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ABSTRACT  
 

Motivation: The model bacterium Escherichia coli is among the 
best studied prokaryotes, yet nearly half of its proteins are still of 
unknown biological function. This is despite a wealth of available 
large-scale physical and genetic interaction data. To address this, 
we extended the GeneMANIA function prediction web application 
developed for model eukaryotes to support E. coli.  
 

Results: We integrated 48 distinct E. coli functional interaction          
datasets and used the GeneMANIA algorithm to produce thousands 
of novel functional predictions and prioritize genes for further func-
tional assays. Our analysis achieved cross-validation performance 
comparable to that reported for eukaryotic model organisms, and                 
revealed new functions for previously uncharacterized genes in                
specific bioprocesses, including components required for cell adhe-
sion, iron-sulphur complex assembly, and ribosome biogenesis. The 
GeneMANIA approach for network-based function prediction pro-
vides an innovative new tool for probing mechanisms underlying 
bacterial                        bioprocesses.  
 

Contact: gary.bader@utoronto.ca; mohan.babu@uregina.ca 
 

Supplementary information: Supplementary data are available at 
Bioinformatics online. 
 

 

1 INTRODUCTION  
 

As the primary model organism for microbial biology, Escherichia 

coli has been studied for decades using countless large- and small-

scale biochemical assays of gene function. More recently, the               

physical (protein-protein) and functional (gene-gene, or epistatic) 

relationships between E. coli genes have been extensively studied 

by our group (Babu, et al., 2014; Babu, et al., 2011; Hu, et al., 

2009; Rajagopala, et al., 2014) and others (Arifuzzaman, et al., 

2006; Typas, et al., 2008) in the hopes of understanding the entire 

complement of biological pathways in a prokaryotic organism. 

These                 studies have revealed much of the physical and 

functional organization of the E. coli bacterial proteome. However, 

as many of the low-throughput studies were particularly concerned 

with specific, smaller groups of genes, and the larger scale studies 

were conducted using methodologies that inherently enrich for 

certain physical (i.e., transient versus more stable protein interac-

tions) or genetic interactions, defining a single pathway-level map 

of E. coli function can be problematic. Complicating matters fur-

ther is the inherent difficulty in querying, navigating, and visualiz-

ing such complex biological networks in a meaningful way as each 

study only identifies part of the map and is idiosyncratically bi-

ased. Thus, despite rapid progress, we are far from understanding 

the biological roles and functional relationships of the 4,247 E. coli 

genes from an integrated ‘systems’ perspective. As ~45% (1,925 of 

4,247) of this organism’s genome (i.e., K-12 W3110) still remains 

functionally unannotated, methods more sensitive at interpreting 

existing data appear warranted.  

Underlying this disconnect between the volume of data availa-

ble and the lack of annotation is a paucity of user friendly tools for 

the accurate and automatic inference of a gene’s function. While 

many gene function prediction systems based on functional inter-

action networks exist (Alexeyenko and Sonnhammer, 2009), few 

are readily available for prokaryotes [e.g., eNet (Hu, et al., 2009); 

EcID (Andres Leon, et al., 2009); STRING (Franceschini, et al., 

2013)], and none consider the breadth of evidence supporting func-

tional interactions available today, such as phenomics and epistatic 

interactions, which have only recently become available. 

Here, we extend the GeneMANIA resource to support E. coli 

(Mostafavi, et al., 2008; Zuberi, et al., 2013) for gene function 

prediction. We validate novel predictions supporting a role in iron 

(Fe)-Sulphur (S) cluster binding, cell adhesion, and ribosomal 

protein degradation and biogenesis for more than half a dozen 

uncharacterized (orphaned) E. coli genes. An online implementa-

tion of                   GeneMANIA including all E. coli biological 

networks used to                 generate our predictions has been made 

publically available (beta.genemania.org), and we have also creat-

ed a stand-alone program and plugin for the Cytoscape network 

visualization                      environment (Montojo, et al., 2010; 

Shannon, et al., 2003). We find that integration of these E. coli 

datasets into a single unified network using GeneMANIA furthers 

our understanding of how bacterial components are connected in 

complexes and pathways, and enables functional prediction of 

© The Author (2014). Published by Oxford University Press. All rights reserved. For Permissions, please email: 
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previously uncharacterized or under-characterized bacterial gene 

products.  
 

