentiate such phosphorylation events from

deterministic and functional ones. These two types of phosphorylation events are hard

to define precisely themselves. Here, I define a genuine in vivo phosphorylation event
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to be stochastic if it occurred inconsistently and only in the minority of cells at similar

physiological state. This definition itself is hard to assess as it requires single-cell assays

which is presently not possible for many phosphorylation sites and proteins. I consider

this type of phosphorylation event as biological noise and parallel intrinsic noise observed

in gene expression. It is, however, presently feeble without more data to conclude that

such biological phosphorylation noise does not have any effect on protein function or cel-

lular activities at large. It is plausible that noisy phosphorylation facilitates phenotypic

variation which can increase the probability that some individuals of a species possess

the appropriate variation to survive or strive in a new environment. This characteristic

can be very beneficial for unicellular organisms and cancerous cells which have limited

control over their environment and are experiencing frequent environmental changes.

In my analysis, I found that HTP phosphorylation sites on inferred structured regions

are not more conserved than randomly selected phosphorylatable residues from similar

protein regions. However, conservation is only observed if I restrict the HTP phospho-

rylation sites to those detected in multiple studies. An explanation that I conceived is

that buried phosphorylatable residues that are typically not accessible to protein kinases

can become so when proteins are denatured or broken down under synthetic conditions.

Future works could involve identifying phosphorylation residues that are surface inac-

cessible based either on known protein structures or using surface accessible prediction

software, and assess whether they are conserved at similar rate with other phospho-

rylatable residues from the same protein regions. If this is indeed so, it implies that

there is a possibility that some phosphorylation sites in existing dataset are genuine

phosphorylation events which arise from inappropriate technical treatment. I termed

such phosphorylation events as technical noise. However, such noisy phosphorylation

events detected in structurally ordered protein regions, if existed, likely make up only a

small portion of currently known phosphorylation events as only around 20% of known

phosphorylation sites occurred in structured protein regions. Nevertheless, better sam-
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ple preparation and appropriate experimental treatments will certainly help minimize

technical phosphorylation noise.

For the purpose of studying cellular processes regulated by protein kinases and phos-

phatases, differentiating genuine deterministic phosphorylation events from technical and

biological noises is crucial. It is plausible that some genuine and deterministic phospho-

rylation events may have no effect on cellular processes. Presumably, phosphorylated

residues from such phosphorylation events will be less conserved compared to determin-

istic functional phosphorylation events. However, my conservation analysis of phospho-

rylated residues on proteins in S. cerevisiae reveals that using sequence conservation to

interpret functional important sites can be limited for sites on high abundant proteins.

This is because sequences of high abundant proteins are generally very conserved. It is,

therefore, crucial to normalize the observed conservation rate of phosphorylated residues

with that of other phosphorylatable residues from the same proteins when using sequence

conservation to identify functionally important sites.

I found that HTP phosphorylated residues from mouse tissues are as conserved as

known functional phosphorylated residues in human while HTP phosphorylated residues

detected in human cell lines and in unicellular yeast are less conserved overall. I speculate

that biological phosphorylation noise is more tolerated in unicellular organisms and in

cancerous cells than in the normal cells of multicellular organisms. This also means that

protein phosphorylation is more tightly regulated in the cells of multicellular organisms.

Many human cell lines, the cancerous ones in particular, are known to have dysfunctional

kinases. Hence, it is not unexpected that there are more biological phosphorylation noises

in cancerous cells than in the physiologically normal cells of multicellular organisms.
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5.2.2 Phosphorylation of non-conserved residues can be func-

tional

It has been estimated that as much as 65% of HTP phosphorylation sites are non-

functional based on the difference in position-dependent conservation between HTP

phosphorylated serines/threonines and randomly selected serines/threonines [90]. The

underlying basis is phosphorylation of non-conserved residues is non-functional. This is

based on the assumption that protein kinases have to regulate protein functions through

position-specific (on protein) phosphorylation. I argue, based on known cases of how

protein kinases regulate cellular activities and the observation from my comparative

phosphoproteomic work, that phosphorylation of non-conserved residues can have func-

tional consequences, and advocate for complementary approaches to identify evolutionary

conserved phosphorylation events.

Undoubtedly, a portion of the non-conserved phosphorylation sites are spuriously

localized particularly for MS-identified phosphopeptides that have multiple phosphory-

latable residues, despite that this is somewhat proclaimed to be statistically controlled

in MS experiments. In addition, the sequences of some phosphopeptides might have

been falsely identified. Furthermore, the phosphopeptide enrichment techniques con-

ventionally applied in MS-based phosphoproteomic studies might have identified ran-

dom low stoichiometry phosphorylation sites that may or may not have cellular effect.

