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Abstract 
Patient classification based on clinical and genomic data will further 
the goal of precision medicine. Interpretability is of particular 
relevance for models based on genomic data, where sample sizes are 
relatively small (in the hundreds), increasing overfitting risk netDx is a 
machine learning method to integrate multi-modal patient data and 
build a patient classifier. Patient data are converted into networks of 
patient similarity, which is intuitive to clinicians who also use patient 
similarity for medical diagnosis. Features passing selection are 
integrated, and new patients are assigned to the class with the 
greatest profile similarity. netDx has excellent performance, 
outperforming most machine-learning methods in binary cancer 
survival prediction. It handles missing data – a common problem in 
real-world data – without requiring imputation. netDx also has 
excellent interpretability, with native support to group genes into 
pathways for mechanistic insight into predictive features. 
The netDx Bioconductor package provides multiple workflows for 
users to build custom patient classifiers. It provides turnkey functions 
for one-step predictor generation from multi-modal data, including 
feature selection over multiple train/test data splits. Workflows offer 
versatility with custom feature design, choice of similarity metric; 
speed is improved by parallel execution. Built-in functions and 
examples allow users to compute model performance metrics such as 
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AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring 
pathways and the final integrated patient network in Cytoscape. 
Advanced users can build more complex predictor designs with 
functional building blocks used in the default design. Finally, the 
netDx Bioconductor package provides a novel workflow for pathway-
based patient classification from sparse genetic data.

Keywords 
precision medicine, networks, classification, supervised learning, 
genomics, data integration
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Introduction
Supervised learning methods are useful in clinical genomics for disease diagnosis, risk stratification for prog-
nosis, and evaluating treatment response. Machine learning is a powerful analytic approach that can identify pat-
terns separating patient groups, but interpreting models remains an active area of research1. Interpretability is 
desirable to better understand biological mechanism underlying the phenotype and for rational treatment design. 
It is also important for genomic applications, where most contemporary datasets have fewer than a thousand  
samples, increasing the risk of overfit models that do not independently replicate. Separately, most machine learn-
ing methods do not handle missing data – a common feature of real-world datasets – without prior data imputa-
tion or filtering. netDx is a supervised learning algorithm that classifies patients by integrating multimodal patient 
data2. It is notable among machine learning methods for handling missing data without imputation, and excels at 
interpretability by enabling users to create biologically-meaningful grouping of features, such as grouping genes 
into pathway-level features. netDx integrates multi-modal data by converting each layer into a patient similarity  
network and then integrating these networks (Figure 1a).

Figure 1. netDx concepts and software workflow. (a) Conceptual visualization of patient similarity networks. Nodes 
are patients and edge weights measure pairwise similarity. The example shows a two-class problem (high and low risk 
patients), with four features shown as patient similarity networks: similarity for clinical (red), gene expression (green), 
metabolomic (blue) and mutation (orange) data. (b) Conceptual workflow for netDx predictor. Samples are split into 
train and test samples, and training samples are subjected to feature selection (blue flow). Feature selection uses 
regularized regression to integrate networks, such that networks with non-zero regression weights have their feature 
score increased. This process is repeated with different subsamples of training data, for a user-provided maximum 
of times (featScoreMax). This process is repeated for each patient label. Features passing a user-specified threshold 
are used to classify held-out samples. Test patients are classified by highest similarity. Patient networks that combine 
training and test patients are then integrated; only networks from features passing selection are used for this step. 
Label propagation is used to compute similarity of each test patient to training samples from each label; a given patient is 
assigned to the class with highest similarity. Average model performance is computed by running this whole process over 
several train/test splits. Features with consistent high scores can be used to classify an independent validation set.

      Amendments from Version 1
1. The code in Use Case 4 had outdated function calls. It has now been updated.

2. Error bars in Figure 3 and Figure 13 now reflect standard deviation, rather than standard error of the mean.

3. Function names from the outdated, original version of netDx have now been removed from Table 1.

4. There is now the option of using a Docker image for netDx v1.3.1 for Windows users. The link to the image has now 
been added to the text.

Any further responses from the reviewers can be found at the end of the article

REVISED
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This paper provides an introduction to the R-based software implementation of netDx for the Bioconductor  
system3 and showcases common use cases. The details of the netDx algorithm and performance have been previ-
ously published2, though we provide a brief conceptual summary here (Figure 1b). As input, the user provides 
multiple sets of data measured on the same set of labelled patients. The user additionally provides functions to 
compute pairwise patient similarity and optionally, rules to group measures from each data type into features (fea-
ture design). For example, gene expression measures could be grouped into features representing known biologi-
cal pathways. As with other machine learning methods, the user specifies parameters for training the model, such 
as the threshold scores for feature selection. Consider an application to predict good or poor patient survival, 
using tumour-derived gene expression, DNA methylation and proteomic data. In this scenario, netDx is provided 
with three data tables, one per ‘omic data type, a table with patient identifiers and known labels, and the group-
ing rule that one feature is to be created per data layer. Patients are then automatically split into training and test 
samples and feature selection is performed using training samples. netDx uses the given feature processing rules 
to convert data from different modalities into a common space of patient similarity networks1,2. Feature selection is  
performed once per patient label, and features passing selection are used to classify patients from the held-out test 
data. Performance robustness is evaluated by repeating this feature selection and classification exercise for multiple  
train/test splits. The final model is created from features that scored highly in feature selection, a step that uses 
only training samples. A feature may comprise an entire data layer, a single variable, or specified groupings; one  
example of the last is grouping gene-level measures into pathways, so that each pathway is a separate feature.  
Interpretability is aided by the pathway-level predictor design, which identifies cellular processes with predictive 
value.

Methods
Implementation
netDx3 is integrated into the Bioconductor system, a high-quality computational biology software framework 
for genomic data analysis in the statistical programming language R4. Figure 2 shows the workflow for build-
ing a model using the netDx software package; Table 1 describes major function calls. netDx uses Bioconductor  
data structures and mechanisms for fetching and storing data, and representation of input data.

Operation
Running netDx requires a machine with one or more cores running Intel processors (1.7 GHz i7 or later) or 
equivalent, a minimum of 1Gb RAM per thread, and 1Gb disk space. Feature selection is an embarrassingly 

Figure 2. netDx software workflow. The yellow box shows data provided to netDx to build the predictor. See use 
cases for examples. Patient data is provided as a MultiAssayExperiment object, with the patient metadata in the colData 
slot. Variable grouping rules, used for feature design, are provided as a list of lists. The outer list corresponds to a 
given assay; each entry in the corresponding list corresponds to one group of measures and is used to create a single 
feature. For instance, in a pathway-based design, one entry in the outer list would be “gene expression”, with each 
inner list containing genes grouped by pathways. In this scenario, each of these gene groupings generates a single 
pathway-level feature. Pathway definitions can be automatically fetched using the fetchPathwayDefinitions() function, 
or custom definitions can be provided in the GMT file format. For the workflow using sparse genetic data (see Use 
Case 3), such as CNVs, patient CNVs are provided to netDx as a GRanges object. In this instance, pathways are provided 
in GRangesList format.
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parallel problem, and we highly recommend running the software on a multi-core machine to reduce  
compute time. netDx is currently supported on machines running OS X or Unix-based operating systems. The 
software requires the Java executable (v1.8 or higher) to be available on the system path, and will not work on 
recent Windows-based operating systems that lack this type of installation. Windows users can access netDx via 
a Docker image provided at https://hub.docker.com/repository/docker/shraddhapai/netdx. netDx v1.1.4 requires 
R>=3.6 and BioConductor release 3.11 or higher. When building a predictor, patient data is provided to netDx as a  

Table 1. Major functions for basic and advanced model-building, and result 
evaluation. Intermediate functions used to prepare data are not shown, but are 
illustrated in the use cases. The third column shows outdated names for these functions 
from the software release that accompanied the paper describing the methods.

Function name 
(v1.1.4)

Purpose

buildPredictor() Turnkey function to build predictor 

buildPredictor_sparseGenetic() Turnkey function to build predictor from sparse 
mutation data of arbitrary ranges (e.g. copy number 
variants)

makePSN_NamedMatrix() Create PSN from a single data layer (matrix 
representation)

createPSN_MultiData() Create PSN from multiple data layers. May include 
calls to makePSN_NamedMatrix()

plotPerf() Plot ROC and PR curves, compute AUROC and AUPR

plotEMap() Plot enrichment map in Cytoscape, annotating main 
themes. Used in pathway-based feature design

plotIntegratedPatientNetwork() Plot patient network by integrating predictive features 
for all patient labels

splitTrainTest() Randomly split patients into training and test samples

setupFeatureDB() Collects all created features into a database in 
preparation for feature selection

compileFeatures() Feature selection process. Iterative scoring of 
input networks based on network integration and 
regularized regression. Each scoring step is called a 
“query”. A pre-specified number of queries is run with 
different subsamples of the training set

runFeatureSelection() Feature selection: Run network integration and 
label propagation. Used in feature selection for 
unit increase in network weights. Also used for 
classification of test samples, where it returns 
similarity scores

writeQueryFile() 
runQuery()

Feature selection: Prepare input for unit-level network 
integration. 
Feature selection: Run unit-level network integration. 
Each run of this step allows unit-level increase of 
feature scores

compileFeatureScores() Feature selection: Collect feature scores for unit-level 
network integration and feature scoring steps 

getPatientRankings() Model evaluation: Process test patient rankings from 
label propagation, to compute model performance 
measures

predictPatientLabels() Model evaluation: Given patient rankings for each 
label, assign predicted class label to test patients
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MultiAssayExperiment object, a Bioconductor data structure used to represent multi-’omics experiments associated 
with a given set of samples. In our usage, data types are collected in the assays slot of the object; the sole excep-
tion is clinical data, which is provided as part of the sample metadata, using the colData slot. Grouping rules are 
provided as a nested list object - or list-of-lists (groupList). The outer list consists of one entry per data type, with  
corresponding groupings in the inner list. Assays names must be identical in the assays slot and in groupList.

The easiest way to build classifiers is to use the wrapper function, buildPredictor(). This function runs feature 
selection and classification over a specified number of train/test splits, and returns all associated feature scores and 
detailed classification results in a list object. Advanced users can create custom predictor designs by combining  
the individual steps used in buildPredictor() (Table 1).

Use cases
This section describes four use cases for building predictors with netDx. The first uses pathway-level fea-
tures based on gene expression data to generate a binary classifier of breast cancer subtype. The second performs  
three-way classification of breast cancer subtype by integrating gene expression, DNA methylation and pro-
teomic assays. The third builds a binary classifier of autism spectrum disorder diagnosis from sparse genetic  
mutations. The fourth involves prediction of tumour stage from somatic mutations that have been desparsified  
using prior knowledge of gene interaction networks.

