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An open challenge in human genetics is to better understand the systems-level impact of genotype variation on developmental
cognition. To characterize the genetic underpinnings of peri-adolescent cognition, we performed genotype–phenotype and systems
analysis for binarized accuracy in nine cognitive tasks from the Philadelphia Neurodevelopmental Cohort (∼2,200 individuals of
European continental ancestry aged 8–21 years). We report a region of genome-wide significance within the 3′ end of the Fibulin-1 gene
(P = 4.6 × 10−8), associated with accuracy in nonverbal reasoning, a heritable form of complex reasoning ability. Diffusion tensor imaging
data from a subset of these participants identified a significant association of white matter fractional anisotropy with FBLN1 genotypes
(P < 0.025); poor performers show an increase in the C and A allele for rs77601382 and rs5765534, respectively, which is associated with
increased fractional anisotropy. Integration of published human brain-specific ’omic maps, including single-cell transcriptomes of the
developing human brain, shows that FBLN1 demonstrates greatest expression in the fetal brain, as a marker of intermediate progenitor
cells, demonstrates negligible expression in the adolescent and adult human brain, and demonstrates increased expression in the brain
in schizophrenia. Collectively these findings warrant further study of this gene and genetic locus in cognition, neurodevelopment, and
disease. Separately, genotype-pathway analysis identified an enrichment of variants associated with working memory accuracy in path-
ways related to development and to autonomic nervous system dysfunction. Top-ranking pathway genes include those genetically asso-
ciated with diseases with working memory deficits, such as schizophrenia and Parkinson’s disease. This work advances the “molecules-
to-behavior” view of cognition and provides a framework for using systems-level organization of data for other biomedical domains.
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Introduction
The growth in genomics and functional annotation resources over
the past decade provides an opportunity to build models of how
changing genotype affects multiple levels of system organization
underlying a phenotype, from genes and molecules through to
pathway, cell, cell circuit, anatomy, and physiology system levels
(systems genomics analysis). This opportunity complements a
conceptual shift to systems-level thinking in many biomedical
fields. For example, a major drive-in psychiatry is the recon-
ceptualization of mental illnesses as brain disorders treatable

by neurobiological system-grounded therapies, such as working
memory deficits in schizophrenia (Lett et al. 2014). As a shared
guide for the field, the US National Institute of Mental Health
has developed a “genes-to-behavior” framework that deconstructs
human behavior into neurobehavioral domains, such as cognition
and social processing (Insel et al. 2010). Each of these constructs
has subconstructs and these are linked to a variety of systems
level concepts. While the genetic architecture of overall cog-
nitive ability (i.e. intelligence) has been studied by large-scale
genome-wide association analysis (GWAS) (Okbay et al. 2016;
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Sniekers et al. 2017; Hill et al. 2019), little is known about the
molecular basis of more detailed neurocognitive phenotypes.

In this work, we identify genetic variants associated with nor-
mative variation in peri-adolescent cognition, as measured by
the Philadelphia Neurodevelopmental Cohort (PNC) (Calkins et al.
2014). We selected this study for our systems genomics analysis as
the phenotypes measured activate specific neuroanatomical net-
works and are impaired in disorders of neurodevelopmental origin
with significant heritability. For example, tasks requiring use of
working memory, a type of short-term memory that recruits a
cortical–subcortical network including the dorsolateral prefrontal
cortex, shows a genetic component in twins, and is impaired in
schizophrenia (Braver et al. 1997; Blokland et al. 2008; Minzenberg
et al. 2009). With a standardized neurocognitive test battery and
genotyping on over 8,000 community youths aged 8–21 years,
the PNC is the largest publicly available dataset for genotype-
phenotype analysis of peri-adolescent cognition (Gur et al. 2014;
Satterthwaite et al. 2014; Calkins et al. 2015). Moreover, the PNC
captures the age range through which some cognitive abilities,
such as working memory, mature to stable adult levels (Luna
et al. 2004; Simmonds et al. 2017). Phenotypes in the test battery
have neurobehavioral validity (Gur et al. 2010), single nucleotide
polymorphisms (SNP)-based heritability (Robinson et al. 2015),
and disease relevance (Gur et al. 2010; Germine et al. 2016).
Multiple cognitive test scores in the PNC demonstrate significant
SNP-based heritability (Robinson et al. 2015), and reduced test
scores are correlated with increased genetic risk of psychiatric
disease (Germine et al. 2016). Thus, we hypothesize that this data
will identify genetic variants linked to one or more system level
scales of phenotype-related organization.

Despite the relatively small size of the PNC dataset from the
perspective of GWAS studies, we reasoned that the availability
of a well-validated cognitive test battery along with genetic and
multi-modal brain imaging data provides a unique opportunity to
study the molecular and systems basis of cognitive tasks impaired
in neurodevelopmental disorders, during peri-adolescence. We
also wished to evaluate how a systems genomics approach can
increase statistical and interpretive power compared to standard
SNP and gene-based analysis approaches, both of which are per-
formed here to enable us to compare these approaches. To our
knowledge, there have been no reports of genotype-phenotype
analyses on the PNC dataset. Using diverse functional genomics
resources, we link variants to genes, pathways, brain cell types,
brain systems, predicted drug targets, and diseases, providing a
systems-level view of the genetics of the neurodevelopmental
phenotypes under study.

Materials and methods
Cognitive assessment was performed using the Penn Comput-
erized Neurocognitive Battery (CNB), which was customized and
shortened for a pediatric population (Gur et al. 2014). Performance
is measured by a session of trials containing items with varying
levels of difficulty, which allows the test to capture nuances in
speed and accuracy measures. Tests were also developed through
evaluation by psychological investigators to ensure tasks could
measure the phenotype of interest (i.e. had “construct validity”)
and reliability between test-takers and through retakes (Gur et al.
2010).

