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Aging, the time-dependent functional decline of organs and 
tissues, is the biggest risk factor for many diseases, including 
several neurodegenerative and cardiovascular disorders1. 

Characterizing aging-related molecular and cellular changes will 
provide insights into this complex process and highlight opportuni-
ties to slow or reverse its progression, thereby helping to prevent or 
treat aging-associated pathologies. That this might be achievable is 
supported by a plethora of studies using model organisms, dem-
onstrating that not only lifespan but also the integrity of multiple  
tissues can be regulated by discrete molecular modifications2,3.

Towards the goal of achieving a broader understanding of aging-
related changes and deciphering the molecular mechanisms that 
accompany brain aging, transcriptomic studies in model organisms 
and humans have been at the forefront of experiments. However, 
these studies generally use aggregated RNA from either mixed cell 
populations4–6, which may vary in distinct ways with age, or from 
cell populations purified using known markers7–9, which themselves 
may also change during aging. Therefore, despite the successful 
identification of major aging-related genes and pathways, previ-
ous transcriptomic analyses have not resolved the common aging-
related changes experienced across all brain cells from those that 
may be cell-type specific. Thus, there is a need to elucidate how 
individual cell types are affected by aging and to clarify if the pro-
cess of aging follows a similar blueprint in all cell types or whether 
certain cell types have unique transcriptional changes. This infor-
mation will be critical in determining whether aging at the tissue 
level is a global process, if it results from specific changes in certain 
cell populations that culminate in loss of function and deteriora-
tion, or a combination of both10. This information may also help 
the design of effective aging-related therapeutics that are targeted 

either narrowly, affecting only certain cell types, or more broadly, 
affecting all cells.

In this study, to begin to address these issues, we used single-
cell RNA sequencing to profile and compare the cellular composi-
tion and transcriptomes of young and old mouse brains. For all the 
major cell populations, we provide comprehensive datasets of genes 
and pathways whose transcriptional profiles change with aging. Our 
computational analysis suggests that cells in the brain do not change 
with aging identically, indicating that, while overlapping signatures 
exist, the cellular consequences of aging are not universal. Given 
that cell nonautonomous changes are also known to regulate aging-
dependent changes2, we also detail ligand–receptor interactions 
among nearly all the cell types in the brain that are modified by 
aging. Overall, this study provides a rich resource that can facilitate 
the interrogation of the molecular underpinnings and cellular basis 
of the aging process in the mouse brain.

Results
Identification of cell types. To gain new, more precise, insights into 
the effects of aging, we used unbiased high-throughput single-cell 
RNA sequencing (scRNA-seq) to examine the transcriptional pro-
files of young and old mouse brains (Fig. 1a). Because the dissocia-
tion of mammalian adult brains is challenging due to the complexity 
of the tissue, we first developed a new dissociation protocol that 
enables the isolation of healthy and intact cell suspensions that are 
representative of both young and old brains (see details in Methods).

We then analyzed the transcriptomes of 50,212 single cells 
(24,401 young and 25,811 old) derived from the brains of 8 young 
(2–3 months) and 8 old (21–23 months) mice (Supplementary  
Fig. 1–2). We first aggregated transcriptionally similar cells, using 
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Fig. 1 | Identification of cell types. a, Overview of the experimental workflow. b, t-Distributed stochastic neighbor embedding projection of 37,069  
single-cell transcriptomes (16,028 from 8 young mouse brains and 21,041 from 8 old mouse brains). Cell clusters were color coded and annotated post 
hoc based on their transcriptional profile identities (see details in Methods). c, t-Distributed stochastic neighbor embedding visualization of 6 major  
cell populations showing the expression of representative well-known cell-type-specific marker genes. Numbers reflect the number of UMI detected  
for the specified gene for each cell. d, Violin plot showing the distribution of expression levels of well-known representative cell-type-enriched marker 
genes across all 25 cell types (n = 37,069 cells) (see details in Methods). e, Bar plot showing the total number of detected cells and the total number  
of detected genes per cell type.
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Fig. 2 | Aging-related population shifts and changes in gene expression. a, Bar plot showing the fraction of cells associated with each cell type in both 
young and old brains (data present mean ± s.e.m. of 8 young and 8 old brains; *FDR < 0.05 by two-tailed Mann–Whitney U-test). b, Strip chart showing 
the aging-related logarithmic FCs (logFC) of all detected genes (dots) across all 25 cell types. Genes in colored dots are significantly (FDR < 0.05 and 
FC > 10%) upregulated or downregulated with aging, as determined by MAST analysis (see details in Methods). Genes in gray are not significantly 
changed with aging. c, Sample volcano plot for EC showing –log10(FDR) and logFC values for all genes with highlighting for those that are significantly 
upregulated (magenta dots) or downregulated (blue dots) with aging. Genes in black are not significantly changed with aging. d, Heatmap of logFC 
showing a subset of aging-related genes (FDR < 0.05 and FC > 10%) that are shared across many of the major cell types. Gray indicates no significant 
change with aging. e, Heatmap of logFC showing a subset of aging-related genes (FDR < 0.05 and FC > 10%) that are unique to each major cell type.
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an established clustering algorithm11. Next, we removed clusters 
likely to be of low quality, resulting from debris, doublets/multiplets 
and dead cells (Supplementary Fig. 3) and used other critical quality 
control steps as described in the Methods section (Supplementary 
Fig. 4). Ultimately, our analysis led to the identification of 37,069 
cells (Supplementary Fig. 5a), representing 25 cell types (Fig. 1b), 
with distinct expression profiles (Fig. 1c,d and Supplementary 
Fig. 6): oligodendrocyte precursor cells (OPC), oligodendrocytes 
(OLG), olfactory ensheathing glia (OEG), neural stem cells (NSC), 
astrocyte-restricted precursors (ARP), astrocytes (ASC), neuronal-
restricted precursors (NRP), immature neurons (ImmN), mature 
neurons (mNEUR), neuroendocrine cells (NendC), ependymocytes 
(EPC), hypendymal cells (HypEPC), tanycytes (TNC), choroid 
plexus epithelial cells (CPC), endothelial cells (EC), pericytes (PC), 
vascular smooth muscle cells (VSMC), hemoglobin-expressing vas-
cular cells (Hb-VC), vascular and leptomeningeal cells (VLMC), 
arachnoid barrier cells (ABC), microglia (MG), monocytes (MNC), 
macrophages (MAC), dendritic cells (DC) and neutrophils (NEUT). 
Cell counts and other metrics for each cell type are shown in Fig. 1e 
and Supplementary Fig. 5b–e.

