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Abstract
We present NetMatchStar, a Cytoscape app to find all the occurrences of a
query graph in a network and check for its significance as a motif with respect
to seven different random models. The query can be uploaded or built from
scratch using Cytoscape facilities. The app significantly enhances the previous
NetMatch in style, performance and functionality. Notably NetMatchStar allows
queries with wildcards.

 
This article is included in the Cytoscape apps 
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Introduction
Biological networks such as protein-protein interaction, transcrip-
tion regulatory, gene regulatory, and metabolic networks are often 
referred to as complex systems1. The term complex relates to the 
existence of non-trivial substructures contained within them. The 
study of complex systems involves the analysis of the way in which 
their elements interact rather than only their individual roles. Com-
putationally, such a study entails the ability to query networks to 
find specific patterns of interactions.

Possible queries might include the identification of positive and 
negative autoregulation, coherent and incoherent feed forward 
loops, single-input modules and dense overlapping regulons2 in 
a given target network N. Sub-networks that occur surprisingly 
often in a network may be preferred by evolution. For that reason, 
NetMatchStar offers the ability to compute a p-value against null 
models from seven distinct randomizing methods and suggests the 
one that shares the network properties of N in terms of degree dis-
tribution, cluster coefficient and assortativity.

The availability of computational tools for the analysis of biologi-
cal networks has been helpful in providing novel biological insights 
on the function of many previously uncharacterized proteins. 
Several different methods have been developed for this purpose: 
(i) Network Motif fiding3–12, network querying13–15 and network 
alignment16–21 algorithms.

Most of the approaches dealing with this kind of graph analysis 
entail subgraph matching. Such a problem has been widely stud-
ied and several methods and systems have been proposed. The 
approaches can be categorized according to the methodology they 
use. The first category is the tree search based algorithm. Those 
methods look for a solution of the problem in a state space by mak-
ing use of a depth-first approach. Algorithms using such approach 
include Ullmann22, VF223 and the recently introduced RI24. The 
second category consists of algorithms using Constrained Pro-
gramming techniques. Such methods aim at filter pairs of nodes 
which will not be in a matching solution. Many algorithms exploit 
such approaches25–27. The last category uses a database approach 
by exploiting the virtues of indexing28–31. Such algorithms extract a 
set of features which define an index of the query that will be used 
for searching through the target one. The goal is to identify candi-
date subgraphs in the target one which are possibly isomorphic to 
the query. NetMatchStar works on Cytoscape 3.2+ and is based on 
the NetMatch software in13. It deals with both exact queries and 
approximate ones, in which wildcards are used to match unspeci-
fied number of elements.

NetMatchStar integrates the RI algorithm proposed for biologi-
cal real networks which outperforms other existing algorithms24. 

RI uses a search strategy based on the topology of the query to 
effectively filter the space of solutions. We refer to NetMatchStar 
web page for use cases. For illustration purposes, NetMatchStar 
has been tested on a biological dataset24,32 and an overview of its 
performance concludes the paper.

Methods
A graph G is a pair (V, E), where V is the set of nodes and E ⊆ (V × V) 
is the set of edges.

Using a graph Q to query a target network graph N means to per-
form a subgraph isomorphism, which entails finding an injective 
function that maps each node of Q to a unique node of N such that 
nodes and edges labels are preserved. Assessing the statistical sig-
nificance of Q implies a simulation process, where first a set R of r 
random graphs are generated according to a specific model. Then the 
number of occurrences of Q in each random graph is counted and a 
p-value is computed which is defined as the fraction of the r graphs 
where Q occurs at least as often as in N. The lower the p-value 
is, the more significant Q is as a motif. The significance of Q can 
also be evaluated through the z-score, which is defined as the differ-
ence between the number of occurrences of Q in N and the average 
number of occurrences of Q in the r random graphs, divided by the 
standard deviation of the frequencies of Q in R. A strongly positive 
value of the z-score means that Q is significant as a motif.