Genetic imputation
The samples (n = 8,719) were all genotyped using Illumina
or Affymetrix SNP-array platforms by the Center for Applied
Genomics at The Children’s Hospital of Philadelphia

(Glessner et al. 2010). The workflow for genomic imputation is
shown in Supplementary Fig. 1. Genotypes for the four most
frequent microarray genotyping platforms were downloaded from
dbGaP (phs000607.v1). We performed genetic imputation for the
Illumina Human610-Quad BeadChip, the Illumina HumanHap550
Genotyping BeadChip v1.1, Illumina HumanHap550 Genotyping
BeadChip v3, and the Affymetrix AxiomExpress platform
(Supplementary Table 1, total of 6,502 samples before imputa-
tion), using the protocol recommended by the EMERGE consor-
tium (Verma et al. 2014). Imputation was performed as follows:

Step 1: Platform-specific plink quality control
Quality control was first performed for each microarray platform
separately. SNPs were limited to those on chr1-22. SNPs in linkage
disequilibrium (LD) were excluded (—indep-pairwise 50 5 0.2), and
alleles were recoded from numeric to letter coding. Samples were
excluded if they demonstrated heterozygosity >3 standard devi-
ations (SD) from the mean, or if they were missing > = 5% geno-
types. Where samples had pairwise Identity by Descent > 0.185,
one of the pair was excluded. Variants with minor allele frequency
(MAF) < 0.05 were excluded, as were those failing Hardy-Weinberg
equilibrium with P < 1e – 6 and those missing in >= 5% samples.

Step 2: Convert coordinates to hg19
LiftOver (Hinrichs et al. 2006) was used to convert SNPs from
human genome assembly version hg18 to hg19; Hap550K v1 data
was in hg17 and was converted from this build to hg19.

Step 3: Strand-match check and prephasing
ShapeIt v2.r790(Delaneau et al. 2013) was used to confirm that
the allelic strand in the input data matched that in the reference
panel; where it did not, allele strands were flipped (shapeit “–
check” flag). ShapeIt was used to prephase the variants using
the genetic_b37 reference panel (downloaded from the Shapeit
website, http://www.shapeit.fr/files/genetic_map_b37.tar.gz).

Step 4: Imputation
Genotypes were imputed using Impute2 v2.3.2 (Howie et al.
2009) and a reference panel from the 1,000 Genomes (phase 1,
prephased with Shapeit2, no singletons, 16 2014 June release,
downloaded from https://mathgen.stats.ox.ac.uk/impute/data_
download_1000G_phase1_integrated_SHAPEIT2_16-06-14.html)
was used for imputation, using the parameter settings “–
use_prephased_g –Ne 20000 –seed 367946”. Average concordance
for all chromosomes was ∼ 95%, indicating successful imputation
(Supplementary Fig. 2). Imputed genotypes were merged across all
platforms using software from the Ritchie lab (Verma et al. 2014)
(impute2-group-join.py, from https://ritchielab.org/software/
imputation-download) and converted to plink format. Following
previous PNC genotype analysis (Robinson et al. 2015), only SNPs
with info score >0.6 were retained, and deletions/insertions were
excluded (plink “-snps-only just-acgt” flags). As preliminary
quality control, when merging across chromosomes, samples
with missingness exceeding 99% were excluded, as were SNPs
with MAF <1% and with missingness exceeding 99%. This step
resulted in 10,845,339 SNPs and 6,327 individuals.

Step 5: Post-imputation quality control
The HapMap3 panel was used to assign genetic ancestry for
samples, using steps from (Anderson et al. 2010) (Supplementary
Fig. 3). Individuals within five SD of the centroid of the HapMap3
CEU (Utah residents with Northern or Western European
ancestry) or TSI (Tuscans in Italy) clusters were assigned to
belong to the respective groups and were classified as being of
European descent; 3,441 individuals pass this filter. Individuals
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with >5% missing data were excluded, as was one of each pair
of individuals with Identity by State (IBS) >0.185 (47 individuals);
3,394 individuals passed this filter. Variants that were symmetric
or in regions of high LD (Supplementary Table 2) were excluded
(9,631,316 SNPs passed). Variants with >5% missingness were
excluded (1,569,407 SNPs excluded). Finally, SNPs with MAF < 0.01
(3,168,339 SNPs) and failing Hardy-Weinberg equilibrium with P-
value <1e – 6 (373 SNPs) were excluded, resulting in 4,893,197
SNPs. As only high-quality SNPs were retained after imputation,
post-processing steps were performed only once. In sum, the
imputation process resulted in 3,394 individuals and 4,893,197
SNPs available for downstream analysis.

Phenotype processing
Phenotype data were downloaded from dbGaP for 8,719 indi-
viduals. In total, 637 individuals with severe medical conditions
(Medical rating = 4) were excluded to avoid confounding the
symptoms of their conditions with performance on the cognitive
tests (Calkins et al. 2014, 2015; Robinson et al. 2015). Linear
regression was used to regress out the effect of age at test
time (variable name: “age at cnb”) and sex from sample-level
phenotype scores, and the residualized phenotype was used for
downstream analysis.

The nine phenotypes selected for systems genomics analy-
sis are measures of overall performance accuracy in the Penn
Computerized Neurocognitive Test Battery (CNB; Supplementary
Table 3) and represent major cognitive domains. Tasks mapped
to domains in the following manner: verbal reasoning, nonver-
bal reasoning, and spatial reasoning measured complex cogni-
tion; attention allocation and working memory measured exec-
utive function; recall tests for faces, words and objects measured
declarative memory, and emotion identification measured social
processing. Following regression, none of the phenotypes were sig-
nificantly correlated with age after Bonferroni correction, indicat-
ing that the age effect had been reduced (Supplementary Table 4).
Following guidelines from previous analyses on these data (Ger-
mine et al. 2016), individuals with scores more than four SD
from the mean for a particular test, representing outliers, were
excluded from the analysis of the corresponding phenotype. For
a given phenotype, only samples with a code indicating a valid
test score (codes “V” or “V2”) were included; e.g. for pfmt_tp
(Penn Face Memory Test), only samples with pfmt_valid = “V” or
“V2” were retained; the rest had scores set to NA. Finally, each
phenotype was dichotomized so that samples in the bottom
33rd percentile were relabeled as “poor” performers and those
in the top 33rd were set to be “good” performers; for a given
phenotype, this process resulted in ∼1,000 samples in each group
(Supplementary Table 3). Where an individual had good or poor
performance in multiple phenotypes, they were included in the
corresponding group for each of those phenotypes.