Identification of cell subtypes and states. To reveal heterogeneity 
within each population, we grouped the aforementioned cell types 
into 6 classes based on their expression profile, lineage, function and 
anatomical organization (oligodendrocyte lineage, astrocyte lin-
eage and stem cells, neuronal lineage, ependymal cells, vasculature 
cells and immune cells) (Supplementary Fig. 7) and used another 
round of clustering. This subsetting of the data enabled us to high-
light more subtle changes within the classes without the impact of 
variation due to inclusion of drastically different cell identities. This 
secondary analysis identified dozens of different cell subtypes and 
states reflecting distinct functional, maturational and regional cell 
identities (Supplementary Fig. 8–9). These cell identities are in line 
with recent scRNA-seq studies12–14, whose purpose was to identify 
novel and distinct cell types/subtypes and create detailed atlases of 
the developing and adult mouse brain (see details in Supplementary 
Fig. 8). This process allowed us to generate a comprehensive data-
set of gene expression profiles for all the experimentally validated 
cell populations from both young and old brains at high resolu-
tion (Supplementary Tables 1 and 2). It also permitted us to iden-
tify specific markers that distinguish each type regardless of age 
(Supplementary Tables 3 and 4).

Aging-related effects on cell-to-cell transcriptional variabil-
ity and cellular composition. We found that cell identity is 
largely preserved in old brains as indicated by unbiased cluster-
ing where all clusters represent cells of all animals from both ages 
(Supplementary Fig. 4c). Furthermore, the quality of data generated 
from both young and old cell types appears similar, with each having  

comparable numbers of unique molecular identifiers (UMI) and 
detected genes (Supplementary Fig. 5c,e). Next, we compared the 
coefficient of variation of expression for all the transcribed genes 
(Supplementary Fig. 10a), only the mitochondrially encoded genes 
(Supplementary Fig. 10b) or only the ribosomal protein genes 
(Supplementary Fig. 10c). We observed differences in the variabil-
ity of transcription between young and old cells in many cell types. 
However, the directionality of change was not identical among cell 
types, providing evidence that aging is not broadly associated with 
increased transcriptional variation15.

Then, by investigating the abundance of each cell type, we found 
that cellular composition was largely consistent across both young 
and old brains (Fig. 2a and Supplementary Table 5). Nonetheless, 
we were able to confirm the previously reported aging-related 
decline of OPC16, NRP17 and ImmN17,18 (Fig. 2a) and to reveal 
potentially interesting but not statistically significant population 
shifts within certain subtypes of OPC, OLG, ASC, mNEUR and MG 
(Supplementary Fig. 11; see also Supplementary Fig. 8). Of note, 
although the estimated percentages for each cell type do not neces-
sarily reflect their actual proportions in the mouse brain, mainly due 
to differences in their sensitivity to tissue dissociation, the observed 
changes in cell-type ratios appear to reflect a real biological effect.

Identification of aging-related genes. We then investigated the 
breadth of transcriptional changes that occur in the mouse brain 
with aging by performing differential gene expression (DGE) 
analysis between young and old cell types and neuronal subtypes 
(Supplementary Tables 6 and 7). Of the 14,699 total detected genes, 
3,897 were significantly affected by aging in at least one cell type 
(false-discovery rate (FDR) < 0.05). When the magnitude of change 
in expression was also considered, 1,113 genes passed the 10%-fold-
change (FC) threshold (Fig. 2b and Supplementary Table 8).  
Interestingly, of those, 1,027 exhibited the same directionality 
regardless of the cell-type identity (531 upregulated and 496 down-
regulated), while the direction of change in the expression of 86 
genes was different across cell populations (discussed further below; 
Supplementary Table 8). As described in the Methods section, our 
ability to identify genes whose transcription changes significantly 
with aging and the calculation of FC is dependent on several factors, 
including the number of cells within each population, the level of 
transcription and the algorithm for analysis.