Exact querying
A simple enumeration algorithm to find Q in N generates all pos-
sible maps between the nodes of the two graphs and checks whether 
any generated map is a subgraph isomorphism. The common aim 
of existing algorithms is to discover unsuccessful mappings as early 
as possible and to filter them away22. NetMatchStar uses the algo-
rithm RI proposed in24, whose efficiency is mainly due to the choice 
of a search strategy, i.e. the ordering with which query nodes are 
mapped. For example, a variable ordering may begin with a query 
node having the highest degree or having the most uncommon label 
in the target graph. The variable ordering of RI is based only on the 
query graph topology. Roughly, the chosen order creates constraints 
as early as possible in the matching phase. The nodes having high 
valence and that are highly connected with nodes previously present 
in the ordering tend to come early in the variable-ordering. The aim 
of RI is to avoid costly pruning techniques by finding a static search 
strategy such that the number of constraints that are verifiable from 
a partial solution are maximized.

Approximate querying
Approximate queries are graphs containing wildcard structures. 
They may contain nodes and edges which can match any value 
of node or edge labels in the network and approximate paths con-
strained in length to be less than or greater than m, where m is a 
positive integer. NetMatchStar first matches all the specified sub-
parts of the queries exactly and then joins the matches by network 
traversal. The network traversal phase checks that all traversed 
paths satisfy the query path constraints.

Random model generation
In NetMatchStar, the user can choose among seven different gen-
erative models to compute the statistical significance of a motif. In 
all cases, except for the shuffling model, the simulation starts with 
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the generation of a network with |V| nodes having the same labels 
as the target network N and no edges. Then, new edges between 
existing nodes are added until we obtain a network with |V| nodes 
and |E| edges, just like N. In the following, we briefly describe each 
random model.

Shuffling model. In the shuffling model33 an existing network is 
“rewired” by repeatedly swapping the destinations of two randomly 
chosen edges, where possible. The result is a graph with the same 
degree distribution of the original network.

Erdos-Renyi model. The Erdos-Renyi (ER) model34 corresponds to a 
graph where two nodes connect each other randomly and independ-
ently. There are two variants of the ER model. In the G(|V | , |E |) model 
the algorithm randomly creates a network uniformly over all networks 
that have |V |  nodes and |E |  edges. In the G(|V | , p) model, edges between 
nodes are independently created with a user-defined probability p. 
NetMatchStar implements the G(|V|, p) variant of the ER model.

Watts-Strogatz model. The Watts–Strogatz model35 produces graphs 
characterized by the small-world property, where most nodes can 
be reached from every other by a small number of hops, when there 
is no direct link between them. The model works in two phases. In 
the first one a lattice of |V |  nodes is created where each edge is con-
nected to d neighbors on its left and d neighbors on its right. Then, 
edges are randomly shuffled with rewiring probability β. Low val-
ues of β produce a quasi-regular graphs, where nodes have approxi-
mately the same degree, while high values of β produce networks 
which are very close to the ER model.

Barabasi-Albert model. Also known as the preferential attachment 
model, this model36 creates graphs where the more connected a node 
is, the more likely it creates new links. Graphs generated with BA 
model are scale-free, meaning that the degree distribution follows 
a power law, with a few high-degree nodes and many low-degree 
nodes. The BA model starts with the creation of a complete initial 
seed network of k nodes. The remaining |V| – k nodes are added one 
at a time. Each new node is attached to d existing nodes, such that 
the probability of selecting an existing node u is proportional to the 
degree of u.

Geometric model. The geometric model37 describes graphs in which 
the information about the location of nodes in the space determines 
the topology and might be useful to represent spatially oriented net-
works (e.g. transportation and neuronal networks). In the geometric 
model each node is represented as a point in a d-space. An edge 
between two nodes exists if the distance between corresponding 
points is within a threshold r.

Forest-Fire model. In the Forest-Fire (FF) model38, a new node v 
attaches to the network by iteratively exploring existing edges start-
ing from one or more anchor nodes, called ambassadors, which are 
chosen randomly. At each step of the exploration, v creates out-
links with newly discovered nodes with a forward probability p and  
in-links with a backward probability r, and continues exploration 
from those nodes. The FF model describes time-evolving networks 
where the number of edges grows super-linearly in the number of 
nodes and the distance between nodes shrinks as new nodes arrives.

Duplication model. In the duplication model39 the duplication of 
the information is considered as a dominant evolutionary force for 
the growth of a network, such as in many biological networks. At 
each step of the duplication model a random node u is selected. 
Then, a new node v is created and connected to neighboring nodes 
of u with probability p. The lower is p, the more divergent is v as 
a copy of u.