Genetic association analysis
For each of nine CNB phenotypes, marginal SNP-level associa-
tion was calculated using a mixed-effects linear model (MLMA),
using the leave-one-chromosome-out (LOCO) method of estimat-
ing polygenic contribution [GCTA v1.97.7beta software (Yang et al.
2011)]. In this strategy, a mixed-effect model is fit for each SNP:

y = a + bx + g- + e.

where y is the binarized label (good/poor performer on a particular
task), x measures the effect of genotype (indicator variable coded
as 0, 1, or 2), g- represents the polygenic contribution of all the

SNPs in the genome (here, the ∼4.89 M imputed SNPs), and e
represents a vector of residual effects. In the LOCO variation,
g- is calculated using a chromosome-specific genetic relatedness
matrix, one that excludes the chromosome on which the candi-
date SNP is located (Yang et al. 2011). SNPs and associated genes
were annotated as described in Supplementary Notes 1–4.

Hi-C data processing
We downloaded publicly available higher-order chromatin inter-
action (Hi-C) data from human prefrontal cortex tissue (Schmidt
et al. 2014; Schmitt et al. 2016) [Illumina HiSeq 2000 paired-
end raw sequence reads; n = 1 sample; 746 Million reads; acces-
sion: GSM2322542 (https://www.ncbi.nlm. nih.gov/geo/query/acc.
cgi?acc=GSM2322542)]. We used Trim Galore (v0.4.3) for adapter
trimming (Martin 2011), Hi-C User Pipeline (HiCUP) (Wingett et al.
2015) (v0.5.9) for mapping and performing quality control, and
GOTHIC (Mifsud et al. 2017) for identifying significant interactions
(Bonferroni P < 0.05), with a 40 kb resolution. Hi-C gene annotation
involved identifying interactions with gene promoters, defined
as ±2 kb of a gene Transcription Start Site (TSS). This analysis
identified 303,464 deoxyribonucleic acid (DNA)–DNA interactions
used for our study.

SNP to gene mapping for annotation and
enrichment analyses
SNPs were mapped to genes using a combination of genome
position information (i.e. closest gene), brain-specific expression
Quantitative Trait Locus (eQTL) and Hi-C information.

Gene definitions were downloaded from Gencode (ftp://ftp.
ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/
GRCh37_mapping/gencode.v32lift37.basic.annotation.gtf.gz).
Only genes with “protein_coding” biotype were included (20,076
unique gene symbols), to simplify interpretation of cellular
mechanisms using pathway annotation information, which
almost completely include only protein coding genes. Using
chromatin state maps from the Roadmap Epigenomics project
(Kundaje et al. 2015), we compiled a list of open chromatin and
enhancer regions in brain tissue. These comprised maps derived
from 13 human brain samples, including: neurospheres, angular
gyrus, anterior caudate, germinal matrix, hippocampus, inferior
temporal lobe, dorsolateral prefrontal cortex, substantia nigra,
and fetal brain of both sexes (samples E053, E054, E067, E068, E069,
E070, E071, E072, E073, E074, E081, E082, and E125), downloaded
from http://www.roadmapepigenomics.org/. Open chromatin
states were defined as genomic regions with epigenomic roadmap
project’s core 15-state model values <=7. Enhancers were defined
as those labeled with states “Enh” and “EnhG.”

For eQTL-based mapping, we searched for significant eQTLs in
12 types of brain tissue (GTEx v7: Amygdala, Anterior cingulate
cortex BA24, Caudate basal ganglia, Cerebellar Hemisphere, Cere-
bellum, Cortex, Frontal Cortex BA9, Hippocampus, Hypothalamus,
Nucleus accumbens basal ganglia, Putamen basal ganglia, and
Substantia nigra) downloaded from https://www.gtexportal.org;
Supplementary Note 1 (Battle et al. 2017). Of these, only SNPs
overlapping open chromatin regions of brain-related samples (see
previous paragraph) were included.

For 3D chromatin interaction mapping (Hi-C), we downloaded
long-range chromatin interaction data from the adult cortex
(Schmitt et al. 2016) and human developing brain (Won et al.
2016) (Interactions to TSS for cortical plate and germinal zone,
Tables S22 and S23 of Won et al. (2016)). The enhancer region
of these enhancer-promoter interactions was intersected with
brain enhancers (see above) to only keep enhancer-promoter
interactions overlapping known active brain enhancers. Then, the
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promoter region of these filtered enhancer-promoter interactions
was mapped to a gene if it intersected with the region 250 bp
upstream and 500 bp downstream of the corresponding gene
transcription start site. SNPs were mapped to a gene if they
overlapped the promoter of the filtered enhancer-promoter sites.

Finally, SNPs were positionally mapped to the nearest gene
if the shortest distance to either transcription start site or end
site was 60 kb. This cutoff was selected because it maps the
majority (90%) of SNPs to their nearest gene, following a distance
distribution analysis.

The order of SNP-gene mapping was as follows: SNPs that
mapped to a gene via brain eQTL or Hi-C interactions were pri-
oritized and not also positionally mapped to a gene. A SNP was
allowed to map to genes using both eQTL and Hi-C. SNPs without
eQTL or Hi-C mappings were positionally mapped to a gene.
Where a SNP positionally mapped to multiple genes, all associ-
ations were retained. These SNP-gene mappings were used for
the pathway and gene set enrichment analysis described below,
as well as to annotate SNPs from the GWAS analysis.