Identification of shared and cell-type specific aging signatures. 
To ensure the validity of these aging signatures, we first started 
broadly and compared our data with past transcriptomic studies 
of the mouse aging brain4–6. To more effectively compare datasets, 
we aggregated all of our sequenced cells, thereby recreating a tradi-
tional whole-brain profile similar to what might be observed with 
bulk sequencing (Supplementary Tables 2 and 6). As expected, this 

Fig. 3 | Validation of shared and cell-type-specific aging-related gene expression changes. a, Violin plots with boxplots overlaid with data in TPM from 
our scRNA-seq across all cells derived from each brain (n = 16 brains; 8 young and 8 old) (left) and RNAscope in situ hybridization images of mouse 
hippocampi (middle) showing the aging-related upregulation of the ribosomal protein gene Rpl6 and of the lncRNAs Malat1 and Meg3. Scatter plots (right) 
showing the quantification of the RNAscope data (data presents mean ± s.e.m. of 3 young and 3 old brains for Rpl6 and Malat1 and of 4 young and 4 old 
brains for Meg3; *P = 0.0279 for Rpl6, **P = 0.0082 for Malat1, **P = 0.0045 for Meg3 by two-tailed Welch’s t-test). Scale bar, 20 μm. b, Heatmap showing 
the FCs of a few representative significantly (FDR < 0.05) aging-related genes in MG, EC and ASC as identified by our scRNA-seq (left) and verified by 
both bulk RNA-seq (middle) and qRT-PCR (right) on sorted CD11b+ (MG), CD31+ (EC) and ACSA-2+ (ASC) cells. Gray indicates no aging-related gene 
expression changes in the sequencing data; consequently, these genes were not analyzed by qRT-PCR. For the qRT-PCR experiments, data presents 
mean ± s.e.m. of 3–9 young and 3–10 old brains. c, Scatter plots showing the significant correlations of the gene expression changes in b between the 
scRNA-seq, bulk RNA-seq and qRT-PCR datasets. Linear regression is depicted by the colored line, while black dotted lines represent 95% confidence 
intervals. Pearson’s squared correlation coefficient (R2) and the P value are shown at the bottom right of each plot. d, Violin plots with boxplots overlaid 
with data in TPM from our scRNA-seq (n = 16 brains; 8 young and 8 old) (left) and immunohistochemistry images of mouse cortices (middle) showing  
the aging-related upregulation of IL33 (that is mainly expressed in OLG; see Supplementary Fig. 14) and the aging-related downregulation of SPARC in  
MG (IBA1+ cells; indicated by arrows). Scatter plots (right) showing the quantification of the immunohistochemistry data (data presents mean ± s.e.m.  
of 4 young and 4 old brains; *P = 0.0467 for IL33+ cells, *P = 0.0342 for SPARC+/IBA1+ cells by two-tailed Welch’s t-test). Scale bar, 50 μm.
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analysis verified previously identified aging-related genes (such 
as B2m, C4b, Ctss, Il33, Rpl8). Moreover, due to the increased 
sensitivity of the techniques used in our study compared to past 
ones, we were able to identify a set of aging-related genes not 
reported previously (such as Apoc1, Caly, Cxcl12, Nell2, Ybx1; see 
Supplementary Table 6). These changes could have been masked in 
past studies due to their limited expression levels or variations in 
less-abundant cell populations. Importantly, our single-cell DGE 

data enabled us to build on these results to identify from which 
cell types these aging signatures arose. For example, Ctss, while 
highly transcribed in all immune cells (MG, MAC, MNC, DC; 
see Supplementary Table 2), was only significantly changed with 
aging in MG (Supplementary Table 6). Another example is Nell2, 
which is mostly transcribed in neuronal lineage cells and OEG 
(Supplementary Table 2), but its levels changed with aging only in 
OEG (Supplementary Table 6).
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We then focused our analysis on 11 major cell populations  
that exhibited the greatest number of differentially regulated genes 
(Fig. 2b). By comparing the DGE data from these populations  
(Fig. 2c and Supplementary Fig. 12), we were able to distinguish 
both shared and cell-type-specific aging signatures. Supplementary 
Table 8 presents a matrix that specifies the genes that changed  
significantly in each cell type.