Implementation
The NetMatchStar Cytoscape App has been developed in Java 7 
on top of the Cytoscape 3.2 API. The software is composed by a 
core module, which implements basic algorithms and data struc-
tures, plus a user interface module that integrates the analyses into 
the Cytoscape interface. The core module provides data representa-
tions, graph analysis (i.e. graph matching and motif searching) and 
two different types of attribute comparator that differentiate in exact 
and approximate comparison. The CyNetworks are converted into 
graph structures to optimize the graph traversal procedures. The 
user interface is designed by following the Model-View-Controller 
architectural pattern. The Model component adds up result data 
representations to the functionality provided by the software’s core 
module. The View component implements the graphical panels of 
the interface. The main panel of the app adds up, as a further tab, 
to the Control Panel of the Cytoscape interface. This integrates the 
graphical panels where the user can select the networks to be proc-
essed, the parameters of the analysis, and the results. The Control 
component ensures the communication between the Model and the 
View by implementing the set of tasks performed by NetMatchStar. 
This component is developed by following the Cytoscape 3.1 app 
guidelines, such that every task is implemented as a Cytoscape Task 
Java class.

Operation
The main frame of NetMatchStar contains three tabbed panels:

•    "Matching" panel (Figure 1), to specify the target and the 
query graphs and run the matching task;

•    “Significance” panel (Figure 2), for the statistical signifi-
cance of the query as a motif according to a specific random 
model;

•    "Motif library" panel (Figure 3), which contains a set of pre-
defined queries for the matching task.

In the following subsections, we will describe all the required steps 
for the matching and motif verification of a query graph in a target 
network.

Loading input data
Query and network graphs can be uploaded in NetMatch-Star, 
by clicking on the folder icon in the toolbar of “Matching” panel 
(Figure 1). Each uploaded network will be added to the Network list 
of Cytoscape. In the drop-down lists of “Network Properties” and 
“Query Properties” section, the user can select one of the uploaded 
networks as a query or target network for the matching and statisti-
cal significance tasks. Likewise, the user may upload node and edge 
labels as Cytoscape attributes and link them to the nodes and edges 
of the target network and query graph.
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Drawing queries
Instead of loading an existing network, the user can create a query 
from scratch or by starting from a pre-defined set of queries.

To create a new query, the user must click on the “plus” icon of 
“Matching panel” (Figure 1). A new panel for the creation of a new 
network will be opened (Figure 4). A right click on the panel will 
open the standard Cytoscape menu to add, edit or remove elements 
of the graph. Such a menu also includes the “NetMatchStar” menu 
item, which lets the user change the label of a node or edge and 
set a path between two nodes. By default, newly added nodes and 
edges will be labeled with the wildcard “?”, corresponding to a 
node or a direct link between nodes with unspecified label. Any 
other character will be associated to a specific label. Paths between 
two nodes i and j are defined as special attributes for the edge (i, j). 

Figure 1. “Matching” panel in NetMatchStar. In this example, the 
network of Figure 4 has been provided as query, while the Mus 
musculus network provided in 24 has been chosen as target graph.

Figure 2. “Significance” panel in NetMatchStar.

The length of a path is specified by an expression of the form aopb, 
where a and b are two integers (or the wildcard “?”) and op is one 
of <, ≤, ≥, >, =. The “?” character is used to leave the minimum or  
maximum length of the path unspecified. For instance, the expres-
sion ”? ≤ 2” means that the corresponding path must have at most 
length 2, while ”? > 3” corresponds to a path of length greater than 3. 
A query with a “?” character in at least a node and/or edge is an 
approximate query for NetMatchStar.

By clicking on “Save” button on panel, the user can store the query 
graph created from scratch on disk as text files in a .SIF format 
with nodes and edges attribute files with extensions respectively 
.NA and .EA.

The pre-defined set of queries includes small topologies which 
have been identified as motifs in many real networks2, such as 
feed-forward loops, diamonds, single-input modules and dense 
overlapping regulons. Figure 3 shows all the pre-defined queries 
that can be selected from the “Motifs library” tabbed panel. They 
are drown as directed graphs but can be used to query both directed 
and undirected networks. By clicking on one of these topologies, the 
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user can visualize the query and modify it, as previously described, 
i.e. adding new nodes/edges, changing node/edge labels and setting 
paths between nodes. Modifying the pre-defined query does not 
change the original “library” entry, but only a copy of it.