2 METHODS 
 

2.1. E. coli (K-12) genomes and biological networks: Since GEO 

(Gene Expression Omnibus) datasets (see Supplementary Methods 

for details), protein domains, co-expression, and all experimental 

interactions were generated in the K-12 genomes of W3110 or 

MG1655 (which are very highly similar), for gene function predic-

tion, we merged the gene identifiers from both these genomes, 

generating a non-redundant dataset of 4,455 genes (excluding in-

sertion sequence elements). In total, 48 biological networks from 

various literature sources were compiled for function prediction, 

which are currently displayed on the GeneMANIA.  
 

2.2. Validation: GeneMANIA performance was evaluated by 5-

fold cross-validation on each Gene Ontology (GO) annotation 

category (GO gene sets were downloaded from go_daily-

termdb.obo-xml.gz; dated 2013-12-03). In each instance, true ex-

amples were withheld proteins with the corresponding annotation, 

and negative examples were all other proteins. Cross-validation 

and  area under the ROC (receiver operating characteristic) curve 

was computed using the “Network Assessor” component of the 

GeneMANIA command line tool (Montojo, et al., 2010). To gauge 

the contribution of each feature to overall prediction performance, 

networks were withheld and average AUC and error rate estimated 

across all GO annotations.  
 

2.3. Fe-S cluster, ribosome, and adhesion function prediction: 

The query gene derived sub-network corresponding to the selected 

process was generated using the GeneMANIA plugin (Montojo, et 

al., 2010) for Cytoscape (Shannon, et al., 2003), available from the 

Cytoscape App Store (Lotia, et al., 2013). Relative network 

weightings were determined using the GeneMANIA web interface. 
 

2.4. Bacterial strains and media: Strains used were either the 

wild type E. coli K-12 BW25113, or single gene deletion mutant 

strains marked with a kanamycin resistance marker from the Keio 

knockout library (Baba, et al., 2006) for validation experiments. 

Mutant strains were streaked onto Luria-Bertani (LB) agar plates 

supplemented with 30 µg/mL kanamycin and incubated at 37 °C 

overnight to obtain single colonies.    
 

2.5. Growth curves: Overnight cultures of wild type and mutant 

strains prepared from single colonies were inoculated in LB sup-

plemented with either no antibiotic, 6 µg/mL streptomycin, 0.5 

µg/mL tetracycline, 750 µM reduced L-glutathione, 250 µM 2, 2’-

dipyridyl, or a combination, as indicated, at an OD600 of ~0.01. 

Concentrations of additives were based on analogous recently con-

ducted experiments (Wong, et al., 2014). Cultures were grown in 

Bioscreen C (Growthcurves) honeycomb 100-well plates in 200 µl 

volumes at            37 °C and the turbidity of the cultures was 

measured using the wide band filter (450-580 nm) at 15 min inter-

vals. 
 

2.6. Degradation of ribosomal proteins, ribosomal profiles, and 

translation fidelity: The reaction mixture used for degradation 

assays contained 1.2 µM ClpP, 3.9 µM substrate, and an ATP re-

generation system (13 units/mL of creatine kinase and 16 mM 

creatine phosphate) in buffer containing 25 mM HEPES (pH 7.5), 

5 mM MgCl2, 5 mM KCl, 0.03% (w/v) Tween 20, and 10% glyc-

erol. Components were incubated at 37 °C for 3 min before adding 

1.0 µM ClpX to start the reaction. At given time points, aliquots 

were withdrawn and mixed with 4× Laemmli buffer to stop the 

reaction. Proteins were then resolved on SDS-PAGE gels and visu-

alized by Coomassie staining.  

      The S30 crude extracts were loaded on linear sucrose density 

gradients as described (Jiang, et al., 2007), with 40% sucrose used 

as cushion, and ribosomes or other complex subunits isolated by 

high-speed ultracentrifugation at 4°C for 16 hrs as previously                

described (Campbell and Brown, 2008). Translational fidelity of                    

mutant strains expressed via reported expression plasmids was                 

evaluated as previously described (Babu, et al., 2011; Hu, et al., 

2009; Thompson, et al., 2002).  
 