Figure 2d presents selected top aging-related genes that are 
shared across multiple cell types. The majority of the most com-
monly aging-upregulated genes were ribosomal protein genes 
(such as Rpl6), lncRNA genes (such as Malat1) and immunoregu-
latory/inflammatory genes (such as B2m). The most commonly 
aging-downregulated genes were mitochondrial respiratory chain 
complex genes (such as mt-Nd1), glycolysis-related genes (such as 
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Fig. 4 | Validation of bidirectional aging-related gene expression changes. a,b, Violin plots with boxplots overlaid with data in UMI from our  
scRNA-seq (left) and RNAscope in situ hybridization micrographs of mouse cortices (middle) showing the aging-related downregulation of Cd9 in OPC 
(Pdgfra+ cells; indicated by arrows) (a) and the aging-related upregulation of the same gene in MG (Itgam+ cells; indicated by arrows) (b). Arrowheads 
in b designate autofluorescence from lipofuscin granules in the lysosomes of old MG (see details in Methods). Violin plots with boxplots overlaid 
(right) showing the quantification of the RNAscope data (data presents median expression of Cd9 in Pdgfra+ OPC (n = 529 cells from 4 young brains, 
n = 1,922 cells from 4 old brains) and Itgam+ MG (n = 841 cells from 4 young brains, n = 3,058 cells from 4 old brains); ****P < 0.0001 by two-tailed 
Mann–Whitney U-test). Scale bar, 2 μm. c,d, Violin plots with boxplots overlaid with data in UMI from our scRNA-seq (left) and RNAscope in situ 
hybridization micrographs of mouse cortices (middle) showing the aging-related downregulation of the ribosomal protein gene Rps23 in OPC (c) and 
the aging-related upregulation of the same gene in MG (d). As in b, arrowheads in d designate autofluorescence from lipofuscin granules. Dotted lines 
outline the area of each cell that was considered for quantification (see details in Methods). Violin plots with boxplots overlaid (right) showing the 
quantification of the RNAscope data (data presents median expression of Rps23 in Pdgfra+ OPC (n = 1,012 cells from 4 young brains, n = 2,483 cells 
from 4 old brains) and Itgam+ MG (n = 1,234 cells from 4 young brains, n = 2,237 cells from 4 old brains); ****P < 0.0001 by two-tailed Mann–Whitney 
U-test). Scale bar, 2 μm.
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Aldoc) and genes encoding selenoproteins (such as Sepw1) (see also 
Supplementary Table 8).

A subset of genes representing cell-type-specific aging signatures 
are highlighted in Fig. 2e. Interestingly, these data revealed that cer-
tain genes that are traditionally used as cell-type-specific markers 
change with aging, such as the decrease of Mog in OLG and Csf1r 
in MG, and the increase of Cxcl12 in EC. Conversely, we observed 
that other classic cell-type marker genes change with aging in other 
cell populations. For example, Gfap, which is highly transcribed and 
enriched in the astrocyte lineage and stem cells (Supplementary 
Table 2), was found as one of the genes that increased the most in 
EPC (Fig. 2e and Supplementary Tables 6 and 8).

We next sought to validate certain shared and cell-type unique 
aging-related gene expression changes. As shown in Fig. 3a, we 
were able to verify transcriptional changes in the shared aging-
related genes Rpl6, Malat1 and Meg3 by in situ hybridization. We 
also confirmed the cell-type specific aging-related changes of genes 
such as Csf1r, Cxcl12 and Sparc by bulk RNA-seq and quantitative 
reverse-transcription PCR (qRT-PCR analysis) of fluorescence-
activated cell sorting (FACS)-purified CD31+ (EC), CD11b+ (MG) 
and ACSA-2+ (ASC) cells (Fig. 3b,c and Supplementary Fig. 13). 
Additionally, to further determine if our transcriptomic approach 
faithfully captured changes at the protein level, we performed 
immunohistochemistry. As shown in Fig. 3d, we indeed observed 
the specific aging-related downregulation of SPARC in MG and the 
global aging-related increase of IL33 that is mostly expressed by 
OLG (Supplementary Fig. 14), as revealed by our scRNA-seq analy-
sis (Fig. 2e and Supplementary Table 2) and by others19,20.

Identification of bidirectional aging signatures. Analysis of our 
sequencing dataset also revealed individual genes with opposite 
regulation among different cell types (Supplementary Fig. 15 and 
Supplementary Table 8). For example, the tetraspanin Cd9 was down-
regulated in OPC and ASC but upregulated in EC and MG. This bidi-
rectional aging signature was confirmed between OPC and MG by 
dual fluorescence in situ hybridization (Fig. 4a,b). Another example 
of bidirectional changes with aging is Cldn5, which is often used as a 
marker for EC, but it is also highly transcribed in OEG (Supplementary 
Table 2). We found aging-related downregulation of Cldn5 in EC 
but upregulation in OEG (Supplementary Table 6). Notably, when 
its levels were measured in the whole brain, changes were minimal 
(Supplementary Tables 2 and 6), further highlighting why certain 
changes were masked in previous bulk sequencing studies.

Similarly, we found large gene sets, such as ribosomal protein 
genes, that were discordant between cell types (Supplementary  
Fig. 15b). As mentioned above, many ribosomal protein genes 
were found among the top shared aging-upregulated genes across 
major cell populations (Fig. 2d and Supplementary Table 8), but a 
subset of these genes also exhibited differential regulation/direc-
tionality with aging in certain cell types (Supplementary Fig. 15b).  
For example, Rps23 was found to be downregulated in OPC and 
ASC, but upregulated in mNEUR, EC and MG. This differential 
aging-related transcriptional signature was confirmed in OPC and 
MG by dual fluorescence in situ hybridization (Fig. 4c,d).

Interestingly, when we examined the expression profile of all 
genes encoding ribosomal proteins across major cell populations, 
we found two distinct and divergent patterns. As shown in Fig. 5a 
(see also Supplementary Table 8), both OPC and ASC were found 
to downregulate a fraction of their ribosomal protein genes with 
aging, while the other cell types upregulated their expression. These 
patterns of expression were also detected when neuronal sub-
types were compared, where GABA and GLUT neurons exhibited 
upregulation of their ribosomal protein genes with aging, while 
DOPA neurons exhibited downregulation (Supplementary Table 7).  
To validate these broad bidirectional aging-related signatures, we 
examined ribosomal protein gene expression in FACS-purified 
ACSA-2+ (ASC), CD31+ (EC) and CD11b+ (MG) cells. As shown in 
Fig. 5b,c, bulk RNA-seq reproduced the scRNA-seq data for a subset 
of ribosomal protein genes, highlighting their potentially distinct 
responses to aging.