Use case 1: Binary classifier from clinical and transcriptomic data, using pathway-level features
Introduction. In this example, we will build a binary breast tumour Luminal A subtype classifier from clinical  
data and gene expression data. We will use different rules to create features for each assay. Specifically:

•    Clinical measures (e.g. age, stage): Features are defined at the level of variables; similarity is defined  
as normalized difference.

•    Gene expression: Features are defined at the level of pathways; similarity is defined by pairwise  
Pearson correlation.

Feature scoring is automatically performed over multiple random splits of the data into train and blind test parti-
tions. Feature selected networks are those that consistently score highly across the multiple splits (e.g. those  
that score 9 out of 10 in ≥70% of splits).

Conceptually, this is what the higher-level logic looks like for building a predictor over multiple random splits 
of samples into training and test groups. In the example below, the predictor runs for 100 train/test splits. 
Within a split, features are scored from 0 to 10. Features scoring ≥9 are used to predict labels on the held-out  
test set (20%). The example shows pseudocode, not actual netDx function calls:

featScoreMax <- 10   # max. score for a feature in feature selection 
featSelCutoff <- 9   # features scoring at least this much are used to  
                     # classify test patients 
numSplits <- 100     # number of random train/test splits to run feature  
                     # selection for. Model performance is averaged over 
                     # these iterations. 
 
netScores <- list()  # scores from feature selection, one entry per split 
perf <- list()       # model performance for each split 
 
for k in 1:numSplits 
 [train, test] <- splitData(80:20) # split data using RNG seed 
  featScores[[k]] <- runFeatureSelection(train, featScoreMax) 
  topFeat[[k]] <- applyFeatCutoff(featScores[[k]]) 
 perf[[k]] <- evalModelPerf(topFeat[[k]], test) 
end

Setup

suppressWarnings(suppressMessages(require(netDx)))

Data. In this example, we use curated data from The Cancer Genome Atlas, through the Bioconductor  
curatedTCGAData package. The goal is to classify a breast tumour into either a Luminal A subtype or  
otherwise. The predictor integrates clinical variables selected by the user, along with gene expression data.
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Here we load the required packages and download clinical and gene expression data.

suppressWarnings(suppressMessages(library(curatedTCGAData)))

List the available data without downloading any:

curatedTCGAData(diseaseCode="BRCA", assays="*",dry.run=TRUE)

##                                         Title DispatchClass 
## 31                       BRCA_CNASeq-20160128           Rda 
## 32                       BRCA_CNASNP-20160128           Rda 
## 33                       BRCA_CNVSNP-20160128           Rda 
## 35             BRCA_GISTIC_AllByGene-20160128           Rda 
## 36                 BRCA_GISTIC_Peaks-20160128           Rda 
## 37     BRCA_GISTIC_ThresholdedByGene-20160128           Rda 
## 39  BRCA_Methylation_methyl27-20160128_assays        H5File 
## 40      BRCA_Methylation_methyl27-20160128_se           Rds 
## 41 BRCA_Methylation_methyl450-20160128_assays        H5File 
## 42     BRCA_Methylation_methyl450-20160128_se           Rds 
## 43                 BRCA_miRNASeqGene-20160128           Rda 
## 44                    BRCA_mRNAArray-20160128           Rda 
## 45                     BRCA_Mutation-20160128           Rda 
## 46              BRCA_RNASeq2GeneNorm-20160128           Rda 
## 47                   BRCA_RNASeqGene-20160128           Rda 
## 48                    BRCA_RPPAArray-20160128           Rda

We will work only with the gene expression data in this example:

brca <- suppressMessages(curatedTCGAData("BRCA",c("mRNAArray"),FALSE))

This next code block prepares the TCGA data. In practice you would do this once, and save the data before  
running netDx, but we run it here in full to see an end-to-end example.

staget <- sub("[abcd]","",sub("t","",colData(brca)$pathology_T_stage)) 
staget <- suppressWarnings(as.integer(staget)) 
colData(brca)$STAGE <- staget 
 
pam50 <- colData(brca)$PAM50.mRNA 
pam50[which(!pam50 %in% "Luminal A")] <- "notLumA" 
pam50[which(pam50 %in% "Luminal A")] <- "LumA" 
colData(brca)$pam_mod <- pam50 
 
tmp <- colData(brca)$PAM50.mRNA 
idx <- union(which(tmp %in% c("Normal-like","Luminal B","HER2-enriched")), 
                    which(is.na(staget))) 
pID <- colData(brca)$patientID 
tokeep <- setdiff(pID, pID[idx]) 
brca <- brca[,tokeep,] 
 
# remove duplicate assays mapped to the same sample 
smp <- sampleMap(brca) 
samps <- smp[which(smp$assay=="BRCA_mRNAArray-20160128"),] 
notdup <- samps[which(!duplicated(samps$primary)),"colname"] 
brca[[1]] <- suppressMessages(brca[[1]][,notdup])

## harmonizing input:
##   removing 44 sampleMap rows with 'colname' not in colnames of experiments

The predictor will look for columns named ID and STATUS columns in the sample metadata table. netDx uses  
these to get the patient identifiers and labels, respectively.

pID <- colData(brca)$patientID 
colData(brca)$ID <- pID 
colData(brca)$STATUS <- colData(brca)$pam_mod

Design custom patient similarity networks (features). netDx provides a set of default functions to compute 
patient similarity, including Pearson correlation, normalized difference, and scaled Euclidean distance. However, 
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users may choose to define a custom function that takes patient data and variable groupings as input, and returns 
a set of patient similarity networks (PSN) as output. The user can customize what datatypes are used, how they  
are grouped, and what defines patient similarity for a given datatype.

When running the predictor (next section), the user simply passes this custom function as an input variable;  
i.e. the makeNetFunc parameter when calling buildPredictor().

Note: While netDx supports flexible experimental design, the user must ensure that the design, i.e. the similar-
ity metric and variable groupings are appropriate for a given application. Domain knowledge is recommended  
to support good design.

netDx requires that the makeNetFunc function take some generic parameters as input. These include:

•    dataList: the patient data, provided as a MultiAssayExperiment object. Refer to online tutorials  
for MultiAssayExperiment to see how to construct those objects from data.

•    groupList: sets of input data that will define individual networks (e.g. genes grouped into pathways)

•    netDir: the directory where the resulting patient similarity networks will be stored.

dataList
In this example, the breast cancer data is already provided to us as a MultiAssayExperiment object:

summary(brca)

## Length        Class    Mode
## 1   MultiAssayExperiment  S4

groupList
This object tells the predictor how to group units when constructing a network. For example, genes may be 
grouped into a patient similarity network representing a pathway. This object is a list; the names match those of  
dataList while each value is itself a list and reflects a potential network.

groupList <- list() 
 
# genes in mRNA data are grouped by pathways 
pathList <- readPathways(fetchPathwayDefinitions("January",2018))

## ---------------------------------------

## Fetching  
http://download.baderlab.org/EM_Genesets/January_01_2018/Human/symbol/Human_AllPathways_January_
01_2018_symbol.gmt

## File: 182107f6006ac_Human_AllPathways_January_01_2018_symbol.gmt

## Read 3028 pathways in total, internal list has 3009 entries

##  FILTER: sets with num genes in [10, 200]

##    => 971 pathways excluded 
##    => 2038 left

groupList[["BRCA_mRNAArray-20160128"]] <- pathList[1:3] 
# clinical data is not grouped; each variable is its own feature 
groupList[["clinical"]] <- list( 
      age="patient.age_at_initial_pathologic_diagnosis", 
      stage="STAGE" 
)
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So the groupList variable has one entry per data layer:

summary(groupList)

##                         Length Class  Mode 
## BRCA_mRNAArray-20160128 3      -none- list 
## clinical                2      -none- list

Each entry contains a list, with one entry per feature. Here we have three pathway-level features for mRNA  
and two variable-level features for clinical data.

For example, here are the networks to be created with RNA data. Genes corresponding to pathways are to be  
grouped into individual network. Such a groupList would create pathway-level networks:

groupList[["BRCA_mRNAArray-20160128"]][1:3]

## $UREA_CYCLE 
##  [1] "SLC25A15" "CPS1"     "ASL"      "ARG2"     "SLC25A2"  "OTC"      
##  [7] "NMRAL1"   "NAGS"     "ASS1"     "ARG1"     
##  
## $`CDP-DIACYLGLYCEROL_BIOSYNTHESIS_I` 
##  [1] "AGPAT1" "GPD2"   "ABHD5"  "GPAT2"  "CDS1"   "LPCAT3" "LPCAT4" 
##  [8] "CDS2"   "AGPAT6" "AGPAT5" "MBOAT7" "AGPAT9" "LCLAT1" "MBOAT2" 
## [15] "AGPAT4" "GPAM"   "AGPAT3" "AGPAT2" 
##  
## $`SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM` 
##  [1] "IPMK"   "INPP5B" "INPP5F" "INPP5D" "MINPP1" "INPP5A" "ITPKA"  
##  [8] "OCRL"   "ITPKC"  "ITPKB"  "SYNJ2"  "INPP5J" "INPP5K" "PTEN"   
## [15] "IMPA2"  "INPP1"  "SYNJ1"  "INPPL1" "IMPA1"  "IMPAD1"

For clinical data, we will define each variable as its own network:

head(groupList[["clinical"]])

## $age 
## [1] "patient.age_at_initial_pathologic_diagnosis" 
##  
## $stage 
## [1] "STAGE"

Define patient similarity measure for each network. This function is defined by the user and tells the predictor  
how to create networks from the provided input data.

This function requires dataList, groupList, and netDir as input variables. The residual ... parameter  
is to pass additional variables to makePSN_NamedMatrix(), notably numCores (number of parallel jobs).

In this example, the custom similarity function does the following:

1.    Creates pathway-level networks from RNA data using the default Pearson correlation measure makePSN_ 
NamedMatrix(writeProfiles=TRUE, ...)

2.    Creates variable-level networks from clinical data using a custom similarity function of  
normalized difference: makePSN_NamedMatrix(writeProfiles=FALSE, simMetric="custom", 
customFunc=normDiff).
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makeNets <- function(dataList, groupList, netDir,...) {
    netList <- c() # initialize before is.null() check
    # make RNA nets (NOTE: the check for is.null() is important!)
    # (Pearson correlation)
    if (!is.null(groupList[["BRCA_mRNAArray-20160128"]])) { 
    netList <- makePSN_NamedMatrix(dataList[["BRCA_mRNAArray-20160128"]],
                rownames(dataList[["BRCA_mRNAArray-20160128"]]),
                groupList[["BRCA_mRNAArray-20160128"]],
                netDir,verbose=FALSE, 
                writeProfiles=TRUE,...) 
    }
    
    # make clinical nets (normalized difference)
    netList2 <- c()
    if (!is.null(groupList[["clinical"]])) {
    netList2 <- makePSN_NamedMatrix(dataList$clinical, 
        rownames(dataList$clinical),
        groupList[["clinical"]],netDir,
        simMetric="custom",customFunc=normDiff, # custom function
        writeProfiles=FALSE,
        sparsify=TRUE,verbose=TRUE,...)
    }
    netList <- c(unlist(netList),unlist(netList2))
    return(netList)
}

Note: dataList and groupList are generic containers that can contain whatever object the user requires to  
create a PSN. The custom function supports flexible feature design.