2.7. Biofilm assay: The biofilm assay was performed as previously 

described (O'Toole, et al., 1999), with minor modifications. Brief-

ly, 5 µl of overnight E. coli cultures grown in LB at 32 ºC was 

added to sterile 96-well polystyrene dish containing 100 µl of fresh 

LB medium supplemented with 0.45 % glucose. Culture dish was 

incubated overnight (~18 hrs) at 32 ºC, and the biofilm was stained 

with 0.5% crystal violet for 5 min. Excess crystal violet was 

washed off with sterile water. An ethanol-acetone mixture (80:20) 

was added to the wells to release the dye, and the biofilm that ad-

hered to the surface of the well was imaged using a Canon digital 

camera. Biofilm formation was assessed by the intensity of residu-

al coloration. 
 

3 RESULTS AND DISCUSSION 
 

3.1. Networks supporting function prediction: We collected five 

types of E. coli GeneMANIA functional interaction networks: 

physical interactions, transcript co-expression, genetic interactions, 

shared protein domains (SPDs), and “other” networks inferred 

from genomic context and chemogenomic (i.e., phenomic) profiles    

(Supplementary Table S1). Specifically, we included 48 experi-

mentally-derived E. coli biological networks, from our group and 

others, that span these evidence types. While the physical interac-

tion networks were unweighted, all remaining network types were 

weighted by profile correlation, wherein higher correlations are 

more indicative of shared function (Mostafavi, et al., 2008). To 

evaluate the extent to which these lines of evidence types over-

lapped, we counted the number of parallel edges (i.e., edges from 

different networks connected to the same node pairs) in each sup-

porting network (to a maximum of 50) for each gene in the E. coli 

genome. More than 57,000 edges were supported by several net-

works, while the majority (>800,000) of edges existed in only a 

single network, or were only weakly supported (i.e., with low edge 

weight; Supplementary Fig. S1). Notably, co-expression contribut-

ed most (>500,000) of these edges due to the large number of ex-

periments included (33), followed by networks derived from genet-

ic screens (>145,000).  

      GeneMANIA uses the “guilt-by-association” function predic-

tion approach (Oliver, 2000), wherein a user provides a “seed list” 

of known related genes that is then extended to include other genes 

that are predicted to share a similar function based on overlapping 

connection within the biological networks (Mostafavi, et al., 2008). 

In the simplest mode of operation, the user needs only to enter in a 

gene or genes of interest. In generating functional predictions, the 

GeneMANIA algorithm is designed to automatically weight net-

works on the basis of relevance to the query set. This weighting is 

calculated for each query, so that network weights can vary based 

on user input. These assigned network weights are provided to the 

user, so that they may assess the relative predictive power of the 

biological evidence types and the basis for each prediction.  
 

3.2. Cross-validation and performance of network categories:  

To assess the sensitivity and specificity of GeneMANIA in making 
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functional predictions in E. coli, we used 5-fold cross-validation to 

measure its ability to correctly identify known functionally anno-

tated E. coli genes given input genes possessing the same function-

al annotation. These results were compared across GeneMANIA 

score thresholds using area under the receiver operator characteris-

tic (ROC) curve (AUC). The average error, measured as 1 - AUC, 

across all gene ontology (GO) biological process, cellular                     

component, and molecular function annotations ranged from 0.10 

for cellular component annotations to 0.15 for biological process      

annotations (Fig. 1a), which is comparable to that achieved with 

yeast Saccharomyces cerevisiae (Mostafavi, et al., 2008). Moreo-

ver, comparison of function predictions derived from STRING to 

GeneMANIA predictions indicated that GeneMANIA achieved 

significantly better performance (Supplementary Table S2, see 

Supplementary Methods). 