Identification of aging-related pathways. Next, we investigated 
changes in aging-related cellular pathways and processes by perform-
ing gene set enrichment analysis (GSEA)21. GSEA has increased sen-
sitivity compared to DGE analysis as it aggregates information from 
broad sets of genes that are presumed to be functionally related. As 
such, we were also able to include cell types and neuronal subtypes 
with limited cell numbers that did not show significant aging-related 
changes by DGE analysis. This approach revealed the existence of 
many shared and cell-type specific aging-related pathways across 
the examined cell populations (Fig. 6 and Supplementary Tables 9 
and 10). In total, 451 pathways (1,142 GSEA terms) changed signifi-
cantly (P < 0.05 and q < 0.25); 234 were expressed in at least 2 cell 
types, while the remaining 217 were unique for specific cell popu-
lations. Of those aging-related pathways, 339 exhibited the same 
directionality regardless of cell type (195 were upregulated and 144 
downregulated), while the directions of change in the remaining 
112 varied across cell types (Supplementary Table 10). The most 
common aging-related pathways were those associated with cel-
lular respiration, protein synthesis, inflammatory response, oxida-
tive stress and growth factor signaling (Fig. 6 and Supplementary 
Table 10). As expected, GSEA showed that the aging process entails 
many biological changes in mNEUR that were in common across 
its major subtypes. These include the impairment of key metabolic 
pathways, the dysregulation of ion homeostasis and the disruption 
of neurotransmission (Supplementary Tables 9 and 10), all of which 
have been well documented in the literature3.

Here, we highlight changes in EC and EPC, two understudied, 
but important, brain cell populations, that form the barriers that 
isolate the brain parenchyma from factors circulating in blood 
and cerebrospinal fluid. GSEA showed that EC exhibit numer-
ous aging-related changes in cellular pathways, such as the induc-
tion of senescence, hypoxia signaling and response to ketone 
signaling, and the reduction of xenobiotic metabolism, lipid 
metabolism and hormone processing (Supplementary Fig. 16a 
and Supplementary Tables 9 and 10). In EPC, there was a nota-
ble upregulation of interferon-induced signaling (Supplementary 
Fig. 16b and Supplementary Tables 9 and 10) that aligns with the 

Fig. 5 | Aging-related changes in the expression of ribosomal protein genes. a, Heatmap showing the logFC for all the significantly (FDR < 0.05) aging-
related ribosomal and translation-associated genes across 11 cell types, as identified by our scRNA-seq. Gray indicates no significant change with aging. 
b, Heatmap of logFC showing all the significant (FDR < 0.05) aging-related ribosomal protein genes and translation-associated genes across MG, EC and 
ASC as identified by our scRNA-seq (left) and further verified by bulk RNA-seq on sorted CD11b+ (MG), CD31+ (EC) and ACSA-2+ (ASC) cells (right). 
The few inconsistencies presented here more probably reflect differences in the composition of the input sorted populations used for the comparisons 
(see details in the Methods section). c, Of note, despite the fact that only a subset of these genes was found significantly dysregulated in our bulk RNA-
seq analysis, due to lower statistical power, there is a significant correlation of the gene expression changes between the scRNA-seq and bulk RNA-seq 
datasets, as shown in the scatter plot. More specifically, dots in c represent all genes from the examined cell types in b. Linear regression is depicted with 
the colored line, while black dotted lines represent 95% confidence intervals. Pearson’s squared correlation coefficient (R2) and P value are shown at the 
bottom right of the plot.
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induction of certain interferon-stimulated genes (like Ifitm3) just 
as found in the DGE analysis (Supplementary Tables 6 and 8). The 
aging-related upregulation of interferon-stimulated genes and 
other aging-induced genes was also seen by qRT-PCR in FACS-
purified EPC (Supplementary Fig. 17). This finding suggests that 
an aging-induced inflammatory response may extend to these cells 
and appears similar to what it has been previously reported for the 
choroid plexus epithelium22.

Importantly, GSEA also points to ribosome biogenesis as a bio-
logical process exhibiting differential regulation with aging across 
different cell types and neuronal subtypes, beyond what we found 
with DGE analysis alone (Supplementary Tables 9 and 10). In par-
ticular, even with stringent significance criteria, the vast majority 
of brain cell types was seen to exhibit an aging-related upregulation 
of genes encoding ribosomal subunits, while three types of stem/

progenitor cells (NSC, NRP, OPC) showed downregulation (Fig. 6, 
Supplementary Fig. 18 and Supplementary Table 10).

Identification of aging-related changes in intercellular com-
munication. Finally, our single-cell transcriptomics data provides 
the ability to explore how aging-driven changes in gene expression 
might affect intercellular communication within the brain. By lever-
aging the transcriptional profiles of each cell population, we built 
a comprehensive intercellular network of potential ligand–receptor 
interactions among nearly all the identified brain cell types. We then 
enriched this network with data from our DGE analysis to mark 
all those interactions that were found to change with aging at the 
ligand or receptor level.