Build predictor. Finally, we call the function that runs the netDx predictor. We provide:

•    number of train/test splits over which to collect feature scores and average performance (numSplits),

•    maximum score for features in one round of feature selection (featScoreMax)

•    threshold to call feature-selected networks for each train/test split (featSelCutoff); only features  
scoring this value or higher will be used to classify test patients, and

•    the information to create the PSN, including patient data (dataList), how variables are to be grouped  
into networks (groupList) and the custom function to generate features (makeNetFunc).

Change numCores to match the number of cores available on your machine for parallel processing.

The call below runs two train/test splits. Within each split, it:

•    splits data into train/test using the default split of 80:20

•    scores networks between 0 to 2 (i.e. featScoreMax=2)

•    uses networks that score ≥1 out of 2 (featSelCutoff) to classify test samples for that split.

These are unrealistically low values set so the example will run fast. In practice a good starting point is  
featScoreMax=10, featSelCutoff=9 and numSplits=100, but these parameters may need to be tuned 
to the sample sizes in the dataset and heterogeneity of the samples. Datasets with high levels of heterogeneity  
or small sample sizes may benefit from increased sampling – i.e. higher numSplits value. Increasing this  
setting increases the time to train the model but identifies generalizable patterns over a larger set of random  
subsamples.

set.seed(42) # make results reproducible
outDir <- sprintf("%s/pred_output",tempdir()) # location for intermediate work
# set keepAllData=TRUE to not delete at the end of the predictor run.
# This can be useful for debugging.
out <- suppressMessages(
   buildPredictor(
      dataList=brca,groupList=groupList,
      makeNetFunc=makeNets,outDir=outDir,
      numSplits=2L,featScoreMax=2L,
      featSelCutoff=1L,
      numCores=1L,
      logging="none")
   )
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Examine output
The results are stored in the list object returned by the buildPredictor() call. This list contains:

•    inputNets: all input networks that the model started with.

•    Split<i>: a list with results for each train-test split

–    predictions: real and predicted labels for test patients

–    accuracy: percent accuracy of predictions

–    featureScores: feature scores for each label (list with g entries, where g is number of patient labels). 
Each entry contains the feature selection scores for the corresponding label.

–    featureSelected: vector of features that pass feature selection. List of length g, with one entry per 
label.

summary(out)

##           Length Class  Mode     
## inputNets 10     -none- character
## Split1     4     -none- list     
## Split2     4     -none- list

summary(out$Split1)

##                 Length Class     
## featureScores      2   -none-    
## featureSelected    2   -none-    
## predictions     2692   data.frame
## accuracy           1   -none-    
##                 Mode   
## featureScores   list   
## featureSelected list   
## predictions     list   
## accuracy        numeric

Reformat results for further analysis
This code collects different components of model output to examine the results.

numSplits <- 2
st <- unique(colData(brca)$STATUS)
acc <- c()         # accuracy
predList <- list() # prediction tables

featScores <- list() # feature scores per class
for (cur in unique(st)) featScores[[cur]] <- list()

for (k in 1:numSplits) { 
    pred <- out[[sprintf("Split%i",k)]][["predictions"]];
    # predictions table
    tmp <- pred[,c("ID","STATUS","TT_STATUS","PRED_CLASS",
                     sprintf("%s_SCORE",st))]
    predList[[k]] <- tmp 
    # accuracy
    acc <- c(acc, sum(tmp$PRED==tmp$STATUS)/nrow(tmp))
    # feature scores
    for (cur in unique(st)) {
       tmp <- out[[sprintf("Split%i",k)]][["featureScores"]][[cur]]
       colnames(tmp) <- c("PATHWAY_NAME","SCORE")
       featScores[[cur]][[sprintf("Split%i",k)]] <- tmp
     }
}
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Compute model performance
After compiling the data above, plot accuracy for each train/test split:

print(acc)

## [1] 0.8507463 0.8059701

Create a ROC curve, a precision-recall curve, and plot average AUROC and AUPR (Figure 3):

predPerf <- plotPerf(predList, predClasses=st)

Examine feature scores and consistently high-scoring features. Use getNetConsensus() to convert the 
list data structure into a single table, one per patient label. The rows show train/test splits and the columns show  
features that consistently perform well.

We then use callFeatSel() to identify features that consistently perform well across the various train/test 
splits. Because this is a toy example, we set the bar low to get some features. Here we accept a feature if it scores  
1 or higher (fsCutoff=1) in even one split (fsPctPass=0.05), setting the latter to a low positive fraction.

featScores2 <- lapply(featScores, getNetConsensus)
summary(featScores2)

##         Length Class      Mode
## LumA    3      data.frame list
## notLumA 3      data.frame list

head(featScores2[["LumA"]])

##                                                                     PATHWAY_NAME
## 1                                      CDP-DIACYLGLYCEROL_BIOSYNTHESIS_I.profile
## 2 SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM.profile
## 3                                                             UREA_CYCLE.profile
## 4                                                                   age_cont.txt
## 5                                                                 stage_cont.txt
##   Split1 Split2
## 1      2      2
## 2      2      2
## 3      2      2
## 4     NA      1
## 5     NA      1

Figure 3. Average model performance for binary classification of breast tumour as “LumA” or “other” using 
clinical and transcriptomic data. Clockwise from top-left: Mean area under ROC curve across train/test splits; mean 
area under precision-recall curve; precision-recall curve (average in blue; individual splits in grey); ROC curves (average 
in blue; individual splits in grey).
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Where features are scored out of 10, a reasonable setting is fsCutoff=9 and fsPctPass=0.7. This setting  
gives us features that score a minimum of 9 in at least 70% of the train/test splits.

featSelNet <- lapply(featScores2, function(x) {
    callFeatSel(x, fsCutoff=1, fsPctPass=0)
})
print(head(featScores2[["LumA"]]))

##                                                                     PATHWAY_NAME
## 1                                      CDP-DIACYLGLYCEROL_BIOSYNTHESIS_I.profile
## 2 SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM.profile
## 3                                                             UREA_CYCLE.profile
## 4                                                                   age_cont.txt
## 5                                                                 stage_cont.txt
##   Split1 Split2
## 1      2      2
## 2      2      2
## 3      2      2
## 4     NA      1
## 5     NA      1

Visualize pathway features as an enrichment map. An enrichment map is a network-based visualization of path-
way connectivity and is used in netDx to visualize themes in predictive pathway-based features5. It is used in  
conjunction with the AutoAnnotate Cytoscape app to identify clusters, and apply auto-generated labels to these6.

Use getEMapInput_many() to create the input that helps generate the enrichment map in Cytoscape.

Emap_res <- getEMapInput_many(featScores2,pathList,
    minScore=1,maxScore=2,pctPass=0,out$inputNets,verbose=FALSE)

Write the results to files that Cytoscape can read in:

gmtFiles <- list()
nodeAttrFiles <- list()

for (g in names(Emap_res)) {
    outFile <- sprintf("%s/%s_nodeAttrs.txt",outDir,g)
    write.table(Emap_res[[g]][["nodeAttrs"]],file=outFile,
       sep="\t",col=TRUE,row=FALSE,quote=FALSE)
    nodeAttrFiles[[g]] <- outFile

    outFile <- sprintf("%s/%s.gmt",outDir,g)
    conn <- suppressWarnings(
        suppressMessages(base::file(outFile,"w")))
    tmp <- Emap_res[[g]][["featureSets"]]
    gmtFiles[[g]] <- outFile
    for (cur in names(tmp)) {
        curr <- sprintf("%s\t%s\t%s", cur,cur,
             paste(tmp[[cur]],collapse="\t"))
        writeLines(curr,con=conn)
    }
close(conn)
}

Finally, plot the enrichment map. This step requires Cytoscape to be installed, along with the EnrichmentMap 
and AutoAnnotate apps. It also requires the Cytoscape application to be open and running on the machine  
running the code. This block is commented out for automatic builds on Bioconductor, but a screenshot of the  
intended result is shown below (Figure 4).

plotEmap(gmtFiles[[1]], nodeAttrFiles[[1]], 
groupClusters=TRUE,hideNodeLabels=TRUE)

This example enrichment map isn’t terribly exciting because of the low number of pathway features permitted,  
the upper bound on feature selection scores and low number of train/test splits in the demonstration example.
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Here is an example of an enrichment map generated by running the above predictor with more real-world  
parameter values, and all available pathways (Figure 5):

Visualize integrated patient similarity network based on top features. We apply a threshold to define the most 
predictive features, and integrate these into a single patient similarity network. Such a network is useful for down-
stream operations such as ascertaining whether or not classes are significantly separated, and for visualization of  
results.

Here we define predictive features as those scoring 2 out of 2 in all train/test splits.

featScores2 <- lapply(featScores, getNetConsensus)
featSelNet <- lapply(featScores2, function(x) {
    callFeatSel(x, fsCutoff=2, fsPctPass=1)
})

Figure 5. Enrichment map shows consistently high-scoring pathway features when running the breast 
tumour binary classifier with real-world parameters. This network is generated by running the plotEmap() 
function, which uses the RCy3 Bioconductor package to programmatically call Cytoscape network visualization  
software from within R, to run the EnrichmentMap app5–7. Nodes show pathways features that scored a minimum 
of 9 out of 10 in feature selection, in at least 70% of train/test splits; node fill indicates feature score. Edges connect 
pathways with shared genes. The larger yellow bubbles are auto-generated by the AutoAnnotate Cytoscape  
app6,8; these thematically group top pathways, by clustering and word-frequency based cluster annotation. 

Figure 4. Enrichment map of top-scoring pathway features in tumour classifier example. The small number 
of nodes reflects the limited number of pathways provided to the toy example model, and also reduced parameter 
values for model building. See Figure 5 for an example of a more informative enrichment map produced by running 
a real-world example.
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We next examine the features:

print(featSelNet)

## $LumA
## [1] "CDP-DIACYLGLYCEROL_BIOSYNTHESIS_I.profile"                                     
## [2] "SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM.profile"
## [3] "UREA_CYCLE.profile"                                                            
## 

## $notLumA
## [1] "SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_ 
  METABOLISM.profile"
## [2] "UREA_CYCLE.profile"                                                            
## [3] "stage_cont.txt"

Create a new groupList limited to top features:

topPath <- gsub(".profile","",
        unique(unlist(featSelNet)))
topPath <- gsub("_cont.txt","",topPath)
# create groupList limited to top features
g2 <- list();
for (nm in names(groupList)) {
    cur <- groupList[[nm]]
    idx <- which(names(cur) %in% topPath)
    message(sprintf("%s: %i pathways", nm, length(idx)))
    if (length(idx)>0) g2[[nm]] <- cur[idx]
}

## BRCA_mRNAArray-20160128: 3 pathways

## clinical: 1 pathways

We plot the integrated patient network based on the features selected above.

