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Chapter 25

Automated Computational Inference of Multi-protein 
Assemblies from Biochemical Co-purification Data

Florian Goebels, Lucas Hu, Gary Bader, and Andrew Emili

Abstract

Biology has amassed a wealth of information about the function of a multitude of protein-coding genes 
across species. The challenge now is to understand how all these proteins work together to form a living 
organism, and a crucial step for gaining this knowledge is a complete description of the molecular “wiring 
circuits” that underlie cellular processes. In this chapter, we describe a general computational framework 
for predicting multi-protein assemblies from biochemical co-fractionation data.
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1 Introduction

Previously, in Chapter 12, we discussed in detail how to plan and 
execute the co-fractionation (e.g., non-denaturing  chromatography) 
part of the biochemical purification/mass spectrometry (BP/MS) 
experimental pipeline, while in this chapter we provide an in-depth 
description of the computational part required for proteomics data 
processing, analysis, and interpretation. Specifically, we describe 
EPIC (Elution Profile-based Inference of Protein Complex 
Membership), a software toolkit which can automatically generate 
confidence binary protein interactions and predict the  memberships 
of corresponding stable multi-protein assemblies from raw co-elu-
tion proteomics data [1]. The EPIC is accessible to the public via a 
GitHub (https://github.com/BaderLab/EPIC) or Docker Hub 
(https://hub.docker.com/r/baderlab/bio-epic/) repository.

Since it does not rely of achieving purity, co-fractionation is a 
practical but imperfect experimental approach to characterize 
 multi-protein complexes. Our computational workflows have been 
optimized to minimize the number of spurious protein pairs that 
are predicted to interact because they simply happen to co-elute at 
the same time (due to similar biophysical behavior during 
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 chromatography) but which are actually functionally unrelated (we 
refer to such events as the “chance co-elution” problem). Toward 
this end goal, we apply basic statistical criteria to measure protein 
similarity based on their respective biochemical fractionation 
 profiles, followed by more sophisticated machine learning to exploit 
publicly available  supporting functional association  evidence to 
guide the selective filtering of  biologically irrelevant correlations.

We demonstrated the practical utility and real-world  performance 
of this co-fractionation data analysis pipeline, which was first used to 
predict 13,993 high-confidence physical  interactions among 3006 
stable protein complexes in human [2] and in a follow-up  experiments 
that identified 981 conserved metazoan complexes [3]. Below, we 
 outline implementation of the stand-alone EPIC software designed to 
facilitate such analyses by biologists lacking computational expertise.

2 Materials

As EPIC is a computational pipeline, the only physical equipment 
required is suitable computer infrastructure (e.g., Linux- or Mac 
OSX-enabled machine). However, we provide suggestions for 
 implementation as well as minimal and recommended specs. Moreover, 
we list both required and optional software for running EPIC.

 1. Working computer (Mac OSX/Linux-based) (see Note 1).
●● Minimal: one core, 8 GB RAM.
●● Recommended: four cores, 8 GB RAM.

 2. Internet connection (optional).
●● Required for automatic generation of reference data set 

and automatic download of STRING and GeneMANIA.
●● Alternatively the user can supply own reference clusters 

and  functional annotation scores as flat file (see below for 
file formats).

 1. Docker (mandatory).
 2. Cytoscape [4] (optional but highly recommended) (see Note 2).
 3. We highly recommend basic understanding for navigating a 

Jupyter script.

There are three main types of input files used in EPIC: elution 
profile data, reference protein complexes, and functional  annotation 
data. Example files for Worm (taxid 6239) can be found in the 
test_data directory inside the EPIC GitHub repository (https://
github.com/BaderLab/EPIC/tree/master/test_data).

 1. Elution Profile Data

2.1 Equipment

2.2 Supplementary 
Software

2.3 File Formats
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This is a tab delimited file or data matrix containing the  elution 
profiles for all the proteins detected by mass  spectrometry in one 
distinct co-fractionation experiment. For example data, see 
https://github.com/BaderLab/EPIC/tree/master/test_
data/elution_profiles. Multiple experiments will result in  multiple 
 co-elution profiles (i.e., one file for each experiment). The header 
is located on the first line and contains the names for each  fraction, 
while each subsequent row contains the  various protein IDs 
(accessions/descriptions) and the  corresponding detection  values 
(e.g., spectral counts) recorded in each fraction.