Here we highlight the ligand–receptor changes in EC (Fig. 7), 
not only because they exhibited a variety of aging-related changes, 
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Fig. 6 | Aging-related changes in cellular pathways and processes. Heatmap of GSEA showing a small subset of significant (P < 0.05 and q < 0.25)  
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as mentioned above (Fig. 2b,c and Supplementary Fig. 16a), but 
also because they possess the unique ability to interact directly 
with factors synthesized in the brain and with those secreted by 
peripheral tissues into the circulation. Network analysis showed 
that both cystatin C (Cst3, an aging-downregulated gene) and 
stromal cell-derived factor 1 (Cxcl12, an aging-upregulated gene), 
which have been previously linked to multiple pathologies23,24, are 
mediators of crosstalk between vascular cells and many brain cell 
types (Fig. 7). This finding signifies that their aging-related changes 
may modulate, either synergistically or separately, important,  
but still-to-be-identified aging-related processes occurring in the 
brain parenchyma.

Discussion
In this study, we first investigated the cellular complexity of  
the mouse brain and showed that cell identity and composition is 
generally maintained with aging. More specifically, we found that 
the numbers of cells within most of the cell types did not change 

radically with age, when quantified as a fraction of total brain cells. 
Nonetheless, we did observe the previously reported aging-related 
decline of certain cell populations, such as NRP17. Of note, it seems 
possible that additional work focused on this issue might reveal 
additional changes in subtypes of cells, particularly those occurring 
in specific regions of the brain.

We then compared young and old cells and observed a notice-
able aging-related cell-to-cell transcriptional variation within cer-
tain cell populations. However, our data did not show a universal 
aging-related change in transcriptional variability across all cell 
types. That is, gene transcription in particular cell populations does 
not necessarily become more variable with aging. This finding is  
in line with Warren et  al.25 but in contrast to other studies that  
suggested increased transcriptional variability as a common feature 
of aging15,26.

By aggregating all of our sequenced single cells and perform-
ing DGE analysis comparable to what was done in previous bulk 
sequencing studies, we validated many of the previously identified 
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(a) and aging-related ligands produced and secreted by EC with receptors expressed in mNEUR (b). In both panels, nodes represent ligands or receptors 
expressed in the denoted cell type, and edges represent protein–protein interactions between them. Node color represents magnitude of DGE (logFC 
as estimated by the MAST model), such that the most significantly age-upregulated genes are in magenta and age-downregulated are in blue. Node 
borders indicate statistical significance of differential expression, specifically the FDR (padj) expected from the MAST analysis. Edge color represents 
the sum of scaled differential expression magnitudes from each contributing node, while width and transparency are determined by the magnitude of 
scaled differential expression (see details in the Methods section). These figures have been filtered such that the top 65 edges representing the most 
differentially expressed node pairs are shown. Figures for these cell interactions, and all others, are available from our online interactive data viewer 
accessible at http://shiny.baderlab.org/AgingMouseBrain/.
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aging-related genes4–6 and extended the list to include additional 
gene signatures. We then used single-cell-type DGE analyses to 
reveal the primary cell type(s) generating these signatures. The 
fine resolution provided by scRNA-seq further allowed us to detect 
changes in specific cell populations that would otherwise be masked 
by bulk sequencing techniques. More specifically, single-cell-type 
DGE analyses yielded a large number of aging-related genes that 
are (1) commonly regulated among cell types, (2) specific to certain 
cell types and (3) discordant between cell types. To the best of our 
knowledge, only a small fraction of the genes reported here have 
been previously associated with brain aging.

Interestingly, our data analysis revealed different patterns of 
aging across cell populations. We found that certain aging-related 
genes and pathways are differentially regulated across cell types. 
For example, we provide evidence that, with aging, expression of 
ribosomal protein genes is regulated in opposite directions among 
groups of cell types and among neuronal subtypes. Data from both 
DGE and pathway analyses showed that most of the brain cell 
types exhibited an aging-driven upregulation of ribosomal pro-
tein genes, while those exhibiting the opposite regulation include 
important stem/progenitor cell populations. This paradoxical 
bidirectional regulation of ribosomal protein genes with aging  
is noteworthy.

Over the past years, it has been clearly shown that the attenuation 
of protein synthesis by dietary restriction or genetic manipulation 
of translation-associated genes, including those encoding ribosomal 
subunits, increases the lifespan of multiple species27. Notably, the 
downregulation of ribosomal protein genes and bulk protein syn-
thesis has been long considered as a hallmark of aging28. It appears 
that the aging-driven downregulation of ribosomal protein genes 
had been widely accepted, mostly based on transcriptomic studies 
in yeast28. However, several studies in other model organisms and 
humans have presented conflicting results5,29–35. Zahn et al. reported 
an aging-driven upregulation of ribosomal protein genes in human 
brain and muscle tissues35 and, in a later study, reported an aging-
driven upregulation of ribosomal protein genes in mouse neuro-
nal tissues5 with a downregulation of the same genes in multiple 
nonneuronal tissues5. Moreover, recently published transcriptomic 
studies showed an aging-related downregulation of ribosomal pro-
tein genes in ASC7 and NSC36 and an upregulation in MG of both 
aged37,38 and diseased brains37,39,40. Intriguingly, a very recent study 
reported increased ribosome biogenesis and activity as hallmarks 
of premature aging in human fibroblasts41. A possible explanation 
for this is that cells with different metabolic demands are affected 
differently by aging, thus inducing alternative feedback loops to 
partially compensate for loss of translational efficiency and pro-
tein synthesis. Another explanation is that certain cell populations  
may start producing different types and/or levels of specialized 
ribosomes42 tailored to their translational needs to cope with the 
metabolic changes induced by aging.