Using these criteria, 7.7% of SNPs mapped to genes using
nonpositional information (246,357 by eQTL and 16,923 by HiC,
for a total of 263,280 SNPs); 2,917,948 SNPs mapped solely by
positional information (89.2%). In total, SNPs mapped to 18,782
genes. 1,711,969 SNPs did not map to any genes (34.9%).
Brain imaging analysis
Brain structure was assessed in a subset of the full sample
that underwent magnetic resonance imaging on a 3 T Siemens
TIM Trio scanner (1,000 individuals). T1-weighted structural
magnetic resonance imaging (MRI) acquisitions were obtained
with the magnetization-prepared rapid gradient-echo sequence
with the following parameters: field of view =180 × 240mm;
matrix = 192 × 256 × 160 slices; TR/TE/TI =1,810 ms/3.5 ms/
1,100 ms; flip angle = 9; 1.0 mm slices. The diffusion weighted
acquisitions used a twice-refocused spin-echo single-shot echo
planar imaging (EPI) sequence with 64 diffusion weighted
directions with b = 1,000 s/mm2, and seven scans with b = 0 s/mm2

in 2 mm slices (Satterthwaite et al. 2014). T1 weighted scans were
processed with the CIVET processing pipeline (Version 1.1.12;
Montreal Neurological Institute). To compute cortical thickness
and surface area, CIVET performed linear registration to stereo-
taxic space and classification of tissue, and deformable surface
models were used to create white and gray matter surfaces for
each hemisphere with 40,962 vertices each (Lerch and Evans
2005). Diffusion weighted scan preprocessing involved correcting
for motion, and eddy current distortions with FSLs eddy correct
and calculating fractional anisotropy by fitting the diffusion
tensor model in each voxel using FSL’s dtifit function. The TBSS
pipeline was used to remove nonwhite matter (threshold of 0.2)
and skeletonize each individual’s fractional anisotropy image
(Smith et al. 2006). The association of significant SNP genotypes
with average cortical thickness, cortical surface area, and white
matter fractional anisotropy was assessed with linear models
controlling for age, sex, and genetic ancestry using the first
four principal components from SNP-based genotypes. Due to
negligible numbers of individuals in the neuroimaging sample
that were homozygous for minor alleles, minor allele carriers
(homozygous or heterozygous) were compared to individuals who
had two copies of the major allele. After excluding individuals
not included in the genetic association analysis and those with
poor quality scans (based on visual inspection), 191 (white
matter)/267 (cortex) individuals for rs5765534 and 197 (white mat-
ter)/277 (cortex) for rs77601382 remained for inclusion in these
analyses.

Gene set enrichment analysis
For each of the nine CNB phenotypes, gene set enrichment anal-
ysis was performed using an implementation of Gene Set Enrich-
ment Analysis (GSEA) for genetic variants (Wang et al. 2007; Wang
et al. 2010). GSEA was selected as it computes pathway enrich-
ment scores (ESs) using all available SNP information, which
improves sensitivity, rather than using a hypergeometric model
limited to SNPs passing a specific GWAS P-value cutoff. Moreover,
pathway significance is ascertained using sample permutation,
which corrects false-positives arising due to mapping of a few
high-ranking SNPs to multiple nearby genes in the same pathway
(Mooney et al. 2014). All SNPs were mapped to genes (as described
in the “SNP-gene mapping for annotation and enrichment anal-
yses” section above) and the gene score was defined as the best
GWAS marginal P-value of all mapped SNPs for each gene. For
each pathway, GSEA computes an ES using the rank-sum of gene
scores. The set of genes that appear in the ranked list before the
rank-sum reaches its maximum deviation from zero, is called the
“leading edge subset”, and is interpreted as the core set of genes
responsible for the pathway’s enrichment signal. Following com-
putation of the ES, we created a null distribution for each pathway
by repeating genome-wide association tests with randomly label-
permuted data and by computing ES from these permuted data;
in this work, we use 100 permutations to reduce computational
burden. As a test of sensitivity to this parameter, we increased
this value to 1,000 for the working memory phenotype (lnb_tp2).
Finally, the ES on the original data is normalized to the score
computed for the same gene set for label-permuted data (Z-
score of real ES relative to mean of ES in label-permuted data),
resulting in a Normalized Enrichment Score (NES) per pathway.
The nominal P-value for the NES score is computed based on the
null distribution and FDR correction is used to generate a q-value.

We used enrichment analysis to perform pathway analysis
using pathway information compiled from HumanCyc (Romero
et al. 2005) (http://humancyc.org), NetPath (http://www.netpath.
org) (Kandasamy et al. 2010), Reactome (http://www.reactome.
org) (Fabregat et al. 2016), NCI Curated Pathways (Schaefer
et al. 2009), mSigDB (Subramanian et al. 2005) (http://software.
broadinstitute.org/gsea/msigdb/), and Panther (Mi et al. 2005)
(http://pantherdb.org/) and Gene Ontology (The Gene Ontol-
ogy Consortium 2019) (Human_GOBP_AllPathways_no_GO_iea_
May_01_2018_symbol.gmt, downloaded from http://download.ba
derlab.org/EM_Genesets/May_01_2018/Human/symbol/Human_
GOBP_AllPathways_no_GO_iea_May_01_2018_symbol.gmt); only
pathways with 20–500 genes were used.