 2. Reference Protein Complexes (Optional)
The user may supply a custom set of reference protein 

 complexes (e.g., CORUM [5], IntAct [6], GO [7]) for use in 
training the EPIC scoring algorithm (see Note 3). In this file, 
each complex is summarized in one line by concatenating all 
member protein IDs with tab-delimited characters. Example 
reference complexes for Worm can be found here https://
github.com/BaderLab/EPIC/blob/master/test_data/
Worm_reference_complexes.txt.

 3. Functional Annotation Data (Optional)
EPIC uses functional associations as additional features to 

minimize chance co-elution, and in this step the user can 
 provide a predefined set of functional associations (see Note 4). 
The data in this file should be on protein interaction level and 
will be added as additional features to each candidate PPI 
 without  further modifying the added features. In this file each 
column represents a functional association score, and each row 
consists of protein pair followed by available functional 
 association scores (columns are tab separated). This file has a 
header row, which contains each column respective functional 
annotation score name. Note 4 contains some examples for 
species-specific  functional annotation resources, and Subheading 
3.3.5 lists the default sources used in EPIC (e.g., https://raw.
githubusercontent.com/BaderLab/EPIC/master/test_data/
Wormnet_funanno.txt).

3 Methods

The EPIC software mostly runs automatically, and thus the most 
labor-consuming part for establishing the computational scoring 
pipeline is setting up docker and starting EPIC. However, this step 
can be easily completed within an hour. EPIC runs automatically 
and has on average a runtime of 40 min per co-elution score per 
experiment, divided by the number of available computer cores. 
The most computationally heavy part is generating the co-elution 
scores for all pair-wise protein combinations.
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To run EPIC, it is mandatory to install docker, which is a 
 lightweight virtual machine, which will enable operation of the 
entire EPIC pipeline.

●● Docker. For Macintosh instructions see https://docs.docker.
com/docker-for-mac/. For Linux see https://docs.docker.
com/engine/installation/.

●● Cytoscape. Cytoscape is available from http://www.cytoscape.
org/.

Once docker is installed, one needs to change the assigned 
memory to at least 6 GB. This is achieved by selecting docker, 
 followed by preference, and then selecting advanced options.

Once docker is installed, EPIC can be installed. This step can take 
time, depending on the available Internet speed, since the EPIC 
image is roughly 8 GB in size.

 1. Open a terminal.
 2. Enter the following command:

$ docker pull baderlab/bio-epic

 3. Create a folder on your machine named EPIC.
 4. Within this folder, create another subfolder for data (e.g., 

My_EPIC_PROJ).
 5. Move all project-relevant co-fractionation data files into this 

folder (e.g., copy chromatographic elution files into the MY_
EPIC_PROJ folder).

 1. Open/select a terminal window.
 2. Navigate to the previously generated EPIC folder (see Note 5).
 3. Download the EPIC start script (https://github.com/

BaderLab/EPIC/blob/master/src/start-EPIC), and put it in 
the EPIC folder, and double click the file.

 4. Open a browser and enter http://localhost:8888/tree.
 5. Once the web page is finished loading, click on the EPIC.

ipynb symbol.
 6. When running EPIC for the first time, it is recommended to 

go through the EPIC script in a step-by-step wise manner by 
repeatedly pressing the play button.

 7. Press play until an input directory selection appears (see 
Fig. 1a), and select a folder from the list (e.g., MY_EPIC_
PROJ). From now on, we no longer indicate if a user has to 
press play to reach the next input mask, rather we describe 
what to do at each input mask.

3.1 Installing 
Required Software

3.2 Installing EPIC

3.3 Running EPIC
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There are eight protein similarity score features available in total 
(Fig. 1b): Pearson with Poisson noise (PCCN), Jaccard, Apex, Mutual 
Information (MI), Euclidean, weighted cross correlation (WCC), 
Bayes correlation, and Pearson correlation coefficient. A short descrip-
tion for each feature follows below (citations provided as needed):

PCCN: To reduce the spurious correlations caused by  fractions with 
low peptide counts, PCCN correlation is calculated by  averaging mul-
tiple Pearson correlation values that are computed by taking the raw 
counts and adding a round of small value Poisson noise to them [2].