Evaluating the Statistical Significance of motifs
The “Significance” panel (Figure 2) contains all the parameters 
for the evaluation of the statistical significance of a motif subnet-
work. It consists of three subpanels. In the top subpanel the user can 
choose the number of random graphs to generate for the statistical 
test (between 0 and 100) and the seed for generating pseudorandom 
numbers. In the middle subpanel the user can compute a set of met-
rics for the target graph and sample random graphs, one for each 
model. Metrics include the average degree, the average clustering 
coefficient and the assortativity index. At the end of the computa-
tion, the resulting values are shown in a separate window. Usually, 
values of these metrics coherent with the one of the input network 
can suggest to the user which random model best describes the fea-
tures of the input network.

The bottom subpanel let the user choose a random model and set its 
parameters (if any). In “Shuffling” model, “Lab shuffling” option 
can be selected for enabling shuffling also on node and edge labels 
(if present), while “sw/edg” denotes the number of successful 
swaps per edges. The “Erdos-Renyi” model has no parameters. In 
“Watts-Strogatz”, “Rew prob” is the probability of rewiring β. The 
“Barabasi-Albert” model defines “Init nodes”, the number of initial 
nodes in the complete seed network. The “Duplication” model has 
two parameters: “Init nodes”, the number of nodes in the initial 
seed network, and “Edg prob”, the edge duplication probability. In 
the “Geometric” model, parameter “Dim” denotes the dimension 
of the space where points are placed. Finally, “Forest-fire” contains 
parameter “Ambass”, that is the number of ambassadors nodes. For 
each model, all the remaining parameters are estimated based on 
the number of nodes and edges of the target network.

Managing results
Once a target network and a query has been provided in the “Matching” 
panel (Figure 1), the user can either look for all occurrences of the 
query within the input graph or check if the query is a motif or not.

In the first case, the user must click on the “Match” button in the 
“Matching” panel (Figure 1). Once the matching task has been com-
pleted, a table with all the occurrences of the query in the target 
will be shown as a tabbed panel in the “Result Panel” of Cytoscape 
(Figure 5) and the input graph will be visualized. For each occur-
rence, NetMatch-Star reports its nodes and an image depicting its 
topology. By selecting a row in the table, the user can visualize the 
corresponding occurrence in the target network. If the option “Cre-
ate a new child network” is disabled, nodes of the occurrence will be 
highlighted in yellow within the input network, otherwise the occur-
rence will be visualized in a separate window. By clicking on “Save” 
button on result panel, the user can store the results as text file.

Recalling that the nodes of the network are not uniquely labeled and 
thus the query may have different matches, to check if a query is a 
motif, the user must click on one of the “Start” buttons of the “Sig-
nificance” panel (Figure 2), depending on the random model that has 

Figure 3. “Motif library” panel in NetMatchStar. 

Figure  4.  Panel  for  the  creation  of  a  query  network  in 
NetMatchStar.  In this example, an approximate query with 3 
nodes and 3 edges has been created, where 2 nodes have a 
specific label and one edge represents an approximate path of 
length at most 2 (’?<=2’). The remaining elements of the graph 
have an unspecified label (’?’). By selecting an edge and right-
clicking, a menu will be shown for changing its label or set the 
approximate path.
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been chosen to perform the significance test. When the simulation 
ends, a new window will appear with the following measures: the 
number of query occurrences in the real network, the mean and the 
standard deviation of the number of query occurrences in the ran-
dom networks, the p-value and the z-score. The statistics of the test 
will be also reported on the “Log” panel located at the bottom of the 
“Matching” panel (Figure 1) and they can be consulted anytime.

Results
We evaluated the performance of NetMatchStar on the biological 
networks provided in 24 and compared it to the original NetMatch, 
developed for Cytoscape 2.8.

In Cytoscape others software are available for network motifs 
search. CytoKavosk40 is based on counting all k-size sub-graphs of 
a given network graph, while GraMoFoNe41 emulates the interface 
of NetMatchStar by allowing users to define a query and finding 
all occurrences similar to the query, with respect to node and edge 
deletions and node similarities. NetMatchStar contains predefined 
motif structures, checks the significance of a motif with respect to 
seven different random models and allows user to draw queries con-
taining wildcards and manage the approximation they need.