      Next, we evaluated the contribution of each input network type 

by individually excluding each type of network and re-evaluating 

overall performance (Fig. 1b) using the GeneMANIA network       

assessor function (Montojo, 2014). We find that while the SPD and 

other network types contribute substantially to the overall predic-

tive accuracy of the program, some networks appeared to have 

little influence on average. However, this was not the case for all 

GO terms. For example, physical interactions contribute more 

substantial reductions in error for GO terms such as ribosome as-

sembly (Supplementary Table S3). This underscores one of the 

principle benefits of the GeneMANIA algorithm: namely, its abil-

ity to adaptively weight evidence based on the input genes.  
 

3.3. Predicting gene function: To identify functions for E. coli 

genes, we inputted genes by GO annotation (assuming at least 10 

genes per GO term) to GeneMANIA using the command line tools 

available at http://pages.genemania.org/tools/. The top 100 results 

were retrieved for each GO term (Supplementary Table S4). To 

confirm the value of some of the higher ranking predictions, we 

focused experimental effort on functionally uncharacterized pro-

teins that were predicted to have a novel function. For example, 

Fe-S cluster biogenesis proteins were found to be associated with 

three uncharacterized proteins: YnfH, YhgA, and YdhZ (Fig. 2a). 

This association was based largely on SPDs, co-expression, and 

other sources of evidence including large-scale phenomics data 

(Nichols, et al., 2011) (Fig. 2a). Since a large number of genes that 

confer aminoglycoside sensitivity are involved in Fe-S cluster 

biogenesis                      and     aerobic respiration (Babu, et al., 

2014; Kohanski, et al., 2007; Wong, et al., 2014), we tested the 

sensitivity of ynfH, yhgA, and ydhZ single mu-

tants to sub-lethal concentrations of streptomy-

cin antibiotic. Both wild type and single mutant 

deletion strains exhibited similar growth curves 

in the absence of antibiotic or in the presence 

of a non-aminoglycoside (tetracycline) drug 

(Fig. 2a). However, at a sub-lethal dosage of 

the aminoglycoside streptomycin, wild type 

cells reached a lower density of cells in station-

ary phase compared to the mutant cells. Addi-

tion of the iron chelator 2,2'-dipyridyl (DP) or 

the essential antioxidant, glutathione (GSH) to 

the streptomycin containing medium relieved 

the growth reduction in wild type cells to a 

level comparable to single mutants (Fig. 2a), 

indicating the participation of YnfH, YhgA, 

and YdhZ in an Fe-S cluster-related processes.  

      Another example of novel assigned func-

tion was the implication of the gene clpP in 

ribosome biogenesis, a prediction driven large-

ly by strong co-expression. Consistent with this 

prediction, the ClpP, a serine protease that 

forms an active degradation complex with 

ClpX ATPase was found to degrade the ribo-

somal subunit S7 in the presence of ATP (Fig. 

2b), but the mechanism by which the ClpXP 

protease recognizes the ribosomal S7 for deg-

radation (Flynn, et al., 2003) is not yet known. 

 Similarly, based on SPDs, co-expression, 

and other data sources (e.g., phenomics and 

genomic context), a ribosomal link was pre-

dicted between a previously uncharacterized 

protein, YihD, and the methyltransferase fac-

 
Fig. 1. Median error rates of function prediction. (A) Average error rate of 

GeneMANIA function prediction estimated by 5-fold cross-validation for each 

GO biological process (BP), cellular component (CC), and molecular function 

(MF) annotation. (B) Effect of eliminating various categories of evidence on 

error.  Exp: co-expression; GI: genetic interactions; PI: physical interactions; 

and SPD: shared protein domains.  