We also used enrichment analysis to perform a brain system
and disease analysis using brain-related gene sets we compiled
from various literature sources (see Supplementary Table 5 and
Supplementary Note 5). Brain system gene sets included those
identified through transcriptomic or proteomic assays in human
brain tissue (i.e. direct measurement of expression), and genes
associated with brain function by indirect inference (e.g. genetic
association of nervous system disorders); both groups of gene
sets were combined for this enrichment analysis. The transcrip-
tomic/proteomic gene sets included: genes identified as mark-
ers for adult and fetal brain cell types using single-cell tran-
scriptomic experiments (Darmanis et al. 2015; Lake et al. 2016;
Nowakowski et al. 2017), genes enriched for brain-specific expres-
sion [Human Protein Atlas project, https://www.proteinatlas.org
(Yu et al. 2015)]; genes co-expressed with markers of various
stages of human brain development [BrainSpan (Kang et al. 2011)];
and genes encoding proteins altered in the schizophrenia synap-
tosomal proteome (Velasquez et al. 2017). Brain disease gene
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sets included: genes associated with schizophrenia, bipolar dis-
order, autism spectrum disorder and major depressive disorder
through large-scale genetic association studies by the Psychi-
atric Genomics Consortium (Schizophrenia Working Group of the
Psychiatric Genomics Consortium 2014) (Supplementary Note 5);
genes associated with nervous system disorders by the Human
Phenotype Ontology (Kohler et al. 2019). Genes in the second group
were filtered to only include genes with detectable expression in
the fetal (Zhong et al. 2018) or adult human brain (Yu et al. 2015).
A total of 1,321 gene sets were collected across both system and
disease categories (Table S14). Only gene sets with 20–500 genes
were included in the analysis; 421 gene sets met these criteria and
were included in the enrichment analysis.

Leading edge gene interaction network
Genes contributing to pathway enrichment results (leading
edge genes) were obtained in our GSEA analysis for genetic
variants (Wang et al. 2007). A gene-gene interaction network was
constructed from leading edge genes of pathways with q < 0.05
using the online GeneMANIA service [v 3.6.0; https://genemania.
org (Franz et al. 2018)] (human database, default settings); the
resulting network and edge attributes were downloaded. This
network was imported into Cytoscape v3.7.1 for visualization.
Known drug associations were obtained from DGIdb (Cotto et al.
2018) and GWAS associations with nervous system disorders were
obtained from the NHGRI-EBI GWAS catalog, via programmatic
search using the TargetValidation.org API (Buniello et al. 2019;
Carvalho-Silva et al. 2019). Cell type marker information was
compiled from single cell RNA-seq datasets, including those for
adult and fetal human brain (Darmanis et al. 2015; Lake et al.
2016; Nowakowski et al. 2017).

Results
We developed a systems genomics analysis workflow to identify
genetic variants associated with normative cognitive pheno-
types (Fig. 1). Briefly, genotypes were imputed using a refer-
ence panel from the 1,000 Genomes Project (1000 Genomes
Project Consortium et al. 2015), and samples were limited to
those of European genetic ancestry (Supplementary Figs. 1–3,
Supplementary Table 1). In total, 3,394 individuals and ∼4.9 M
SNPs passed the quality control and imputation process.
Following quality control of phenotype data, 3,116 European
samples passed both genotype and phenotype filters and were
included in downstream analyses. We selected nine phenotypes
from the Penn CNB representing overall accuracy in four cognitive
domains: complex cognition, executive function, declarative
memory, and social processing (Supplementary Table 3). Mea-
sures included performance for verbal reasoning, nonverbal
reasoning, spatial reasoning, attention allocation, working
memory, recall tests for faces, words and objects, and emotion
identification (Gur et al. 2010). As age and sex is known to
affect CNB task accuracy in 8–21 year olds, these variables were
regressed out of the phenotype (Supplementary Table 4) and
samples were thereafter binarized into poor and good performers
(bottom and top 33% percentile, respectively) resulting in ∼1,000
samples per group for each phenotype (Supplementary Figs. 4 and
5, Supplementary Table 3).

For each of the nine phenotypes, we first performed SNP-level
GWAS, as a comparative baseline following traditional methods.
We used a mixed linear models association analysis (MLMA)
that included genome-wide genetic ancestry as a covariate

[GCTA (Yang et al. 2011)]. Among the nine phenotypes, 661 SNPs
had suggestive levels of significance at the genome-wide level
(P < 10−5; Fig. 1b and c, Fig. 2a and b, Supplementary Figs. 6 and
7, Supplementary Table 6). Over half of these SNPs are associated
with tasks related to complex cognition, i.e. verbal reasoning,
nonverbal reasoning and spatial reasoning (377 SNPs or 57%).
27% were associated with executive function (177 SNPs), which
included attention allocation and working memory. In total, 13%
SNPs were associated with declarative memory tasks (83 SNPs),
which included face recall, word recall, and object recall. A total of
4% of SNPs were associated with emotion identification (24 SNPs),
a measure of social processing. More generally, SNPs associated
with PNC cognitive phenotypes at suggestive significance levels
(P < 10−5) map to genes previously associated with diseases of
the nervous system and/or mark cell types in the fetal and
newborn brain (Darmanis et al. 2015; Nowakowski et al. 2017)
(Fig. 2c, Supplementary Table 7). We predict that one-sixth of
suggestive peaks (112 SNPs or 17%) are linked to a functional
consequence in brain tissue, including nonsynonymous changes
to protein sequence (Fig. 2d), presence in brain-specific promoters
and enhancers, or association with changes in gene expression
(Supplementary Table 6).

Nonverbal reasoning was the only phenotype with SNPs
passing the cutoff for genome-wide significance (rs77601382 and
rs5765534, P = 4.6 × 10−8) (Fig. 3). The peak is located in a ∼33 kb
region (chr22:45,977,415-46,008,175) overlapping the 3′ end of
the Fibulin-1 (FBLN1) gene, including the last intron and exon
(Fig. 3b). The proportion of good and poor performers genotyped
on each array platform was comparable (P > 0.1, chi-squared
test). Poor performers have an increased proportion of the major
C allele for rs77601382 (C/T) and the major A allele for rs5765534
(A/G). To better understand the significance of this gene in brain
development, we examined the association between structural
integrity of the brain’s white matter estimated from diffusion
weighted MRI and these two SNPs. As expected, fractional
anisotropy exhibited a robust positive relationship with age,
reflecting the ongoing maturation of white matter throughout
childhood and adolescence (Supplementary Fig. 8, P < 1 × 10−8

for both SNPs). For both SNPs, minor allele carriers had lower
fractional anisotropy indicating less mature white matter
integrity, compared with individuals with two copies of the major
allele (multiple linear regression, P < 0.025, Cohen’s d > 0.43 for
each SNP, Fig. 3c). There were no differences in cortical thickness
or surface area between the two genotype groups (P > 0.25).