Figure 6 depicts the evaluation of NetMatchStar on three protein-
protein interaction networks: Mus musculus, Homo sapiens and 
Danio rerio. They are large dense graphs. We randomly labeled 
networks with 32, 64, 128, 512 and 2048 synthetic labels and with 
43 real labels corresponding to the Gene Ontology (GO) classes 
of the proteins (i.e. the nodes in the network). We used queries 
extracted from the networks by varying the number of nodes from 

Figure 5. NetMatchStar result table for the matching between the 
query and the target networks of Figure 1.

Figure 6. Query execution time on PPI networks.
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Figure 7. Query execution time on 3d-proteins.

Figure 8. Query execution time on protein contact maps.

4, 8, 16, 32, and 64 and density from low to high (up the 90% of 
edges among nodes are present).

Figure 7 evaluates NetMatchStar on protein back-bones graphs. 
They are large sparse graphs. The original labels are maintained 
since they are not unique (i.e., atoms names).

Figure 8 evaluates NetMatchStar on contact map graphs. They are 
dense medium graphs. The original labels are maintained since they 
are not unique (i.e., amino acids).

Figure 9 reports the querying performance of feed forward loop 
topology on Mus musculus with 512 labels. Queries are run exactly 
and approximated by unspecifying one, two and all node labels and 
replacing one edge with an approximate path constrained to less 
than 3 and 7 edges.

Finally, for those queries we verified their statistical significance by 
using all random models (Figure 10) and we measured the average 
time required for generating random networks and searching the 
queries (Figure 11).
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Figure 9. Feed forward loop with wildcards running time on Mus musculus with 512 labels.

Figure 10. Running times for generating random networks and searching the feed forward  loop on Mus musculus with no  labels 
according  to  Shuffling  (Sh),  Erdos-Renyi  (ER), Watts-Strogatz  (WS),  Barabasi-Albert  (BA),  Geometric  (Ge),  Forest  Fire  (Ff)  and 
Duplication (Du) models.
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Summary
This paper presented the biological network querying system  
NetMatchStar for Cytoscape 3.2.1. NetMatchStar improves upon its 
predecessor NetMatch in usability and performances. Moreover, it 
allows a comprehensive evaluation of statistical query significance. 
Future work includes semantic and ontological similarity search.

Software availability
This section will be generated by the Editorial Office before pub-
lication. Authors are asked to provide some initial information to 
assist the Editorial Office, as detailed below.

Software available from
http://apps.cytoscape.org/apps/netmatchstar,
http://alpha.dmi.unict.it/netmatchstar/ 

Latest source code
https://github.com/fabiorinnone/NetMatchStar/tree/v3.1 

Link to source code as at time of publication
http://dx.doi.org/10.5281/zenodo.1904542 

License
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 
License.

Author contributions
RG conceived the project. FR, GM and VB enabled the porting 
of the code to the new versions of Cytoscape (from version 3.0 
onward) and extended the functionality of the application. In par-
ticular, GM has worked on the statistical significance and VB on 
the graph matching algorithm. RG, GM, and AP wrote the main 
parts of the paper. All authors have tested, validated, improved the 
software and the manuscript.
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Algorithmically, is a useful utility that has been implemented by the authors. Bringing out its multiple
use-case scenarios in biological setting with interpretations for example will help novice users adapt this
more widely. Biological explanations of network interpretations will strengthen understanding and usage.
Also, there are 7 different algorithms implemented. In which kind of data or user-problem which algorithm
is recommended, according to authors or empirical observations?

Minor points:
"Algorithms using such a technique include.." -- kindly mention here itself
 
"the RI algorithm proposed for biological real networks which outperforms other existing
algorithms.."  -- please elaborate on this RI algorithm
 
"Values of these metrics can suggest to the user which random model" - can the authors
recommend some approximation of good/bad values?
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NetMatchStar improves the previous NetMatch tool, a Cytoscape app developed by the authors. It has
more functions (e.g., supporting approximate querying with wild cards) and runs faster. It shall be
interesting to users who are looking for tools that are able to find all the occurrences of a query graph in a
network and check for its significance under different null models. The manuscript has detailed
description and evaluation results.
 

Page 12 of 13

F1000Research 2015, 4:479 Last updated: 10 NOV 2015

http://dx.doi.org/10.5256/f1000research.7150.r10336
http://dx.doi.org/10.5256/f1000research.7150.r10314


F1000Research

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Page 13 of 13

F1000Research 2015, 4:479 Last updated: 10 NOV 2015