 
 

Fig. 2. Novel factors involved in Fe-S assembly and ribosome biogenesis. (A) Sub-network of non-essential 

proteins of unknown function (pink) connecting the components of Fe-S (blue) cluster binding (i) based on 

SPD, Exp, and other large-scale (ii) network sources. Growth profiles of wild type (WT) and mutant strains 

in the absence or presence of sub-lethal concentration of indicated antibiotics, iron chelator, and antioxidant 

(iii). Tetracycline is used as control. Each data point represents the mean ± SD (error bars) of three independ-

ent replicates (see Supplementary Table S5). (B) Sub-network of ClpP (pink) is connected with the ribosome 

factors (blue) (i) based on Exp and other genomic sources (ii). SDS-PAGE gels (iii) showing the degradation 

of ribosomal (r) S7 protein over time (Hrs) after the addition of ClpX to the mixture containing ClpP, casein 

kinase (CK), ribosomal S7 protein, and ATP regeneration system (left), whereas no S7 degradation was 

observed in the absence of ATP and ClpP over time (right, negative controls). Molecular masses (kDa) of 

marker proteins (M) by SDS-PAGE are shown. 
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tors (TrmA, RsmJ) responsible for methylation of 16S rRNA and 

tRNAs. To evaluate this possible connection, we tested the ribo-

some profile of yihD deficient strains. In contrast to wild type, 

yihD mutant had an elevated amount of free 30S and 50S riboso-

mal subunits, and a concomitant decrease in 70S formation (Sup-

plementary Fig. 2a). Consistent with this result, yihD mutant also 

exhibited significantly higher read-through of amber (UAG) and 

opal (UGA) stop codon alleles, and +1 and -1 frame-shift muta-

tions in a β-galactosidase reporter system (O'Connor, et al., 1992). 

Collectively, these results support our prediction of ClpP and YihD 

involvement in                ribosome biogenesis.  

 Finally, SPDs and correlated transcript expression profiles 

connected the unannotated proteins YdeT, YdhQ, YhjY with com-

ponents involved in bacterial adhesion and biofilm formation. To 

evaluate this link, we measured mutant strains harboring deletions 

in each of these genes for their ability to form a biofilm in vitro 

(see Methods). In contrast to wild type cells, all three single mu-

tants displayed surface attachment through biofilm formation 

(Supplementary Fig. 2b) as has been previously noted for other 

biofilm-associated mutants (Ma and Wood, 2009). Notably, only 1 

of the 8 experimentally tested function predictions from Gene-

MANIA were ranked highly by the STRING-derived function 

predictor (Supplementary Table S6, see Supplementary Methods). 
 

4 CONCLUSIONS 
 

Until now, GeneMANIA has been limited to eukaryotes, where it  

has proven to be a powerful resource for probing gene function and           

revealing pairwise connections linking genes in yeast, fly, worm, 

human, and other species (Zuberi, et al., 2013). In the present 

study, we have extended the predictive power of GeneMANIA to a 

leading model prokaryote, E. coli, an organism that has to date 

lacked comparable tools for functional interrogation that are simul-

taneously accurate, comprehensive (including the latest high-

throughput data), and easy to use. This work combines the Gene-

MANIA algorithm with expansive networks of informative func-

tional connections consisting of more than 1 million gene-gene 

associations based on physical interactions and shared genetic, 

domain, chemogenomics, and co-expression profiles. This repre-

sents a rich resource, unparalleled in any other bacterial species to 

date, for further mechanistic                     characterization of both 

known and uncharacterized genes.  

 The GeneMANIA algorithm and supporting networks for E. 

coli and several model eukaryotes are made freely available via a 

user friendly GeneMANIA web interface (beta.genemania.org) and 

as a plugin for the Cytoscape network visualization environment. 

This web-accessible resource facilitates exploration of functional 

inferences in hypothesis-driven follow-up studies aimed at eluci-

dating mechanistic aspects associated with particular bioprocesses. 

 While the prediction performed by GeneMANIA provides a 

new method for leveraging functionally-informative associations to              

explore bacterial gene function, the quality of function predictions, 

especially for loosely connected proteins, is expected to be                        

improved over the coming years as new genomic resources, includ-

ing protein and genetic interactions for the previously unexplored 

interactome and biological space become available. Nevertheless, 

just as we were able to identify novel functions for uncharacterized 

genes in Fe-S cluster binding, ribosome biogenesis, and cell adhe-

sion, we believe that this resource will enable additional functional 

discoveries in E. coli, and, through orthology mapping, in other 

experimentally and evolutionarily significant uncharacterized bac-

terial species (Supplementary Table S7, see Supplementary Meth-

ods), including opportunistic pathogens.  
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