Otherwise, phosphorylation of non-conserved residues could be implicated in lineage- or

species-specific cellular functions such as phosphorylation sites involved in cell-cell com-

munication that are not expected to be conserved in unicellular organisms. Examples

of species-specific phosphorylation site are the CDK phosphorylation sites on the Mcm3

protein that were gained in S. cerevisiae lineage after divergence from C. albicans. These

phosphorylation sites are involved in mediating nuclear export of the MCM complex that

is unique to S. cerevisiae [120, 97].
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Identifying sites that only appear in a particular lineage and are selectively retained

among its species can give insight to the unique cellular activities or development pertain-

ing to that particular lineage. However, a phosphorylatable residue can appear conserved

among species of a relative new lineage simply because insufficient divergence time has

lapsed for a mutation to occur at that site. Thus, more species need to be sampled for

lineages with short divergence times since the last common ancestor. Monitoring the

dynamics of phosphorylation sites (increased- or decreased-phosphorylation) under dif-

ferent physiological conditions or stimulus is an alternative to evolutionary approaches

for interpreting the importance of lineage- or species-specific phosphorylation sites. Im-

portantly, lineage- or species-specific sites can be falsely identified easily if they lie in

intrinsic disordered regions that, in general, are fast evolving [23, 100, 180], and hence,

easily missed by multiple-sequence-alignment (MSA) algorithms that had been optimized

for conserved globular domains [134]. An archtype example of a functionally important

but seemingly lineage specific phosphorylation site is Ser46 on the tumor suppressor hu-

man p53 which has been implicated in regulating apoptosis, cell growth and transcription

by numerous studies. Yes, the phosphorylated residue was not conserved in mouse p53

based on sequence alignment [26]. However, non-alignment-based computational anal-

ysis, biochemical and functional assays suggest that Ser58 in mouse p53 is functionally

equivalent to Ser46 in human p53 [26]. Hence, the development of specialized alignment

algorithms, alternative computational approaches [26, 180] and benchmarking datasets

[134] will be crucial for minimizing identification of spurious non-conserved phosphory-

lation sites.

5.2.3 Phosphoregulation of protein interaction can be position-

independent

An emerging view is that protein kinases can serve to fine-tune the bulk electrostatic

charge of targeted proteins through phosphorylation. Such effects may inhibit the phys-
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ical association of phosphorylated proteins with other negatively charged biomolecules

such as phospholipid membranes [174] and polynucleotides [209] by electrostatic interfer-

ence/repulsion [112, 161]. This mechanism does not require phosphorylation to occur at

precise location but a general region on substrates to create negatively charged protein

surfaces to modulate molecular association [161]. Protein phosphorylation is also known

to instigate protein-protein interaction by bulk electrostatics as observed for Sic1 in S.

cerevisiae which needs to be phosphorylated on any six out of the nine poorly conserved

CDK1 phosphorylation sites for binding to a single binding site on Cdc24 component of

SCF ubiquitin ligase [122]. In addition, if a phosphorylated residue on a protein interact-

ing interface serves to attenuate protein-protein interaction through steric or electrostatic

interference, phosphorylation of other serine, threonine or tyrosine on the same protein

interacting interface presumably will have similar effect.

It is well established that a large portion of protein phosphorylation events dy-

namically promote protein-protein interaction by creating temporal binding sites for

phosphoresidue-binding protein domains such as SH2, PTB, 14-3-3, WD40 and FHA for

which the phosphorylated residues need not be precisely located on the substrates. Many

linear motifs bound by modular interaction domains, which include phosphoresidue-

binding domains, need not be conserved at specific positions but a general region across

orthologous proteins [124, 48] like those involved in mediating protein subcellular localiza-

tion. In particular, co-operative binding has been observed where multiple linear motifs

on a protein have additive effects on binding [48, 63]. Similar effects have been observed

for interactions modulated by protein phosphorylation through bulk electrostatic charge

in disordered regions where each additional phosphorylation site progressively decrease

or increase molecular associations [19].

The presence of functionally redundant phosphorylation sites for attenuating or pro-

moting physical interaction of phosphorylated proteins implies some can be lost during

evolution in some lineages with minimum functional consequences, and can contribute
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to phenotypic diversity observed in a population [11]. This can provide the evolutionary

plasticity needed to fine-tune conserved cellular activities for unique developmental and

physiological needs of individual species. Given that the majority of known phosphoryla-

tion sites are located in intrinsically disordered protein regions, it is likely that a portion

of these sites is regulating biomolecular associations of proteins [111, 62] through electro-

static interference. In addition, non-conserved phosphorylation sites can serve as decoys

to buffer against spurious phosphorylation of other sites. For example, Wee1 in Xenopus

contains a set of poorly conserved CDK1 (Cyclin-dependent kinase 1) sites that soak up

stochastic activation of CDK1 [85]. These CDK sites vary in number and location in

Wee1 across different species but nevertheless are important for the timely inactivation

of Wee1 during mitosis [85]. Interestingly, many proteins are multi-phosphorylated by

CDK on residues located close to each other on primary sequences, and this has been ex-

ploited to improve prediction of bona fide CDK substrates [119, 27]. Hence, evolutionary

modeling and analysis of phosphorylated residues that incorporate these scenarios can

minimize spurious identification of non-functional sites based on sequence conservation

analysis.