Jaccard: Determines co-elution based on the number of  overlapping 
fractions two proteins are detected together in.
Apex: This score is one when the largest or peak signal (highest 
spectral count) of each of two proteins occurs in the same fraction 
together or else zero if otherwise [2].

Mutual Information: The mutual dependence between two vari-
ables (e.g., protein spectral counts) is used to identify statically 
significant protein pairs.

Euclidean: The Pythagorean theorem is used to calculate the 
Euclidean distance between two proteins by considering each 
 fraction as an independent dimension.

3.3.1 Selecting Input 
Features

Fig. 1 Overview of different widgets for configuring the EPIC Jupyter notebook, they show options for selecting: 
(a) input data directory, (b) co-elution scores, (c) number of cores, (d) machine learning classifier, (e) reference 
data, and (f) functional annotation
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WCC: A weighted correlation-based metric takes into account 
small possible shifts in the patterns of two proteins that co-frac-
tionate together [8].

Bayes: Bayes correlation identifies statistical significant protein cor-
relations [9].

PCC: Pearson correlation coefficient of two proteins  calculated 
based on their respective co-elution profile patterns.

Increasing the number of computer cores (if available) will greatly 
reduce the runtime of EPIC (Fig. 1c).

Currently supported options are support vector machine [10] and 
random forest classifiers [11]; we recommend initially using the 
random forest classifier (Fig. 1d).

The user can either have reference complexes automatically 
 generated from CORUM, GO, and IntAct by supplying a valid 
taxonomic (species) ID (taxid) (Fig. 1e) or supply a custom set of 
reference protein assemblies (see Subheading 2.3).

Analogous to the reference data, the user can either have it 
 automatically obtained using EPIC (Fig. 1f) or by supplying  custom 
data (see Subheading 2.3). For automatic generation the user can 
select either to use STRING (https://string-db.org/) [12] or 
GeneMANIA (http://genemania.org/) [13] as source. When 
using STRING we exclude “experimental,” “database,” and 
 “combined_score” scores from the database to avoid circular 
 reasoning in the training phase. We recommend using GeneMANIA 
if the target species is available in both databases, since we observed 
 better performance for predicting Worm protein complexes when 
using GeneMANIA.

Once this step is completed, the user can either run the script 
cell by cell (pressing run cell and select next, i.e., play button) or 
run the entire EPIC script by selecting run cell and below. When 
running for the first time, we recommend to run cell by cell, so the 
user can check the output for each cell, and for repeated reruns the 
user can select “run cell and below” to run all cells automatically 
without human supervision.

Once the Jupyter script is completed, it will generate an initial  graphical 
overview of the generated protein clusters using Cytoscape.js in its 
second to last step. At the end, EPIC will  generate an output folder 
with various result files in a specified input directory named My_
EPIC_PROJ_out, including the  following files:

 1. Out.scores.txt: Raw co-elution scores for all candidate PPIs.
 2. Out.roc.png – precision-recall curve for predicted PPIs [14].

3.3.2 Number of Cores

3.3.3 Machine Learning 
Classifier

3.3.4 Reference Data

3.3.5 Functional 
Annotation Data

3.4 EPIC Output
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 3. Out.pr.png – receiver operating characteristic (ROC) curve for 
predicted PPIs [15].

 4. Out.rf.cutoff.png – shows precision and recall values across all 
confidence cut-off values.

 5. Out.pred.txt – predicted protein interactions with classifier 
 confidence values.

 6. Out.clust.txt – predicted multi-protein clusters.

The Out.scores.txt contains the features used for predicting 
the protein associations, while the Out.roc.png, Out.pr.png, and 
Out.rf.cutoff.png files give an overview of the classifiers  performance 
(see Note 6). The Out.pred.txt and Out.clust.txt contain the main 
predicted outputs (PPI and clusters) generated by EPIC.

The last cell of the Jupyter script is used to visualize the generated  protein 
clusters using Cytoscape. This step is optional but recommended.