To better characterize FBLN1, we examined its expression
in published bulk-tissue and single-cell human brain transcrip-
tomes. Across the human lifespan, FBLN1 transcription demon-
strates highest relative expression in the early stages of fetal brain
development (Fig. 3d; P < 2e – 16, one-way ANOVA), with little to
no expression in the adult brain (Battle et al. 2017; Li et al. 2018)
(Fig. 3d, Supplementary Fig. 9). Consistently, multiple single-cell
transcriptomic studies of the prenatal human cortex report FBLN1
to be a marker of dividing, intermediate progenitor cells (IPC)
(Nowakowski et al. 2017; Bhaduri et al. 2021). This includes IPCs of
the radial glial lineage resulting in newborn excitatory neurons,
as well as those arising from the median ganglionic eminence
(Nowakowski et al. 2017; Bhaduri et al. 2021). Additionally, FBLN1
has been reported to be expressed in dividing cells, pericytes,
outer radial glia, Cajal–Retzius cells, and microglia of the prena-
tal cortex (Polioudakis et al. 2019; Bhaduri et al. 2021). Consis-
tent with this developmental pattern of expression, FBLN1 is not
reported to be a marker of cells in the adult human brain (Dar-
manis et al. 2015; Lake et al. 2016) (Fig. 3d, Supplementary Fig. 9)
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Fig. 1. Framework for multi-scale systems genomics analysis for neurocognitive phenotypes from the PNC. (a) Workflow for GWAS. Genotypes were
imputed (1,000 Genomes Project (1KGP) reference) and limited to European samples. Samples with severe medical conditions were removed and invalid
test scores excluded. Nine neurocognitive test scores were binarized after regressing out age and sex. GWAS was performed using the accuracy measure
as a phenotype for each of these nine phenotypes. (b) Framework to organize variant-level associations into a multi-scale systems view in health (blue)
and disease (red). Existing functional genomic resources used for annotation shown in brown.

(Battle et al. 2017). FBLN1 encodes a glycoprotein present in the
extracellular matrix; this protein is a direct interactor of proteins
involved in neuronal diseases, such as Amyloid Precursor Protein-
1 (Ohsawa et al. 2001) [Supplementary Fig. 10 (Stark et al. 2006)].
FBLN1 is overexpressed in post-mortem brain tissue of individu-
als with schizophrenia, but not in those diagnosed with bipolar
disorder and autism spectrum disorder (Gandal et al. 2018), and
has also been previously associated with genetic risk for hyper-
thymic temperament in bipolar disorder (Fig. 1d, (Greenwood et al.
2012; Wang et al. 2018)). We conclude that FBLN1, which con-
tains genetic variants associated with nonverbal reasoning test
performance, shows characteristics of a gene involved in neu-
rodevelopment, the dysregulation of which could increase risk for
neurodevelopmental and neuropsychiatric disorders (Brainstorm
et al. 2018).

Pathway analysis is an established systems genomics tech-
nique used to improve the statistical power of subthreshold uni-
variate signal by aggregation of signal and reduction of multiple
hypothesis testing burden, as well as to provide mechanistic
insight into cellular processes that affect phenotypic outcome.
Pathway analysis has been successfully used to link genetic dis-
ease risk to cellular processes for diseases in various domains,
including schizophrenia (Schizophrenia Working Group of the
Psychiatric Genomics Consortium 2014), breast cancer (Michaili-
dou et al. 2017) and type 2 diabetes (Xue et al. 2018). We per-
formed pathway analysis for the nine phenotypes using a rank-
based pathway analysis strategy [GSEA (Subramanian et al. 2005;
Wang et al. 2007), 500 permutations; 4,102 pathways tested].
SNPs were mapped to genes using brain-specific eQTL, chromatin
interaction, and positional information, using the same method
as described above. The working memory phenotype demon-
strated significant enrichment of top-ranking genetic variants
in a developmental pathway (q < 0.05; Supplementary Tables 8–
10), showing biologically relevant signal where our univariate
SNP-based baseline analysis did not. An advantage of the rank-
based pathway analysis over those based on hypergeometric or
binomial tests, is that the former provides a list of “leading-edge”

genes driving the pathway-level enrichment signal, which can
be further interpreted. We annotated leading edge genes with
prior knowledge about genetic associations with nervous system
disorders, transcription in brain cell types (Darmanis et al. 2015;
Lake et al. 2016; Nowakowski et al. 2017; Buniello et al. 2019) and
known drug interactions (Cotto et al. 2018). Out of 53 leading
edge genes of this gene set, roughly one-half are known brain
cell markers (25 genes or 47%), roughly one-third have known
drug interactions (17 genes or 36%), and ∼11% are associated
with nervous system disease (six genes) (pathway q < 0.05, Fig. 4a,
Supplementary Table 10, Supplementary Fig. 11). Among disease-
associated genes were those associated with autism (CSDE1) and
Parkinson’s disease (LHFPL2).