In the example below, the networks are integrated by taking the mean of the edge weights (aggFun="MEAN").  
For plotting we retain only the top 5% strongest edges (topX=0.05).

By setting calcShortestPath=TRUE, the function will also compute the pairwise shortest path for within-  
and across-group nodes. The result is shown as a set of violin plots and a one-sided Wilcoxon-Mann-Whitney test  
is used to assign significance.

As with plotEMap(), this method must be run on a computer with Cytoscape installed and running. To bypass  
plotting the PSN in Cytoscape, set plotCytoscape to FALSE. This function call computes shortest-path  
distances within- and among clusters (Figure 6) and plots the integrated PSN (Figure 7). The resulting network  
is shown below (Figure 7).

psn <- suppressMessages(
   plotIntegratedPatientNetwork(
       brca,
       groupList=g2, 
       makeNetFunc=makeNets,
       aggFun="MEAN",topX=0.08,
       numCores=1L,calcShortestPath=TRUE,
       showStats=FALSE,
       verbose=FALSE, plotCytoscape=FALSE)
)
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Figure 7. Integrated patient similarity network, generated by combining all networks that consistently 
pass feature selection. This network is generated by calling plotIntegratedPatientNetwork() and uses RCy3 to 
programmatically generate the network in Cytoscape7,8. This network uses features that scored 2 out of 2 in all train-
test splits. For visualization, only the top 8% most-distant edges are shown. Nodes are patients, and edges weights 
show average similarity across all features passing feature selection. Node fills indicate patient label, with “LumA” in 
green and “nonLumA” in orange.

Figure 6. Shortest pairwise patient distances within and among patient classes in the integrated network 
for breast tumour classification. This visualization and statistic are useful to ascertain whether or not patients of the 
same label are more similar in the integrated network; having within-class distance be significantly smaller than across-
class distance is indicative of good class separation. This graph is generated using the plotIntegratedPatientNetwork() 
function. From left to right, it shows pairwise patient shortest distances: within patients of class “LumA”; between the 
two class labels; within patients of the residual class “nonLumA”; and between all patients in the network. 
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The integrated PSN can also be visualized as a tSNE plot (Figure 8).

tsne <- plot_tSNE(psn$patientSimNetwork_unpruned,colData(brca))

summary(tsne)

##                     Length Class  Mode   
## N                     1    -none- numeric
## Y                   662    -none- numeric
## costs               331    -none- numeric
## itercosts            20    -none- numeric
## origD                 1    -none- numeric
## perplexity            1    -none- numeric
## theta                 1    -none- numeric
## max_iter              1    -none- numeric
## stop_lying_iter       1    -none- numeric
## mom_switch_iter       1    -none- numeric
## momentum              1    -none- numeric
## final_momentum        1    -none- numeric
## eta                   1    -none- numeric
## exaggeration_factor   1    -none- numeric

Use case 2: Three-way classifier with clinical and three types of ‘omic data
Introduction. In this example, we will use clinical data and three types of ’omic data - gene expression, DNA 
methylation and proteomic data - to classify breast tumours as being one of three types: Luminal A, Luminal B,  
or Basal. This example is an extension of the one used to build a binary classifier (see Use Case 1).

We also use several strategies and definitions of similarity to create features:

•    Clinical variables: Each variable (e.g. age) is its own feature; similarity is defined as normalized difference.

•    Gene expression: Features are defined at the level of pathways; i.e. a feature groups genes within the pathway.  
Similarity is defined as pairwise Pearson correlation.

•    Proteomic and methylation data: Features are defined at the level of the entire data layer; a single feature  
is created for all of proteomic data, and the same for methylation. Similarity is defined as pairwise  
Pearson correlation.

Figure 8. tSNE plot of integrated patient similarity network based on features passing selection.
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Setup. Load the netDx package.

suppressWarnings(suppressMessages(require(netDx)))

Data. For this example, we download data from The Cancer Genome Atlas through the Bioconductor  
curatedTCGAData package. The fetch command automatically creates a MultiAssayExperiment object  
containing the data.

suppressMessages(library(curatedTCGAData))

We use the curatedTCGAData() command to explore available data types in the breast cancer dataset.

curatedTCGAData(diseaseCode="BRCA", assays="*",dry.run=TRUE)

##                                         Title DispatchClass
## 31                       BRCA_CNASeq-20160128           Rda
## 32                       BRCA_CNASNP-20160128           Rda
## 33                       BRCA_CNVSNP-20160128           Rda
## 35             BRCA_GISTIC_AllByGene-20160128           Rda
## 36                 BRCA_GISTIC_Peaks-20160128           Rda
## 37     BRCA_GISTIC_ThresholdedByGene-20160128           Rda
## 39  BRCA_Methylation_methyl27-20160128_assays        H5File
## 40      BRCA_Methylation_methyl27-20160128_se           Rds
## 41 BRCA_Methylation_methyl450-20160128_assays        H5File
## 42     BRCA_Methylation_methyl450-20160128_se           Rds
## 43                 BRCA_miRNASeqGene-20160128           Rda
## 44                    BRCA_mRNAArray-20160128           Rda
## 45                     BRCA_Mutation-20160128           Rda
## 46              BRCA_RNASeq2GeneNorm-20160128           Rda
## 47                   BRCA_RNASeqGene-20160128           Rda
## 48                    BRCA_RPPAArray-20160128           Rda

In this call we fetch only the gene expression, proteomic and methylation data; setting dry.run=FALSE initiates  
the fetching of the data.

brca <- suppressWarnings(suppressMessages(
   curatedTCGAData("BRCA",
                 c("mRNAArray","RPPA*","Methylation_methyl27*"),
    dry.run=FALSE)))

This next code block prepares the TCGA data. In practice this is performed once, and the resulting data is saved  
before running netDx, but we run it here to see an end-to-end example.

# prepare clinical variable - stage
staget <- sub("[abcd]","",sub("t","",colData(brca)$pathology_T_stage))
staget <- suppressWarnings(as.integer(staget))
colData(brca)$STAGE <- staget

# exclude normal, HER2 (small num samples)
pam50 <- colData(brca)$PAM50.mRNA
idx <- union(which(pam50 %in% c("Normal-like","HER2-enriched")), 
    which(is.na(staget)))
idx <- union(idx, which(is.na(pam50)))
pID <- colData(brca)$patientID
tokeep <- setdiff(pID, pID[idx])
brca <- brca[,tokeep,]
pam50 <- colData(brca)$PAM50.mRNA
colData(brca)$pam_mod <- pam50

# remove duplicate names
smp <- sampleMap(brca)
for (nm in names(brca)) {
    samps <- smp[which(smp$assay==nm),]
    notdup <- samps[which(!duplicated(samps$primary)),"colname"]
    brca[[nm]] <- suppressMessages(brca[[nm]][,notdup])
}

The important thing is to create ID and STATUS columns in the sample metadata slot. netDx uses these to get  
the patient identifiers and labels, respectively.
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pID <- colData(brca)$patientID
colData(brca)$ID <- pID
colData(brca)$STATUS <- gsub(" ","_",colData(brca)$pam_mod)

Rules to create features (patient similarity networks). We will group gene expression data by pathways and clini-
cal data by single variables. We will treat methylation and proteomic data each as a single feature, so each of those  
groups will contain the entire input table for those corresponding data types.

In the code below, we fetch pathway definitions from January 2018 from a source that auto-compiles these from 
curated pathway databases (http://download.baderlab.org/EM_Genesets). We choose the January 2018 source 
to be consistent with earlier published work, but normally the latest source would be downloaded. We group  
gene expression measures by pathways.

Grouping rules are accordingly created for the clinical, methylation and proteomic data.

groupList <- list()

# genes in mRNA data are grouped by pathways
pathList <- readPathways(fetchPathwayDefinitions("January",2018))

## ---------------------------------------

## Fetching  
http://download.baderlab.org/EM_Genesets/January_01_2018/Human/symbol/Human_AllPathways_January_
01_2018_symbol.gmt

## File: 182107f6006ac_Human_AllPathways_January_01_2018_symbol.gmt

## Read 3028 pathways in total, internal list has 3009 entries

##  FILTER: sets with num genes in [10, 200]

##    => 971 pathways excluded
##    => 2038 left

groupList[["BRCA_mRNAArray-20160128"]] <- pathList[1:3]
# clinical data is not grouped; each variable is its own feature
groupList[["clinical"]] <- list(
       age="patient.age_at_initial_pathologic_diagnosis",
        stage="STAGE"
)
# for methylation generate one feature containing all probes
# same for proteomics data
tmp <- list(rownames(experiments(brca)[[2]]));
names(tmp) <- names(brca)[2]
groupList[[names(brca)[2]]] <- tmp

tmp <- list(rownames(experiments(brca)[[3]]));
names(tmp) <- names(brca)[3]
groupList[[names(brca)[3]]] <- tmp

Define patient similarity for each network. We provide netDx with a custom function to generate similarity  
networks (i.e. features). The first block tells netDx to generate correlation-based networks using everything but  
the clinical data. This is achieved by the call:

makePSN_NamedMatrix(..., writeProfiles=TRUE,...)`

To make features from single measures using clinical data, the second block makes a slightly-modified call to 
makePSN_NamedMatrix(), this time requesting the use of the normalized difference similarity metric.  
This is achieved by calling:

makePSN_NamedMatrix(,..., 
                    simMetric="custom", customFunc=normDiff,
                    writeProfiles=FALSE)
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normDiff is a function provided in the netDx package, but the user may define custom similarity functions in  
this block of code and pass those to makePSN_NamedMatrix(), using the customFunc parameter.

makeNets <- function(dataList, groupList, netDir,...) {
    netList <- c() # initialize before is.null() check
    # correlation-based similarity for mRNA, RPPA and methylation data
    # (Pearson correlation)
    for (nm in setdiff(names(groupList),"clinical")) {
       # NOTE: the check for is.null() is important!
        if (!is.null(groupList[[nm]])) {
        netList <- makePSN_NamedMatrix(dataList[[nm]],
                     rownames(dataList[[nm]]),
                   groupList[[nm]],netDir,verbose=FALSE,
                     writeProfiles=TRUE,...) 
        }
    }

    # make clinical nets (normalized difference)
    netList2 <- c()
    if (!is.null(groupList[["clinical"]])) {
    netList2 <- makePSN_NamedMatrix(dataList$clinical, 
        rownames(dataList$clinical),
        groupList[["clinical"]],netDir,
        simMetric="custom",customFunc=normDiff, # custom function
        writeProfiles=FALSE,
        sparsify=TRUE,verbose=TRUE,...)
    }
    netList <- c(unlist(netList),unlist(netList2))
    return(netList)
}

Build predictor. Finally, we make the call to build the predictor.