5.2.4 Protein kinases can regulate cellular activities at different

molecular levels

Other than affecting individual proteins, protein kinases can target higher order molecular

machineries at the level of protein complexes to regulate cellular activities [73, 33]. In the

case where protein phosphorylation serves to disable the activities of a protein complex by

targeting its subunits for ubiquitination and subsequently degradation, phosphorylation

of any subunit is presumably sufficient for the purpose, and hence need not be evolution-

ary conserved on orthologous protein [33]. Similarly, if phosphorylation of a residue on a

protein interacting interface serves to attenuate protein complex assembly, phosphoryla-

tion at interacting interface on any subunit presumably will have similar effect. Analysis
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of gene expression had revealed that periodically expressed and constitutively expressed

subunits in evolutionary conserved cell cycle protein complexes differ among the four

species. Interestingly, combined experimental and computational data analysis revealed

that the periodically expressed subunits are preferentially phosphorylated compared to

constitutively expressed subunits in each species [73] although the periodically expressed

subunits differ in each species. This observation indicates dynamic interplay between

gene expression and protein phosphorylation for regulating cellular activities, and at a

higher level, suggests that changes in another regulatory mechanism can relax the evo-

lutionary constraint on a functional site. In support, a recent comparative analysis of

phosphoproteomes across three yeast species (S. cerevisae, C. albicans and S. pombe) re-

vealed that the intensity of phosphorylation is highly conserved among different cellular

activities although the intensity may vary considerably among individual proteins within

each functional group across the three species. This indicates prevalent global switching

of proteins targeted by kinases during evolution [11]. Future works can assess whether

some and what kind of protein complexes are preferentially targeted by orthologous ki-

nases but on different subunits across different species. Novel computational methods

can then be developed to identify phosphorylation events conserved in such a manner.

5.2.5 Finding colocalizing phosphorylation sites and protein bind-

ing sites

It has been observed that many protein phosphorylation hubs are frequently also pro-

tein interaction hubs [184]. These hubs are enriched in intrinsic disordered regions that

contain many currently known phosphorylation sites and potential binding sites of many

peptide-binding protein domains like SH3, WW and PDZ[184]. The colocalization of pro-

tein phosphorylation sites and the binding sites of peptide-binding domain presumably

permit coregulation of both interactions. Hence, I postulate phosphorylation of some

proteins serves to attenuate their physical interaction with peptide-binding proteins by
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blocking or interfering with binding sites on the phosphorylated proteins. Future work

can be directed to identify co-occurring phosphorylation sites and putative binding sites

of peptide-binding protein domains in intrinsic disordered protein regions and to test

these cases experimentally to assess the correctness of the prediction. If this is indeed so

to some extent, it can then be tested whether predicted binding sites of peptide-binding

protein domains located near in vivo phosphrylation sites are more frequently genuine.

Evolutionarily conserved co-localization of predicted protein interaction site and phos-

phorylation site near each other across orthologous proteins might then be identified to

help differentiate bona fide binding sites of peptide-binding protein domains from spuri-

ous ones.

5.2.6 Multivariate modeling to identify deterministic phospho-

rylation events

In Chapter 3, I observed that more frequently detected phosphorylation sites are under

stronger evolutionary constraints presumably because they are less likely to be random

phosphorylation events and/or are less likely to be spuriously identified by peptide iden-

tification and site localization algorithms. This observation suggests that site detection

frequency can be used to filter phosphorylation data for deterministic phosphorylation

events. However, this simple approach is likely to miss many deterministic phosphoryla-

tion events that have not been detected frequently enough.

A somewhat related observation from chapter 3 is that phosphorylated residues de-

tected on higher abundance proteins are overall less conserved than the background

phosphorylatable residues from the same protein set. I speculate that this is partially

because randomly phosphorylated residues on high abundance proteins are more read-

ily detectable by MS-based analysis. This also implies that randomly phosphorylated

residues on high abundance proteins can be more frequently detected than randomly

phosphorylated residues on low abundance proteins. In other words, phosphorylation
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sites detected on high abundance proteins are more likely to be random phosphorylation

events than phosphorylation sites of same detection frequency detected on low abundance

proteins. This is supported by the observation that, for the set of sites that have been

detected in S. cerevisiae by multiple HTP studies, phosphorylated residues on low abun-

dance proteins are much more conserved than phosphorylated residues detected on high

abundance proteins (see Figure 3.9). This may partially explain why only the most fre-

quently detected human phosphorylation sites in HTP studies have comparable sequence

conservation rates to known functional phosphorylation sites in human (see Figure 3.3

and Figure 3.2). This suggests that the site frequency filtering approach can be biased

against deterministic phosphorylation events detected on low abundance proteins and

will increasingly include randomly phosphorylated residues on more abundant proteins.