Collectively, these data indicate that the aging process may not 
be identical in all cell types, which is in line with our findings and 
with a recent transcriptome analysis of the Drosophila melanogaster 
brain that showed a differential aging trajectory in the transcrip-
tional profile of neurons and glial cells33. In short, it is not yet clear 
whether the regulation of ribosomal protein genes and other trans-
lation-associated genes is causative of aging or the consequence of 
physiological changes accompanying aging, or both depending on 
species, tissue and cell type. However, our work demonstrating that 
ribosome biogenesis is one of the aging-related pathways that is  
differentially regulated across cell types may help to reconcile  
seemingly conflicting studies.

Lastly, we created a roadmap of intercellular communication in 
the brain by generating detailed information on ligand–receptor 
interactions that change with aging across nearly all brain cell types. 
This roadmap is also of high importance as recent findings from 

our lab43 and others22,44 have shown that certain secreted factors, 
either derived from brain parenchyma or blood, are able to modu-
late brain aging, degeneration and rejuvenation. Thus, the discov-
ery of novel factors, their source, and their targets are emerging 
areas of importance in the aging field2. We foresee the extension of 
this network by including data from blood proteomic analyses and 
transcriptomic data from both disease models and heterochronic 
parabiosis experiments43 that may help in identifying novel thera-
peutic targets for treating functional defects in the brain brought  
on by aging and disease.

Our findings, in agreement with recent studies, highlight the 
sensitivity and power of single-cell transcriptomics not only to 
reveal differences in cell identities but also to reveal changes within 
individual cell types after different treatments and conditions20,45,46, 
including organismal aging8,9,32–34,38,47. As single-cell sequencing 
technologies continue to mature, some of the technical and experi-
mental limitations that we encountered will be improved upon. 
These include (1) potential sampling problems resulting from the 
enzymatic dissociation of the brain that may be overcome with 
single-nuclei sequencing approaches19; (2) potential age-associated 
biases in response to dissociation, cell encapsulation and other pro-
cedures that might drive transcriptional differences between experi-
mental groups; (3) the relatively small number of cells sequenced 
compared to the total size of the brain, restricting the comparative 
analyses to more abundant cell populations; (4) the relatively shal-
low depth of sequencing, limiting the analysis to highly transcribed 
genes; and (5) the lack of full-length splicing isoform profiling that 
could be enabled with other methods48. Our data could not also 
reveal potentially important aging-driven regional changes49 that 
may be resolved with spatial mapping sequencing approaches50  
or sex-specific gene expression variations, as only whole brain  
preparations of male mice were analyzed.

Nonetheless, our work identified aging-related changes in 
nearly all mouse brain cell types and revealed different patterns 
of aging across different populations, many of which we validated 
in this study. Thus, while there may be hallmarks of aging that 
occur in most cell types, such as mitochondrial dysfunction and 
loss of proteostasis1,3,28, our data argue against the hypothesis that 
aging induces a single universal molecular program in all cells 
and tissues10. However, we note that the aging process may occur 
gradually or in discrete steps depending on complex interactions 
among cells in the brain and ways in which these interactions 
modified by extrinsic factors, such as stress and exercise. Thus, 
future studies exploring gene expression changes along a contin-
uum, by examining additional timepoints, will help to reveal the 
precise aging trajectories for each cell and gene and to distinguish 
changes that are causative of aging from those that change as a 
consequence of aging.

Collectively, as a resource for the neuroscience community 
and to those who study the biology of aging, we provide com-
prehensive datasets of genes, pathways and ligand–receptor inter-
actions with aging-related variation for all the mouse brain cell 
types identified. We expect that, beyond the valuable explora-
tion of aging signatures and novel insights regarding the aging 
process, our data will be used as a reference for a series of other 
applications. For example, we showed that numerous putative 
cell-specific marker genes change with aging. Thus, the purifi-
cation or investigation of cells, based on single discriminatory 
markers, may be faulty in the context of aging. Similarly, our data 
revealed that the transcript levels of certain housekeeping genes 
change with aging in many cell types, which could confound some  
quantitative analyses.

Overall, these data will help to advance a variety of efforts towards 
understanding and modulating the aging process and exploring 
molecular and cellular therapeutic targets for aging-related neuro-
degenerative diseases.
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Methods
Animals. C57BL/6J mice (JAX no. 000664) were housed in the Harvard Biolabs 
Animal Facility under standard conditions. All experimental procedures were 
approved in advance by the Animal Care and Use Committee of Harvard 
University (AEP no. 10–23) and are in compliance with federal and state laws. 
Young male mice were used at 2–3 months of age, and old male mice at 21–22 
months of age.