set.seed(42) # set a custom seed to make results reproducible

# location for intermediate work
# set keepAllData to TRUE to not delete at the end of the 
# predictor run.
# This can be useful for debugging.
outDir <- paste(tempdir(),"pred_output",sep=getFileSep()) 

numSplits <- 2L
out <- suppressMessages(
   buildPredictor(dataList=brca,groupList=groupList,
      makeNetFunc=makeNets,outDir=outDir,
      numSplits=numSplits, featScoreMax=2L, featSelCutoff=1L,
       numCores=1L)
)

## function(dataList, groupList, netDir,...) {
##  netList <- c() # initialize before is.null() check
##  # correlation-based similarity for mRNA, RPPA and methylation data
##  # (Pearson correlation)
##  for (nm in setdiff(names(groupList),"clinical")) {
##     # NOTE: the check for is.null() is important!
##      if (!is.null(groupList[[nm]])) {
##      netList <- makePSN_NamedMatrix(dataList[[nm]],
##                   rownames(dataList[[nm]]),
##                    groupList[[nm]],netDir,verbose=FALSE,
##                   writeProfiles=TRUE,...) 
##      }
##  }
##  
##  # make clinical nets (normalized difference)
##  netList2 <- c()
##  if (!is.null(groupList[["clinical"]])) {
##  netList2 <- makePSN_NamedMatrix(dataList$clinical, 
##      rownames(dataList$clinical),
##      groupList[["clinical"]],netDir,
##      simMetric="custom",customFunc=normDiff, # custom function
##      writeProfiles=FALSE,
##      sparsify=TRUE,verbose=TRUE,...)
##  } 
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##  netList <- c(unlist(netList),unlist(netList2))
##  return(netList)
## }
##             IS_TRAIN
## STATUS       TRAIN TEST
##   Basal-like    77   20
##   Luminal_A    184   46
##   Luminal_B    101   26
## 
## Luminal_A   nonpred      <NA> 
##       184       178         0 
## 
## Basal-like    nonpred       <NA> 
##         77        285          0 
## 
## Luminal_B   nonpred      <NA> 
##       101       261         0 
##             IS_TRAIN
## STATUS       TRAIN TEST
##   Basal-like    77   20
##   Luminal_A    184   46
##   Luminal_B    101   26
## 
## Luminal_A   nonpred      <NA> 
##       184       178         0 
## 
## Basal-like    nonpred       <NA> 
##         77        285          0 
## 
## Luminal_B   nonpred      <NA> 
##       101       261         0

Compute accuracy for three-way classification:

# Average accuracy
st <- unique(colData(brca)$STATUS) 
acc <- matrix(NA,ncol=length(st),nrow=numSplits) 
colnames(acc) <- st 
for (k in 1:numSplits) { 
    pred <- out[[sprintf("Split%i",k)]][["predictions"]];
    tmp <- pred[,c("ID","STATUS","TT_STATUS","PRED_CLASS",
                     sprintf("%s_SCORE",st))]
    for (m in 1:length(st)) {
       tmp2 <- subset(tmp, STATUS==st[m])
       acc[k,m] <- sum(tmp2$PRED==tmp2$STATUS)/nrow(tmp2)
    }
}
print(round(acc*100,2))

##      Luminal_A Basal-like Luminal_B
## [1,]     57.14        100     28.57
## [2,]     58.62        100     45.00

On examining the confusion matrix above, we can see that the model perfectly classifies basal tumours, but  
performs poorly in distinguishing between the two types of luminal tumours. This performance is unsurprising  
because luminal and basal tumours have different molecular characteristics, with the latter being ER- tumours; in con-
trast, both Luminal A and B are both types of ER+ tumours9.

res <- out$Split1$predictions
print(table(res[,c("STATUS","PRED_CLASS")]))

##             PRED_CLASS
## STATUS       Basal-like Luminal_A
##   Basal-like         14         0
##   Luminal_A           4        16
##   Luminal_B           4         6
##             PRED_CLASS
## STATUS       Luminal_B
##   Basal-like         0
##   Luminal_A          8
##   Luminal_B          4
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Use case 3: Binary classifier using sparse genetic data and pathway-level features
netDx natively handles missing data, making it suitable to build predictors with sparse genetic data such as somatic 
DNA mutations, frequently seen in cancer, and from DNA copy number variations (CNVs). netDx handles missing  
data at two levels. First, netDx uses patient similarity networks, not input data, as its features. Missing data can 
be handled by the similarity metric used to make this conversion. e.g. If similarity is defined as the Pearson cor-
relation between gene expression measures at the pathway level, then omitting missing genes from the correlation  
calculation still allows the correlations, and thus the pathway-level network, to be computed. Where patients are 
missing a particular feature, the network integration step uses what information it has. For example, in a scenario 
where the data consist of transcriptomic and proteomic measures, if a patient is missing transcriptomic data, the  
integration step will use only the proteomic data (network edges) for that patient.

This example demonstrates how to use netDx to build a predictor from sparse genetic data. Here we build a case/ 
control classifier for autism spectrum disorder (ASD) diagnosis, starting from rare CNVs; for this, we use data from  
Pinto et al.10. The design for this predictor is shown in Figure 9.

Design and adapting the algorithm for sparse event data. In this design, we group CNVs by pathways. The 
logic behind the grouping is prior evidence showing that genetic events in diseases tend to converge on cellular  
processes of relevance to the pathophysiology of the disease10.

Figure 9. Predictor design for binary classification of case/control diagnosis in netDx, starting from rare 
CNVs. CNVs are grouped into pathway-level features and patient similarity is binary; i.e. two patients have similarity 
of one if they share CNVs in genes from the same pathway. Feature selection is iteratively performed on independent 
thirds of the sample set. This design uses an additional label enrichment step that precedes feature selection. Label 
enrichment filters out networks with insufficient bias towards case-case edges, using a label-based permutation 
approach. Networks with significant label enrichment are used in feature selection. Scores from all three feature-
selection splits are added to get a final score for each feature, with a maximum attainable score of 30. Test patients are 
classified as cases if they carry a CNV in a pathway that passes feature selection.
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Binary similarity and label enrichment
In this design, similarity is defined as a binary function, a strategy that has advantages and drawbacks. In plain 
terms, if two patients share a mutation in a pathway, their similarity for that pathway is 1; otherwise it is zero.  
This binary definition, while conceptually intuitive, increases the false positive rate in the netDx feature selec-
tion step. That is, networks with even a single case sample will get a high feature score, regardless of whether  
that network is enriched for case samples.

To counter this problem, we introduce a label-enrichment step in the feature selection. A bias measure is first  
computed for each network, such that a network with only cases scores +1; one with only controls scores -
1; and one with an equal number of both has a score of zero. Label-enrichment compares the bias in each real  
network, to the bias in that network in label-permuted data. It then assigns an empirical p-value for the pro-
portion of times a label-permuted network has a bias as high as the real network. Only networks with a  
p-value below a user-assigned threshold (default: 0.07) pass label-enrichment, and feature selection is lim-
ited to these networks. In netDx, label-enrichment is enabled by setting enrichLabels=TRUE in the call to  
buildPredictor_sparseGenetic().

Cumulative feature scoring
The other difference between this design and those with non-sparse data, is the method of scoring features  
(Figure 9). The user specifies a parameter which indicates the number of times to split the data and run feature 
selection. The algorithm then runs feature selection numSplits times, each time leaving 1/numSplits of 
the samples out. In each split, features are scored between zero and featScoreMax, using the same approach 
as is used for continuous-valued input. Feature scores are then added across the splits so that a feature can score  
as high as numSplits*featScoreMax.

Evaluating model performance
For a given cutoff for features, a patient is called a “case” if they have a genetic event in pathways that pass fea-
ture selection at that cutoff; otherwise, at that cutoff, they are labelled a “control”. These calls are used to generate  
the false positive and true positive rates across the various cutoffs, which ultimately generates a ROC curve.

Setup

suppressMessages(require(netDx))
suppressMessages(require(GenomicRanges))

Data. CNV coordinates are read in, and converted into a GRanges object. As always, the sample metadata table,  
here the pheno object, must have ID and STATUS columns.

outDir <- sprintf("%s/200129_threeWay",tempdir())
if (file.exists(outDir)) unlink(outDir,recursive=TRUE); 
dir.create(outDir)

cat("* Setting up sample metadata\n")

## * Setting up sample metadata

phenoFile <- sprintf("%s/extdata/AGP1_CNV.txt",path.package("netDx"))
pheno   <- read.delim(phenoFile,sep="\t",header=TRUE,as.is=TRUE)
colnames(pheno)[1] <- "ID"
head(pheno)

##        ID seqnames    start      end    Gene_symbols Pathogenic STATUS
## 3  1020_4     chr3  4110452  4145874                         no   case
## 4  1030_3    chr10 56265896 56361311                         no   case
## 5  1030_3     chr7 64316996 64593616 ZNF92,LOC441242         no   case
## 7  1045_3     chr3 83206919 83239473                         no   case
## 11 1050_3     chr6 57021412 57062509        KIAA1586         no   case
## 16 1116_4     chr1 30334653 30951250                         no   case

cnv_GR    <- GRanges(pheno$seqnames,IRanges(pheno$start,pheno$end),
                        ID=pheno$ID,LOCUS_NAMES=pheno$Gene_symbols)
pheno <- pheno[!duplicated(pheno$ID),]
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Group CNVs by pathways. The fetchPathwayDefinitions() function downloads pathway defini-
tions from baderlab.org but users may provide custom .gmt files as well. We use the BiocFileCache  
package to download gene definitions for the hg18 genome build, and convert these a GRanges object. The  
function mapNamedRangesToSets() is used to group this GRanges object into pathway-level sets.

pathFile <- fetchPathwayDefinitions("February",2018,verbose=TRUE)

## Fetching http://download.baderlab.org/EM_Genesets/February_01_2018/Human/symbol/Human_
AllPathways_February_01_2018_symbol.gmt

pathwayList <- readPathways(pathFile)

## ---------------------------------------

## File: f72c2f3fae_Human_AllPathways_February_01_2018_symbol.gmt

## Read 3199 pathways in total, internal list has 3163 entries

##  FILTER: sets with num genes in [10, 200]

##    => 1044 pathways excluded 
##    => 2119 left

suppress(Messagesrequire(BiocFileCache))
geneURL <- paste("http://download.baderlab.org/netDx/",
    "supporting_data/refGene.hg18.bed",sep="")
cache <- rappdirs::user_cache_dir(appname = "netDx")
bfc <- BiocFileCache::BiocFileCache(cache,ask=FALSE)
geneFile <- bfcrpath(bfc, geneURL)
genes <- read.delim(geneFile,sep="\t",header=FALSE,as.is=TRUE)
genes <- genes[which(genes[,4]!=""),]
gene_GR     <- GRanges(genes[,1],IRanges(genes[,2],genes[,3]),
   name=genes[,4])

Group gene extents into pathway-based sets, which effectively creates grouping rules for netDx. The function  
mapNamedRangesToSets() does this grouping, generating a GRangesList object.