Hence, for the purpose of identifying deterministic phosphorylation sites, it will be useful

to statistically model the effects of protein abundance on site detection frequency and

incorporate the effects in site frequency filtering approaches. However, this will require

prior knowledge on protein abundance which may not be available. One way to bypass

this restriction is to use relative protein quantification measures derived from MS anal-

ysis, like spectra count of peptides, as a proxy for protein abundance. Using spectra

count of peptides derived in MS analysis has the additional advantage of incorporating

known and unknown intrinsic factors along MS-based proteomic protocols that influence

peptide identification and quantification which presumably also affects the identifica-

tion of phosphopeptides and phosphorylation sites. A more sophisticated approach is to

incorporate effects of protein abundance, spectral count, site frequency and peptide iden-

tification score through multivariate modeling, such as multivariate regression analysis

and artificial neural networks, to better filter spurious phosphorylation sites and ran-

dom phosphorylation events. Conservation and phylogenetic analysis of phosphorylated

residues can be subsequently applied to differentiate sites likely involved in fundamental

cellular activities from those involved in unique biology of species studied.
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5.2.7 Identifying phosphorylation motifs under positive or neg-

ative selection

False positive sites can be removed with better peptide identification and site localiza-

tion algorithms, and random phosphorylation events can be filtered out by approaches

outlined in the previous section. However, it may be useful for practical reasons to

identify evolutionarily conserved phosphorylation events presumably implicated in some

conserved cellular activities. In some cases, it may be useful to identify phosphoryla-

tion sites that contribute to divergence of protein function. Hence, another potential

future direction is to develop computational or statistical approaches to identify phos-

phorylation sites that are under positive or negative selection. One way is to assess the

conservation of observed motifs flanking phosphorylated residues. The motif assessed

may be that of some kinase protein (or kinase family) or phosphoresidue-binding do-

main (or domain family). Phosphorylation sites with such motifs presumably are more

likely to be functional. Another avenue is to develop computational tools to predict how

observed mutation of residues flanking phosphorylated residues affect phosphorylation

kinetics and binding affinity. There is likely sufficient data available now, with more

expected in the near future, on specificity of protein kinases and phosphoresidue-binding

protein domains (from large-scale phage display, protein/peptide array and fluorescence

polarization experiments) for this purpose. Conversely, the same tools can be deployed

to identify phosphorylation and binding motifs that are under negative selection either

at the proteome-level or in a subset of proteins. Intuitively, if the motif of a kinase (or

kinase family) or a phosphoresidue-binding domain (or domain family) are overall under

negative selection, proteins that expressed motifs that evolved against this trend could

be more likely bona fide targets of the kinase or phosphoresidue-binding domain.
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5.3 Conclusion

Identifying functionally important phosphorylation events and inferring their molecular

effects help prioritize phosphorylation sites for experimental studies. Furthermore, cur-

rent phosphorylation data likely contain some technical and biological noise as well as

non-existent sites spuriously identified by spectrum-analysis algorithms. I demonstrated

that comparing phosphoproteomics of distantly related species can identify evolutionarily

conserved human phosphoproteins that are notably associated with cancer and other ge-

netic diseases. Sequence conservation of phosphorylated residues, especially when across

distantly relates species, can complement comparative phosphoproteomics approaches

to identify more functionally important phosphorylation events. However, identifying

definite non-functional phosphorylation events based on non-conserved phosphorylated

residues at similar positions across orthologous proteins can be challenging. This is be-

cause some molecular effects of protein phosphorylation are less position-specific such

as the attenuation of physical association of phosphorylated proteins with phospholipid,

DNA and other proteins by steric/electrostatic interference, and the creation of tem-

poral binding sites for phosphoresidue-binding protein domains. Such phosphorylation

events are under less evolutionary constraints to localize to similar sequence positions

across orthologous proteins. This is supported by the observation that core net human

proteins are enriched in protein- and DNA-binding function. In addition, sequence con-

servation of phosphorylated residues to interpret important phosphorylation sites can be

compromised if the conservation metric does not normalize for the general factors such

as protein abundance that influence residue and protein conservation. Hence, comple-

mentary approaches to identify phosphorylation events which functional consequences

are evolutionary conserved across protein, protein complexes and pathways are needed

in addition to conventional sequence analysis.
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