 1. Start the locally installed Cytoscape on your machine. This is 
done outside of the Jupyter script.

 2. In Cytoscape, select Apps, and then select app manager.
 3. In the search mask, enter clusterMaker2, and select 

 clusterMaker2 from the selection, and press install. This step 
needs only to be performed once.

 4. Switch back to the Jupyter script, and run the last cell, fol-
lowed by switching back to Cytoscape.

 5. In Cytoscape, select Layout, followed by yFiles Layout, and 
finally select organic. Now there should be one group of nodes 
(proteins) per cluster showing all associated interactions.

 6. Use the mouse to select a cluster, and then select Apps and 
 clusterMaker visualizations, and finally select JTree HeatMapView.

 7. In the “Node attributes for cluster” field, select all the fractions 
that are displayed. Check the “use only selected nodes/edges 
for clusters” box, and press the OK button.

4 Notes

 1. The central component for improving the runtime of EPIC is 
assigning it more cores if available. It is important to assign 
the number of cores to the docker engine so that EPIC can 
use those cores. For most normal use cases where you have 4–5 
experiments (around 1000 fractions), EPIC can completely 
run between a night and an afternoon.

 2. The main advantage of using Cytoscape with EPIC is  visualizing 
both the network of protein complexes and PPIs that are 
 generated, as well as the supporting co-fractionation data for 

3.4.1 EPIC 
with Cytoscape
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each putative protein member in heat-map format to confirm 
profile similarity. Each edge in the Cytoscape network provides 
the EPIC derived confidence score, and the user can adjust 
edge thickness (cutoff values) to define data consistency within 
a cluster. No prior knowledge of Cytoscape is required; 
 however, it is encouraged to become familiar with network 
style and  layout formats (see http://wiki.cytoscape.org/
Cytoscape_User_Manual#Visual_Styles and http://wiki.cyto-
scape.org/Cytoscape_User_Manual/Navigation_Layout).

 3. When supplying a custom set of reference complexes, there are 
certain aspects the user needs to be aware of. First, the 
 automatically generated reference set is based on experimen-
tally inferred complexes retrieved from the CORUM, IntAct, 
and GO curation databases, so if the user wants to use a cus-
tom set, it is recommended to use different sources. The most 
important thing to be aware of is to refrain using complexes 
derived from functional genomics, since using this resource 
will result in  circular reasoning because EPIC uses functional-
based features for boosting PPI scores. In case the user wants 
to use complexes derived from functional annotation, then it is 
recommended to run EPIC using only experimental evidences. 
Also, we liked to note when generating the reference set, the 
user should not use complexes derived using non-biochemi-
cally based experimental methods (e.g., yeast two hybrid 
assays) because these tend to overlap poorly with biochemical 
data (e.g., co-fractionation). In brief, we highly recommend 
users to generate their reference complexes using complexes 
that are manually curated and were verified by low-throughput 
experimental methods.

 4. When deciding which functional associations to use for 
 enhancing learning/scoring, we typically observed best 
 performance using species-specific and tissue-specific data (when 
available). For example, when predicting complex  membership 
by co-fractionation analysis of H. sapiens, C. elegans, or M. mus-
culus protein extracts, we observed optimal  performance using 
supporting functional associations from HumanNet (http://
www.functionalnet.org/humannet/about.html) [16], 
WormNet (http://www.functionalnet.org/wormnet/) [17], 
and MouseNet (http://www.functionalnet.org/mousenet/) 
[18], respectively. If wanting to combine multiple resources to 
boost prediction confidence, the user needs to combine these 
data into one single functional  annotation file; public data inte-
gration tools like GeneMANIA (http://genemania.org/) [13] 
facilitate this.

 5. A user can select any folder as an input folder; however, it is highly 
recommended to create individual project folders within EPIC.
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 6. Precision-recall curves provide an overview of classifier 
 performance indicating how many protein associations can be 
classified with a certain precision. Receiver operating 
 characteristic (ROC) curves indicate how well the classifier can 
distinguish false-positive from false-negative interactions. The 
precision-recall plot for various classifier confidence values is 
intuitive, since it shows the precision (i.e., relative fraction of 
predicted interactions that are correctly classified) and recall 
(i.e., relative fraction of positive interactions that are correctly 
classified) across all possible classifier confidence cutoff values.
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