path_GRList <- mapNamedRangesToSets(gene_GR,pathwayList)

Run predictor. Once the phenotype matrix and grouping rules are set up, the predictor is called using  
buildPredictor_sparseGenetic(). Note that unlike with non-sparse data, the user does not provide 
a custom similarity function in this application; currently, the only option available is the binary similarity defined 
above. As discussed above, setting enrichLabels=TRUE to enable label-enrichment is highly recommended  
to reduce false positive rate.

predictClass    <- "case" 
out <- suppressMessages( 
   buildPredictor_sparseGenetic(pheno, cnv_GR, predictClass, 
                             path_GRList,outDir, 
                             numSplits=3L, featScoreMax=3L, 
                             enrichLabels=TRUE,numPermsEnrich=20L, 
                             numCores=2L) 
) 
##          TT_STATUS 
## STATUS    TEST TRAIN 
##   case     188   376 
##   control  208   418 
## [1] 794 
##    user  system elapsed  
##   0.681   0.234  11.180 
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##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
## -1.0000 -0.7143  0.2000  0.1505  1.0000  1.0000  
## [1] 363 
## Time difference of 7.545976 secs 
##          TT_STATUS 
## STATUS    TEST TRAIN 
##   case     188   376 
##   control  208   418 
## [1] 794 
##    user  system elapsed  
##   0.583   0.091   9.431  
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
## -1.0000 -0.6295  0.1667  0.1269  1.0000  1.0000  
## [1] 392 
## Time difference of 12.61768 secs 
##          TT_STATUS 
## STATUS    TEST TRAIN 
##   case     188   376 
##   control  210   416 
## [1] 792 
##    user  system elapsed  
##   0.972   0.146  12.872  
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
## -1.0000 -0.5668  0.2000  0.1523  1.0000  1.0000 
## [1] 484 
## Time difference of 16.2142 secs

Plot results. Feature selection identifies pathways that are consistently enriched for the label of interest; here, “case” 
status. From the diagnostic point of view, a patient with a genetic event in a selected feature - here, a CNV in a 
feature-selected pathway - is labelled a “case”. “True positives” are therefore cases with CNVs in feature-selected  
pathways, while “false positives” are controls with CNVs in feature-selected pathways. These definitions are  
used to compute the ROC curve below (Figure 10).

dat <- out$performance_denEnrichedNets 
plot(0,0,type="n",xlim=c(0,100),ylim=c(0,100), 
    las=1, xlab="False Positive Rate (%)",  
    ylab="True Positive Rate (%)", 
    bty='n',cex.axis=1.5,cex.lab=1.3, 
    main="ROC curve - Patients in label-enriched pathways") 
points(dat$other_pct,dat$pred_pct, 
      col="red",type="o",pch=16,cex=1.3,lwd=2)

Figure 10. ROC curve for case-control classification in autism, using rare copy number variations (CNV) 
in pathway genes. In this design, patients are classified as cases if they carry a CNV in pathways passing feature 
selection, and controls otherwise. Each dot in the graph shows the sensitivity/specificity for a given cutoff for  
feature selection.
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We can also compute the AUROC and AUPR. 

tmp <- data.frame(   
    score=dat$score, 
    tp=dat$pred_ol,fp=dat$other_ol, 
    # tn: "-" that were correctly not called 
    tn=dat$other_tot - dat$other_ol, 
    # fn: "+" that were not called  
    fn=dat$pred_tot - dat$pred_ol) 

stats <- netDx::perfCalc(tmp) 
tmp <- stats$stats 
message(sprintf("PRAUC = %1.2f\n", stats$prauc))

## PRAUC = 0.63

message(sprintf("ROCAUC = %1.2f\n", stats$auc))

## ROCAUC = 0.70

This predictor performs outperforms previous CNV-based classifiers11; in a real-world scenario this model would 
need to be validated on an independent dataset. In our experience, using a combination of sparse genetic data and 
binary similarity makes classifiers prone to overfitting. Measures commonly used to mitigate overfitting include  
training the model on larger datasets, and larger number of train/test splits are advised.

Pathway scores are also added across the splits, for a total of 9 across the 3 splits (3 + 3 + 3).

# now get pathway score 
tmp <- out$cumulativeFeatScores 
rownames(tmp) <- NULL 
print(head(tmp))

##                                                      PATHWAY_NAME SCORE 
## 1 NEUROTRANSMITTER_RECEPTORS_AND_POSTSYNAPTIC_SIGNAL_TRANSMISSION     8 
## 2                                              HUNTINGTON_DISEASE     7 
## 3              NICOTINIC_ACETYLCHOLINE_RECEPTOR_SIGNALING_PATHWAY     6 
## 4                          BETA-CATENIN_INDEPENDENT_WNT_SIGNALING     6 
## 5                                                 G2_M_TRANSITION     6 
## 6                                          MITOTIC_G2-G2_M_PHASES     6

As before, running the predictor with all possible pathway-related features and realistic training parameters, such 
as numPermsEnrich=200L, featScoreMax=10L, numSplits=3L identifies a much richer set of themes 
related to synaptic transmission and cell proliferation, consistent with the known biology of ASD as well as  
those identified in the original publication10.

The nodes in Figure 11 have been reorganized to group clusters sharing a broader theme. Terms related to  
neurotransmission and synaptic plasticity are in the bottom left, those related to the cell cycle and proliferation  
are in the top-right, and those related to immune function are in the bottom right.

The dynamic range of feature scores is much larger as well, here ranging from 0 to 30. The resulting ROC 
curve in Figure 12 accordingly has 30 cutoffs at which specificity and sensitivity are evaluated, evidenced by  
30 datapoints in that curve. This is in contrast to 9 cutoffs in the ROC curve shown in Figure 10.

Use case 4: Mutation-based classifier using indirect mutations inferred from known interaction 
networks
netDx provides the option of reducing the sparsity of mutation data by inferring “indirect mutations” using prior 
knowledge of gene-gene interaction networks. Conceptually, the logic is that if a patient has a mutation in a 
given gene, the mutation indirectly impacts interacting genes. Indirect mutation is inferred by label propagat-
ing patient mutations over a gene-gene interaction network onto neighbours. The resulting smoothed network is 
then used for downstream applications. This network-based smoothing improved mutation-based tumour class  
discovery in four types of cancer12. For label propagation, we use an R-based implementation of random walk 
with restart, a popular strategy in bioinformatic applications12–15. The result of using this strategy on a patient’s 
binary somatic mutation profile is a non-sparse profile in which genes are assigned a continuous score between 
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Figure 11. Enrichment map showing top-scoring pathway features for classifying case-control autism using 
rare CNVs. Nodes show pathway features cumulatively scoring 13 or higher out of 30, while edges connect pathways 
with common member genes. Node fill indicates pathway score, with yellow for the lowest and red for the highest.

Figure 12. Model performance for case-control classification of autism using rare CNVs, with greater number 
of splits. Legend identical to Figure 9, except that here the graph is comprised of 30 measures because features are 
scored out of 30, rather than in Figure 9, where features are scored out of 9.

zero and one, that reflects its network proximity to patient mutations. This propagation value is then ranked and  
binarized, with the top-ranked fraction set to one; this fraction defaults to 3% and is tunable. The binarization serves 
to limit inferred mutation to genes closest to the known mutations. For instance, genes distant from the patient’s 
mutation would get a low propagation value, and would be thresholded to zero, i.e. not considered to be mutated.  
The result of this step is a less sparse binary matrix, which serves as input data to the predictor.

In this example, we use direct and inferred somatic mutations to classify Testicular Germ Cell Tumours (TGCT)16 
by binarized pathologic stage. As with the previous use case, we create pathway-level features to reflect that  
cancer progression occurs by a combination of genes acting in molecular networks corresponding to cancer  
hallmark processes such as cell proliferation and apoptosis13,17. As in Use Case 3, similarity used is the binary  
function. If two patients share a mutation in a pathway, their similarity for that pathway is one; otherwise it is zero.
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Setup

set.seed(8)
suppressWarnings(suppressMessages(require(netDx)))
suppressWarnings(suppressMessages(require(MultiAssayExperiment)))

Data. Clinical and genetic data are downloaded using the Bioconductor package curatedTCGAData. Muta-
tions are converted to a binary matrix format where rows represent genes, columns represent patients; entry [i,j] is  
set to one if gene i has a somatic mutation, and zero otherwise.

genoFile <- paste(system.file("extdata",package="netDx"),
        "TGCT_mutSmooth_geno.txt",sep=getFileSep())
geno <- read.delim(genoFile,sep="\t",header=TRUE,as.is=TRUE)

phenoFile <- paste(system.file("extdata",package="netDx"),
        "TGCT_mutSmooth_pheno.txt",sep=getFileSep())
                                          
pheno <- read.delim(phenoFile,sep="\t",header=TRUE,as.is=TRUE)
rownames(pheno) <- pheno$ID

table(pheno$STATUS)

## 
## EARLY  LATE 
##    66    14

Smooth mutations over a gene interaction network. The gene-gene interaction network used in this example  
contains high-confidence cancer-specific interactions18. This specific network effectively clusters tumour samples  
of patients, distinguishing them by tumour type and time of survival. This is a binary symmetric network.

# download example nets from remote location for vignette
require(BiocFileCache)

## Loading required package: BiocFileCache

## Loading required package: dbplyr

netFileURL <- paste("http://download.baderlab.org/netDx/",
    "supporting_data/CancerNets.txt",sep="")
cache <- rappdirs::user_cache_dir(appname = "netDx")
bfc <- BiocFileCache::BiocFileCache(cache,ask=FALSE)
netFile <- bfcrpath(bfc,netFileURL)
cancerNets <- read.delim(netFile,sep="\t",header=TRUE,as.is=TRUE)
head(cancerNets[,1:5])

##        HSPA2 RPN1 GK2 HSPA6 PPP3R1
## HSPA2      0    1   1     1      1
## RPN1       1    0   0     1      0
## GK2        1    0   0     1      0
## HSPA6      1    1   1     0      1
## PPP3R1     1    0   0     1      0
## DLG1       1    0   0     1      0

smoothMutations_LabelProp() is used to smooth the mutations using the provided interaction network, by 
using label propagation. The output of this method is a continuous-valued network which reflects the network  
proximity of the non-zero values to the original mutations.

require(doParallel)

## Loading required package: doParallel

## Loading required package: foreach

## Loading required package: iterators

# Start the node clusters for parallel propagation
smoothedMutations <- smoothMutations_LabelProp(geno,cancerNets,numCores=1L)
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Finally, the smoothed matrix is binarized. Genes with a propagation value greater than a specified cutoff are set to 
one, with the rest set to zero. This step ensures that genes which get a low propagation value are not used. Genes 
with lower smoothed values reflect those farther from the original mutation, and setting these to zero signifies a  
lack of confidence that these were impacted.

lessSparseMut <- thresholdSmoothedMutations(
   smoothedMutations,geno,"TGCT_CancerNets",c(20)
   )

Create pathway-level features with binary patient similarity. Smoothed mutations are now grouped at the level 
of biological pathways. As with other examples, pathways are downloaded from a compilation of curated pathway  
databases (GMT format). Thereafter, we define pathway-level patient similarity to be binary; i.e. if two patients 
share a mutation in genes from the same pathway, their mutual similarity is one; else it is zero. Individual steps  
below use identical functions to those used in the first use case above.