To perform a brain system and disease analysis, we performed
a second enrichment analysis using gene sets curated from the
literature, including transcriptomic and proteomic profiles of the
developing and adult healthy brain and brains affected by mental
illness, brain-related genome-wide association studies, and terms
from a phenotype ontology (421 gene sets tested, Supplementary
Note 5, Supplementary Table 5, Supplementary Data 1). Two gene
sets pertaining to general nervous system dysfunction were
significantly enriched (q < 0.05; GSEA, 500 permutations), again
related to working memory (Fig. 4c, Supplementary Table 11).
Roughly 17% of the 71 leading edge genes of these gene sets
are associated with nervous system disorders (12 genes), roughly
one-third have predicted drug targets (22 genes, 31%) and over half
(43 genes or 61%) are markers of brain cell types (Fig. 4b and c;
Supplementary Tables 12 and 13). Two genes have all three
attributes: SNCA and LRRK2 (Fig. 4c, Supplementary Table 13).
Leading edge genes have genetic associations, including those
with schizophrenia, autism spectrum disorder, Parkinson’s
disease, Alzheimer’s disease, depression, and mood disorders
(Fig. 4c, Supplementary Table 13). In summary, we identified
many genetic variants associated with normative variation in
neurocognitive phenotypes, enriched in pathways and gene sets
related to development, nervous system dysfunction and mental
disorders.
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Fig. 2. GWAS for neurocognitive phenotypes from the PNC. (a) Breakdown of SNPs achieving suggestive significance (P < 10−5), by phenotype (top). (b)
Suggestive and significant SNPs and associated genes. The outermost ring shows the location of suggestive peaks (P < 10−5), colored by phenotype (see b);
y-axis shows –log10 (SNP p), so that SNPs with stronger significance are higher. SNPs with P < 10−7 are labeled. The tracks with ticks indicate functional
consequences of associated SNPs. The track closest to the middle indicate SNPs overlapping brain enhancers (light gray) or promoters (black). The dark
red middle track indicates SNPs with nonsynonymous variation, including NMD transcript, missense or splice variants (BioMart) (Smedley et al. 2015).
The outermost track indicates QTL associations, including eQTL in adult prefrontal cortex (dark blue), fetal brain (cyan), or neuronal cell proportions
in the adult brain (fQTL; orange) [GTEx (Battle et al. 2017)]. Genes associated with top SNPs are indicated within the circle. See Supplementary Note 1
for annotation sources. (c) Genes associated with top SNPs (P < 3 × 10−7) with prior knowledge about relevance to brain development and psychiatric
disorders. Columns indicate differential expression in neurodevelopmental disorders (Wang et al. 2018) (SCZ = schizophrenia; ASD = autism), significant
association with a nervous system disorder (Buniello et al. 2019), or status as marker gene for specific cell types in fetal brain (Nowakowski et al. 2017).
(d) Breakdown of functional consequence of top SNPs and by functional consequence (bottom). Consequence shown is limited to effect on protein
sequence (Smedley et al. 2015), presence in enhancers or promoters in adult cortical regions (Kundaje et al. 2015), eQTL in fetal brain, or adult forebrain.
Final bar shows cumulative proportion of putatively functional SNPs.

Discussion
To our knowledge, this is the first study to identify genetic variants
that may contribute to normal human variation in multiple,
diverse cognitive domains, and to link these to various levels
of brain system organization, including genes, pathways, cell
types, brain regions, diseases, and known drug targets (Fig. 5).
These associations, particularly potential drug targets, represent
hypotheses to be experimentally validated in model systems to
improve the mechanistic understanding of the molecular sub-
strates of the respective phenotypes. While the UK Biobank (UKB)
provides a valuable resource of genetics and cognitive assess-
ments for a much larger sample size of 500,000 individuals, the
participant age is 40–70 years, capturing brain changes in older
adults. It is worth noting that the Penn CNB finds positive corre-
lation of test accuracy with age in 8–21 year olds, and negative
correlation with an initial sample of 18–84 year olds, which likely

shows the relative effect of brain development versus aging on
cognition (Gur et al. 2012). Unlike the Penn CNB, the UKB cog-
nitive assessment test battery was not designed using estab-
lished metrics such as test–retest validity and construct validity,
which were measured after test administration (Fawns-Ritchie
and Deary 2020). Test scores from the UKB cognitive assessment
show variable correlation with scores from standardized assess-
ments that intend to measure the same psychological construct
(Fawns-Ritchie and Deary 2020).

Swagerman et al. measured the common variance from all
tasks in the Penn CNB and compared this common factor to a
Weschler Intelligence Scale for Adults-based general factor of
intelligence (g-WAIS) (Swagerman et al. 2016). Using an oblique
two-factor model of overlap in variance, they found that the
common CNB factor completely overlapped the common g-WAIS
factor with a correlation of 1.0. This overlap suggests that overall
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Fig. 3. Genome-wide significance of FBLN1 region for binarized performance in nonverbal reasoning (a) Manhattan plot of univariate SNP association
with binarized performance in nonverbal reasoning (n = 1024 poor vs. 1023 good performers; 4,893,197 SNPs). Plot generated using FUMA (Watanabe et al.
2017). (b) Detailed view of hit region at chr22q13. Two SNPs pass genome-wide significance threshold, rs77601382 and rs74825248 (P = 4.64e – 8). View
using integrated genome viewer [v2.3.93 (Robinson et al. 2011; Thorvaldsdottir et al. 2013)]. The red bar indicates the region with increased SNP-level
association. (c) Association of significant FBLN1 SNP genotypes with whole brain average white matter integrity (linear model, P < 0.025 for genotype
term, after controlling for age, sex, and genetic ancestry; horizontal jitter added to points for visibility). (d) FBLN1 transcription in the human brain
through the lifespan; data from (Li et al. 2018). FPKM values are shown for central and medial ganglionic eminences (CGE, MGE), and dorsal, orbital,
ventral, and medial frontal cortices (DFC, OFC, VFC, MFC). Right: FPKM values grouped into prenatal (<37PCW), postnatal (birth to <13YO), adolescent
(13YO to <21YO), and adult periods (>21YO) (P < 2e – 16, one-way Analysis of Variance (ANOVA)).
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Fig. 4. Pathway and brain system and disease analysis for the working memory performance phenotype (a) attributes of leading edge genes in pathway
gene sets associated (q < 0.05) with working memory. Colors indicate transcription in brain cell types (blue), genetic associations with nervous system
disorders (yellow), or those with known drug targets (pink) (n = 53 genes in total; 47 with annotations). (b) Leading edge genes in brain-related gene sets
associated with disease, drugs or brain cell types (n = 71 genes total; 50 with annotations). Details in Supplementary Table. Legend as in (a). (c) Gene–gene
interaction network for working memory leading edge genes from enriched (q < 0.05) brain-related gene sets. Only genes with top SNP P < 5 × 10−3 are
shown (26 genes). Nodes show genes and fill color indicates genes associated with brain cell types, drugs or genetic associations with nervous system
disorders (colors as in panel a, white indicates absence of association). Edges indicate known interactions [from GeneMANIA (Franz et al. 2018)]. Genes
from the network with disease associations are highlighted with gray description bubbles.

performance on the CNB correlates well with general intelligence
(or “g”) as measured by a psychometric intelligence test battery
(Ref 1). Consistent with this observation, the FBLN1 locus was not
significantly enriched in a large GWAS study of general cognitive
ability (Savage et al. 2018).