#Setup to build the predictor
pathwayList <- readPathways(
   fetchPathwayDefinitions("January",2018)
   )
   
## ---------------------------------------

## Fetching http://download.baderlab.org/EM_Genesets/January_01_2018/Human/symbol/Human_
AllPathways_January_01_2018_symbol.gmt

## File: 1c25416f319_Human_AllPathways_January_01_2018_symbol.gmt

## Read 3028 pathways in total, internal list has 3009 entries

##  FILTER: sets with num genes in [10, 200]

##    => 971 pathways excluded

##    => 2038 left

exprdat <- SummarizedExperiment(lessSparseMut, colData=pheno)
objList <- list(genetic=exprdat)

Now we define functions for patient similarity:

makeNets <- function(dataList,groupList,netDir,numCores,...) {
  netList <- c(); netList2 <- c()
  
  # create genetic nets
  if (!is.null(groupList[["genetic"]])) {
    netList <- makeMutNets(dataList[["genetic"]],
        groupList[["genetic"]],
        netDir,numC=numCores)
  } 
  return(netList)
}

# g geno matrix, genes by patients (columns) - binary
# pList list of genesets
# outDir - dir where nets are to be written
makeMutNets <- function(g,pList,oDir,numC) {
  g <- t(g) # transpose to have genes as columns
  cl    <- makeCluster(numC)
  registerDoParallel(cl)
  
  numPat <- c()
  netList <- foreach(k=1:length(pList)) %do% {
    idx <- which(colnames(g) %in% pList[[k]])
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    if (length(idx)>0) {
      has_mut <- rowSums(g[,idx,drop=FALSE])
      has_mutp <- names(has_mut)[which(has_mut>0)]
      
      if (length(has_mutp)>=6) {
        ##cat(sprintf("%s: %i patients\n", names(pList)[k],
        ##            length(has_mutp)))
        #numPat <- c(numPat, length(has_mutp))
        pat_pairs <- t(combinat::combn(has_mutp,2));
        pat_pairs <- cbind(pat_pairs,1);
        outFile <- sprintf("%s/%s_cont.txt",oDir,names(pList)[k])
        write.table(pat_pairs, file=outFile,sep="\t",
                    col=FALSE,row=FALSE,quote=FALSE)
        basename(outFile)
      } else NULL
    } else {
      NULL
    }
  }
  stopCluster(cl)
  unlist(netList)
}

Build predictor. Finally, we compile all the data into a MultiAssayExperiment object and as before, run the  
predictor.

exprdat <- SummarizedExperiment(lessSparseMut, colData=pheno)
objList <- list(genetic=exprdat)
groupList <- list(genetic=pathwayList)
dataList <- MultiAssayExperiment(objList,pheno)

The predictor call is essentially the same as with other simpler designs:

outDir <- paste(tempdir(),randAlphanumString(),"pred_output",sep=getFileSep())
if (!file.exists(outDir)) unlink(outDir,recursive=TRUE) 

out <- suppressMessages(
    buildPredictor(dataList=dataList,groupList=groupList,
      makeNetFunc=makeNets, ## custom similarity
      outDir=outDir, ## absolute path
      numCores=1L, featScoreMax=2L, featSelCutoff=2L,
      numSplits=2L,logging="none"
))

Examine output. This code collects different components of model output to examine the results.

numSplits <- 2L
st <- unique(colData(dataList)$STATUS)
acc <- c()         # accuracy
predList <- list() # prediction tables

featScores <- list() # feature scores per class
for (cur in unique(st)) featScores[[cur]] <- list()

for (k in 1:numSplits) {
    pred <- out[[sprintf("Split%i",k)]][["predictions"]];
    # predictions table
    tmp <- pred[,c("ID","STATUS","TT_STATUS","PRED_CLASS",
                     sprintf("%s_SCORE",st))]
    predList[[k]] <- tmp 
    # accuracy
    acc <- c(acc, sum(tmp$PRED==tmp$STATUS)/nrow(tmp))
    # feature scores
    for (cur in unique(st)) {
       tmp <- out[[sprintf("Split%i",k)]][["featureScores"]][[cur]]
       colnames(tmp) <- c("PATHWAY_NAME","SCORE")
       featScores[[cur]][[sprintf("Split%i",k)]] <- tmp
    }
}

Page 30 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021



Plot the AUROC and AUPR curves (Figure 13):

predPerf <- plotPerf(predList, predClasses=st)

Examine features with the highest scores. Here, these are pathways with somatic mutations that best predict  
vital status:

featScores2 <- lapply(featScores, getNetConsensus)
summary(featScores2)

##       Length Class      Mode
## EARLY 3      data.frame list
## LATE  3      data.frame list

featSelNet <- lapply(featScores2, function(x) {
    callFeatSel(x, fsCutoff=1, fsPctPass=0)
})
print(head(featScores2[["LATE"]]))

##                                                                                               PATHWAY_NAME
## 1                             1D-_I_MYO__I_-INOSITOL_HEXAKISPHOSPHATE_BIOSYNTHESIS_II__MAMMALIAN__cont.txt
## 2                                                                 3-PHOSPHOINOSITIDE_BIOSYNTHESIS_cont.txt
## 3                                                                  3-PHOSPHOINOSITIDE_DEGRADATION_cont.txt
## 4                                   ABORTIVE_ELONGATION_OF_HIV-1_TRANSCRIPT_IN_THE_ABSENCE_OF_TAT_cont.txt
## 5 ACTIVATED_PKN1_STIMULATES_TRANSCRIPTION_OF_AR__ANDROGEN_RECEPTOR__REGULATED_GENES_KLK2_AND_KLK3_cont.txt
## 6                                                     ACTIVATED_TAK1_MEDIATES_P38_MAPK_ACTIVATION_cont.txt
##   Split1 Split2
## 1      1     NA
## 2      2      2
## 3      2      2
## 4      1     NA
## 5      2      2
## 6      2      1

Software updates
netDx v1.1.4 has several updates relative to the version released with the netDx methods report (v1.0.23)2. The 
new netDx package supports OS X and Unix platforms. It also supports Windows systems, with the excep-
tion of those that do not have the Java executable available in the system search path. The companion R 
package netDx-examples, previously used to store example data, is now deprecated. All examples are now either 
contained within the netDx package or are fetched from Bioconductor using local file-caching via the FileCache 
package. Major functions have been renamed to reflect their role rather than implementation, making their usage  

Figure 13. Performance measures for predictor that desparsifies binary somatic mutations using a user-
provided gene-gene interaction network.

Page 31 of 42

F1000Research 2021, 9:1239 Last updated: 23 FEB 2021



more intuitive (Table 1). The current version of netDx includes a novel workflow of building a classifier from 
sparse genetic data (see Use Case 3), using the function buildPredictor_sparseGenetic(). We also added 
the functionality to generate an integrated patient similarity network from features passing selection. The  
plotIntegratedPatientNetwork() function generates this network, computes statistics on pairwise shortest dis-
tance measures (Dijkstra distance) within and across labels, and automatically generates a network visualization in  
Cytoscape.

A number of software updates were made as part of Bioconductor integration. Unlike the previous version 
where all user output was written to a specific output directory, all predictor output is now returned to users as R 
objects, and intermediate work is written to temporary directories by default. The turnkey predictor-building func-
tion no longer automatically generates a log file; rather, users are required to create their own log files using the 
R sink() function. Functions computing model performance and plotting no longer assume a directory struc-
ture created by the model-building step. Users now set random number generator seeds at the outset, instead of  
providing a seed as an input parameter to various functions. Automated network visualization in Cytoscape now  
uses RCy3, for programmatic access of Cytosape from R.

Memory improvements were made to the underlying GeneMANIA network integration algorithm Java  
implementation19,20, creating a modified version specifically for netDx. netDx incurs a relatively higher memory  
footprint because each feature in netDx internally generates a similarity network with pairwise similarity meas-
ures. Network integration, a step in feature selection, requires keeping all these networks in memory. Certain 
grouping rules also incur a greater memory footprint than others. Notably, a model with pathway-level features 
converts one gene expression data matrix into ~2,000 pathway-level patient similarity networks; such a design 
is less scalable in the number of nodes, than one which creates a single feature based on all gene expression.  
We optimized netDx memory usage by customizing the underlying GeneMANIA Java application used for  
network integration. netDx uses a modified version of the GeneMANIA implementation, which bypasses steps 
not required for the netDx pipeline, such as the identifier conversion and steps involving file input/output.  
Memory and computational time improvements were benchmarked by building binary classifiers for breast tumours 
and schizophrenia case-control classification. The CommonMind Consortium21 dataset (downloaded from Synapse:  
syn5607607) included 279 controls and 258 cases, with a total of 537 patients, with gene expression data from 
the prefrontal cortex organized into pathway level features (1,735 pathways). The breast cancer data was part 
of the TCGA project9, with tumour gene-expression for 348 patients, including 154 Luminal A and 194 tumours 
of other subtypes, also organized into pathway-level features (1,706 pathways). In the benchmark, an approxi-
mately 70:30 split of samples was used for cross validation. We measured training time for the predictor using the  
70% of samples of a single subtype. All tests were performed on an Intel Xeon @ 2.6GHz machine with 126 GB 
of available RAM and 12 cores. During benchmarking, threads had a fixed amount of RAM available, with dis-
crete steps of 4 GB, 6 GB and 8 GB. Here each predictor was built using only a single core. Benchmarking  
runs were parallelized using GNU parallel22, where the performance was averaged over four runs of the  
10 queries for each datasets. Following improvements, memory use dropped to one-third of the original amount. 
With the updated software, the CommonMind dataset also required two-thirds of the time to build the predictor, as  
compared to with the original version (Table 2).

Finally, the feature selection step now provides the option of using a Monte Carlo resampling strategy for select-
ing samples for iterative feature scoring. The previous version of the software required a fraction of samples 
to be held out, the fraction being directly related to the maximum feature score. The Monte Carlo resampling  
approach should allow users to increase the upper-bound of feature scores, even in smaller samples.

Conclusions
The updated netDx software provides an improved user experience for clinical research applications pertain-
ing to risk stratification, treatment response, and to identify biomarkers associated with patient subtypes. Method 
extensions will be required for further feature additions, such as the ability to predict continuous outcome. Clas-
sification of borderline patients could be better controlled, perhaps by a user-specified margin. Similar to 
pathway-level grouping for gene expression data, other grouping strategies will be required for other types of 
genomic data, such as miRNA, single nucleotide polymorphisms, and brain imaging data.
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Data availability
Underlying data
Data for the autism case/control classification5 is provided as part of the netDx package.

Data for the breast cancer example is from The Cancer Genome Atlas9,23. They are fetched from the  
curatedTCGAData package which is maintained by the Bioconductor repository.

netDx vignettes are available at: https://bioconductor.org/packages/release/bioc/html/netDx.html 

Software availability
netDx is available from Bioconductor: http://bioconductor.org/packages/devel/bioc/html/netDx.html

Source code available from: https://github.com/BaderLab/netDx.

Archived source code at time of publication: http://doi.org/10.5281/zenodo.40488523.

Issue tracker: https://github.com/BaderLab/netDx/issues

License: MIT License
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Table 2. Benchmarking performance improvement for netDx. Computation 
times are averaged over four runs of the same ten queries for feature-scoring 
one patient label, while limiting the executable to a single core. All tests were 
performed on an Intel Xeon @ 2.6GHz machine with 126GB of available RAM and 
12 cores.

JavaMemory setting Previous runtime (s) 
v0.99

Current runtime (s) 
with percent improvement 
v1.4

Breast cancer (Luminal A): 111 patients, 1706 pathway-based networks 
from gene expression data

4GB 273.95 +/- 13.97 167.73 +/- 5.21 (38%)

6GB 275.11 +/- 12.35 166.89 +/- 4.81 (39%)

8GB 273.74 +/- 13.44 167.24 +/- 4.44 (39%)

Schizophrenia (case): 185 patients, 1735 pathway-based networks from 
gene expression data

4GB 552.41 +/- 26.06 389.37 +/- 11.26

6GB 549.31 +/- 23.83 388.22 +/- 9.14

8GB 547.47 +/- 21.93 391.85 +/- 10.93
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The paper entitled “netDx: Software for building interpretable patient classifiers by multi-'omic 
data integration using patient similarity networks” is a companion paper to the article “netDx: 
interpretable patient classification using integrated patient similarity networks“ published in Plos 
Comp Bio in 2019. Its goal is to present an updated version of the R software implementation of 
netDx as a Bioconductor package. 
 
The netDx tool proposes an approach to building a patient classifier from heterogeneous patient 
data, from clinical to omics. The availability as an R package is of interest to the community. In 
addition, the manuscript details 4 different uses cases that could help interest readers to apply the 
tools. We however had difficulties running the code provided in the use cases and obtained 
different errors and warnings, so have been in contact with the authors to try to solve the 
problems. However, debugging code necessitate a lot of exchanges, and hundreds of lines of 
error outputs cannot go in a peer review. These problems are not solved yet.  
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Is the description of the software tool technically sound?
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Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: We interacted with the authors during the review process to correct warning 
and errors obtained while executing the protocols of the 4 use cases

Reviewer Expertise: Systems and Network Biology, Bioinformatics, Computational Biology

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 22 Dec 2020
Shraddha Pai, The Donnelly Centre, University of Toronto, Toronto, Canada 

Responses are shown in bold beneath each reviewer comment, the latter shown in italics. 
--- 
The paper entitled “netDx: Software for building interpretable patient classifiers by multi-'omic 
data integration using patient similarity networks” is a companion paper to the article “netDx: 
interpretable patient classification using integrated patient similarity networks“ published in Plos 
Comp Bio in 2019. Its goal is to present an updated version of the R software implementation of 
netDx as a Bioconductor package. 
  
The netDx tool proposes an approach to building a patient classifier from heterogeneous patient 
data, from clinical to omics. The availability as an R package is of interest to the community. In 
addition, the manuscript details 4 different uses cases that could help interest readers to apply 
the tools. We however had difficulties running the code provided in the use cases and obtained 
different errors and warnings, so have been in contact with the authors to try to solve the 
problems. However, debugging code necessitate a lot of exchanges, and hundreds of lines of 
error outputs cannot go in a peer review. These problems are not solved yet.  
  
Response: We thank the reviewers for taking the time and effort to work with us to 
resolve these issues. There were three main sources of errors that the reviewers 
encountered. The resolution for each is described below. 
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To better support Windows users we now provide Docker images of working 
environments with the latest version of netDx. The following text has been added to 
the “Operation” section: “Windows users can access netDx via a Docker image 
provided at https://hub.docker.com/repository/docker/shraddhapai/netdx.”

Incompatibility with French locale: The reviewers tested netDx on a system with 
a French locale, which identified an unforeseen international incompatibility. 
netDx uses a Java-based network integration software during feature selection. 
Parts of this software would break when provided with numbers using a comma 
for a decimal separator; as such they were incompatible with several non-
English locales. We have now fixed the issue in netDx v1.3.1 to ensure that all 
files passed from R to Java are forced to use a period as decimal separator. 
 
We are now able to successfully run all vignettes in a French locale; please see 
https://hub.docker.com/repository/docker/shraddhapai/netdx/general (Tag: 
v1.3.1_french). Note that French locale users do not have to download this 
specific version of netDx; the Docker image is provided as a contained 
environment with a French locale, where we have demonstrated that netDx now 
works. 
 

1. 

Windows incompatibility: netDx is currently not supported on some versions of 
the Windows operating system because of variation in how Java is invoked by 
different Java versions.  In particular, newer Windows systems do not have a 
java executable available on the search path by default. We have noted this in 
the current version of the manuscript. 
 
Therefore for now we will continue to support netDx on OS X and Unix systems 
in BioConductor, and will provide a Docker container for Windows users. 
 
A working Docker image, supporting Windows and other operating systems that 
support Docker, is available on Docker hub: 
https://hub.docker.com/repository/docker/shraddhapai/netdx/general (Tag: 
v1.3.1) 
 

2. 

Use case 4 had outdated function calls. That has been amended in the current 
version of the manuscript. We also supplied the reviewers with the updated 
vignette when we learnt about the error. 
 
We hope that the resolution of the above three issues is satisfactory. We are 
working with the reviewers to ensure that they are able to run the software 
given the changes above.

3. 
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© 2020 Lê Cao K. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
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Kim-Anh Lê Cao   
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The authors illustrate full R workflows to apply netDx using four case studies with various ranges 
of classification difficulty and data analysis settings. The netDx package proposes various ways of 
grouping features, for example using known biological pathways, and several graphical outputs. I 
appreciated that netDx builds on MultiAssayExperiment for easier handling of multi omics data 
sets. The manuscript will be useful for readers eager to get started with netDx. 
Below are some suggestions for improvement of the manuscript. 
 
Methodological aspects:

I acknowledge that the original algorithm has been detailed in reference [2], however, the 
present manuscript gives some emphasis on the ability of netDx to handle missing values. A 
short statement describing how this is done would be helpful. 
 

○

I suggest rewriting the sentence 'The final model is created by choosing features that 
consistently score highly.' in the introduction. On a first read, it appeared as if there was 
selection bias during the process. 
 

○

I have some reservations regarding the representation of SEM in the AUROC figures, why 
not using SD?

○

Implementation aspects:
While much effort and improvements have been done in the netDx package v1.1.4, I believe 
that additional functions could be created to be user friendly. For example, many customs 
functions (e.g. makeNets, the code proposed to reformat the results and calculate the 
accuracy or to extract the results to Cytoscape, to list a few) could be recoded into more 
generic functions. I would encourage the authors to revisit the code they propose in these 
workflows and improve when possible.  
 

○

I am not sure Table 1 column 3 (function name in v1.0.23) and part of the software update 
paragraph is useful here. Presumably this could appear on the GitHub page and the NEWS 
files, unless the objective of this manuscript is also to update the users of the latest 
changes.

○

Minor typos:
'published' in the Introduction.○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational statistics, multi omics integration, R software development.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 22 Dec 2020
Shraddha Pai, The Donnelly Centre, University of Toronto, Toronto, Canada 

Responses are shown in bold under corresponding reviewer comments shown in italics. 
--- 
The authors illustrate full R workflows to apply netDx using four case studies with various ranges 
of classification difficulty and data analysis settings. The netDx package proposes various ways of 
grouping features, for example using known biological pathways, and several graphical outputs. 
I appreciated that netDx builds on MultiAssayExperiment for easier handling of multi omics data 
sets. The manuscript will be useful for readers eager to get started with netDx. 
 
We thank the reviewer for their time, appreciative comments, and feedback. We also 
hope the manuscript helps new users get started with netDx for classification and 
data integration. 
 
Below are some suggestions for improvement of the manuscript. 
Methodological aspects:

I acknowledge that the original algorithm has been detailed in reference [2], however, the 
present manuscript gives some emphasis on the ability of netDx to handle missing values. 
A short statement describing how this is done would be helpful.

○

Response: Text added in introduction of use case 3: 
“netDx handles missing data at two levels. First, netDx uses patient similarity 
networks, not input data, as its features. Missing data can be handled by the similarity 
metric used to make this conversion. e.g. If similarity is defined as the Pearson 
correlation between gene expression measures at the pathway level, then omitting 
missing genes from the correlation calculation still allows the correlations, and thus 
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the pathway-level network,, to be computed. Where patients are missing a particular 
feature, the network integration step uses what information it has. For example, in a 
scenario where the data consist of transcriptomic and proteomic measures, if a 
patient is missing transcriptomic data, the integration step will use only the 
proteomic data (edges) for that patient (network edges) for that patient.”

I suggest rewriting the sentence 'The final model is created by choosing features that 
consistently score highly.' in the introduction. On a first read, it appeared as if there was 
selection bias during the process. 

○

Response: We altered the sentence in the manuscript to: “The final model is created 
from features that scored highly in feature selection, a step that uses only training 
samples”. 

I have some reservations regarding the representation of SEM in the AUROC figures, why 
not using SD?

○

Response: We have now changed the function that plots the AUROC curve to use 
standard deviation as default, and have provided the user the option of using SEM. 
The corresponding figures have been updated in the manuscript to show the change 
(Figure 3 and Figure 13).   
 
Implementation aspects:

While much effort and improvements have been done in the netDx package v1.1.4, I 
believe that additional functions could be created to be user friendly. For example, many 
customs functions (e.g. makeNets, the code proposed to reformat the results and calculate 
the accuracy or to extract the results to Cytoscape, to list a few) could be recoded into 
more generic functions. I would encourage the authors to revisit the code they propose in 
these workflows and improve when possible.  

○

Response: We agree and will continue to create useful utility functions to make it 
easier for new users to use in future releases of netDx. In order to avoid potentially 
over complicating or overengineering our API, we are waiting for user feedback 
before making these additions.

I am not sure Table 1 column 3 (function name in v1.0.23) and part of the software update 
paragraph is useful here. Presumably this could appear on the GitHub page and the NEWS 
files, unless the objective of this manuscript is also to update the users of the latest 
changes.

○

Response: We agree and have removed this column from Table 1. 
 
Minor typos:

'published' in the Introduction.○

Response: Corrected.  

Competing Interests: We have no competing interests to declare.
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