We found an enrichment of genetic variants associated with
complex cognitive phenotypes (75–219 suggestive peaks in a
Manhattan plot), consistent with heritability estimates of up to
0.30–0.41 for these phenotypes (Robinson et al. 2015). We also
found that many variants, genes, and pathways associated with
normal variation in neurocognitive phenotypes have known roles
in neurodevelopment, modulating gene expression in the fetal
and adult brain and increasing risk for psychiatric diseases of neu-
rodevelopmental origin (Fig. 1, Supplementary Tables 6, 7, 10, and
13). We found a significant association of FBLN1 for nonverbal
reasoning ability, as measured by the Penn Matrix Analysis Test
(PMAT). Multiple lines of evidence suggest that FBLN1, the gene we
find associated with genome-wide significant SNPs for nonverbal
reasoning, is dysregulated in brain-related disease. In addition to

the evidence provided in our results (Fig. 2 and Fig. 3c, Supple-
mentary Figs. 9 and 10), the FBLN1 gene has been associated with
a rare genetic syndrome that includes multiple cognitive impair-
ments, and protein levels of FBLN1 have been associated with
altered risk for ischaemic stroke (Palumbo et al. 2018; Vadgama
et al. 2019). However, the mechanism by which FBLN1 contributes
to normal brain function is not known. We also do not exclude the
possibility that the genetic polymorphisms we identified within
FBLN1 may affect the function of neighboring or otherwise linked
genes, which may instead or in combination affect the phenotype.

A limitation of the current study is the relatively small size
of the patient cohort—roughly 1,000 cases and controls each per
phenotype—compared with contemporary GWAS studies which
may include over 100,000 individuals. The reduced sample size
is partly because we chose to limit the analysis to individuals
with European genetic ancestry, to maintain the largest number
of samples while avoiding the confound with genetic ancestry.
Furthermore, we dichotomized the phenotype into bottom and
top performers, ignoring samples in the middle, as our goal was to
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Fig. 5. Summary of evidence linking genetic variants associated with
cognitive test performance to multiple levels of brain organization. Each
column shows data for an individual phenotype, grouped by phenotype
domain; rows show associations at increasingly more general scales (from
top to bottom); evidence linking variants to healthy system and disease
system shown in blue and red, respectively. Circles indicate relative num-
ber of suggestive variant peaks (P < 10−5) from GWAS). Pathways and cell
systems are those identified by gene set enrichment analyses (q < 0.05).
Cell types are those for which FBLN1 is found to be a marker from single-
cell transcriptome data (Nowakowski et al. 2017). Gene-disease associ-
ations are identified for significant SNPs, using gene-disease mappings
from the NHGRI-EBI catalog (Buniello et al. 2019).

work with a subset enriched for extremes within typical pheno-
typic variation, to strengthen signal. For all phenotypes tested in
this work, we also performed genome-wide association tests using
continuously valued measures, instead of binarized phenotypes;
none of the associations resulted in significant results (data not
shown).

This work contributes toward an understanding of the molecu-
lar and systems-level underpinnings of individual cognitive tasks
that have been associated with specific brain systems. These
associations will need to be validated in better-powered datasets,
possibly using newer neurobehavioral measurement standards
in the field (Weintraub et al. 2013) but can currently be used
as hypotheses to plan biological experiments, or as support for
orthogonal methods studying the relevance of genes and path-
ways we identify for brain biology. Studying the overlap in genetic
architecture between these phenotypes, similar to cross-disorder
genetic studies (Lee et al. 2013), may also inform disease clas-
sification (Jeste and Geschwind 2014; Clementz et al. 2016). Our
analysis is limited to univariate genetic effects, and future work
should explore the contribution of interactions between individ-
ual SNPs (Wang et al. 2017), though this will require many more
samples per phenotype. We propose that research frameworks for
linking genotype to phenotype for brain-related traits include sys-
tems genomics analysis, considering pathways, cells, anatomical
structures, and physiological processes as organizational layers to
improve the amount of genetic signal that can be extracted from
available genetic data, which otherwise would be missed if just
considering SNPs and genes. For example, the working memory

phenotype had no significant SNPs that met the genome-wide
significance cutoff. However, gene sets related to development
and autonomic nervous system dysfunction demonstrated sig-
nificant clustering of high-ranking variants, including those in
SLIT3 (rs62376937) and ROBO2 (rs12497629), which mediate axon
guidance in the developing nervous system. The conceptual strat-
egy we outline in this work, of organizing variant-related annota-
tion into a systems-level view is generalizable across biomedical
domains and to human disease (Fig. 1 and Fig. 5). Integration of
such evidence across studies can identify common themes or
discrepancies to encourage thinking of a systems-level view of
genotype–phenotype association for disease.

Genetic data used in this study were downloaded from dbGaP
(phs000607.v1). Software written to perform the analysis in this
manuscript have been made available under the MIT license
at https://github.com/BaderLab/PNC_GeneticsofCognition. GWAS
summary statistics for binarized phenotypes tested have been
deposited at Zenodo under DOI:10.5281/zenodo.7843900.
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