Brain tissue dissociation. Brain tissue harvest and dissociation was performed at 
the same time (09:00–10:00) for each animal, thus limiting circadian variation51. 
For brain tissue dissociation, we modified existing protocols and developed a 
new one that enables the isolation of intact living cells from both young and old 
mouse brains in less than 1 h. Briefly, mice were CO2 anesthetized and then rapidly 
decapitated. Brains were extracted, and hindbrain regions were removed. The 
remaining tissue was dissociated into single cells with the Adult Brain Dissociation 
kit (Miltenyi Biotec no. 130-107-677) with these modifications: (1) the tissue was 
manually dissociated following the basic steps of the protocol described in the 
Neural Tissue Dissociation Kit (Miltenyi Biotec no. 130-092-628); (2) 5% (w/v) 
trehalose (Sigma Aldrich no. T0167) was added in all buffers to ensure higher 
cellular viability52; (3) half concentration of papain was used, and the digestion was 
performed at 33–35 oC; (4) the enzymatic reaction was quenched with ovomucoid 
protease inhibitor, as described in the Papain Dissociation System (Worthington 
no. LK003182); (5) cell clusters were removed by serial filtration through prewetted 
70-μm (Falcon no. 352350) and 40-μm (Falcon no. 352340) nylon cell strainers;  
(6) myelin debris and erythrocyte removal steps were omitted to prevent any bias 
in the recovered cell yields; (7) all centrifugations were performed at 220g for  
8 min at 4 oC. After dissociation, cells were kept on ice for no longer than 1 h  
until further processing.

Single-cell RNA sequencing. For the scRNA-seq experiments, 8 young and 8 
old mouse brains were analyzed, with 2 animals killed per day. Brain cells were 
processed through all steps to generate stable cDNA libraries. Briefly, after 
dissociation, cells were diluted in ice-cold PBS containing 0.4% BSA at a density 
of 1,000 cells μl–1. For every sample, 17,400 cells were loaded into a Chromium 
Single Cell 3′ Chip (10x Genomics) and processed following the manufacturer’s 
instructions. Then, scRNA-seq libraries were prepared with the Chromium Single 
Cell 3′ Library & Gel Bead kit v2 and i7 Mutiplex kit (10X Genomics). Libraries 
were pooled based on their molar concentrations. Pooled libraries were then 
loaded at 2.07 pM and sequenced on a NextSeq 500 instrument (Illumina) with  
26 bases for read1, 57 bases for read2 and 8 bases for Index1. Cell Ranger 
(v.1.2) (10X Genomics) was used to perform sample de-multiplexing, barcode 
processing and single-cell gene-UMI counting, while a digital expression matrix 
was obtained for each experiment with default parameters53, mapped to the 10X 
reference for mm10, v.1.2.0. After the initial sequencing, the samples in each 
pool were re-pooled based on the actual number of cells detected by Cell Ranger 
(Supplementary Fig. 2a), to sequence each sample to a similar depth (number  
of reads/cell) (median, 40,007; Supplementary Fig. 2c). Multiple NextSeq runs  
were conducted to achieve over 70% sequencing saturation as determined again  
by Cell Ranger (median, 75%; Supplementary Fig. 2f).

Raw data processing and quality control for cell inclusion. Basic processing 
and visualization of the scRNA-seq data were performed with the Seurat package 
(v.2.3) in R (v.3.3.4)54–56. Our initial dataset contained 50,212 cells with data 
for 19,607 genes. The average numbers of UMI (nUMI) and nonzero genes 
(nGene) were 2,876.70 and 1,112.56, respectively. The data were log normalized 
and scaled to 10,000 transcripts per cell. Variable genes were identified with 
the FindVariableGenes() function with the following parameters used to set 
the minimum and maximum average expression and the minimum dispersion: 
x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5. Next, principal component 
analysis (PCA) was carried out, and the top 20 principal components (PCs) 
were stored, which is the default number in Seurat. Clusters were identified with 
the FindClusters() function by use of the shared nearest neighbor modularity 
optimization with a clustering resolution set to 1.6. All clusters with only one cell 
were removed. This method resulted in 40 initial clusters. Data for all cells are 
provided in Supplementary Fig. 3a with colors representing each of the clusters. 
For initial quality-control filtering, we selectively removed entire clusters, with 
the majority of cells having greater than 30% mitochondrial RNA, under 1,000 
detected transcripts, or under 500 unique genes. Finally, we filtered the remaining 
individual cells with the following parameters: minimum percentage mito = 0, 
maximum percentage mito = 30%, minimum number of UMI = 200, maximum 
number of UMIs = 30,000, minimum number of nGene = 250, and maximum 
number of nGene = 6,000 to exclude outliers. Finally, we removed any genes 
that were only detected in fewer than 3 cells. After initial quality control, we 
maintained a total of 38,244 cells and 14,699 genes. Data for all cells are provided 
in Supplementary Fig. 3b with black representing excluded cells and gray the 
included cells. The average nUMI, nonzero genes, percentage mitochondrial 
RNA, and percentage ribosomal RNA were 3,199.12, 1,284.08, 8.33% and 6.94%, 
respectively. PCA was again carried out, and the top 20 PCs were retained. The 
clustering was again performed with the clustering resolution now set to 2.0. 

This method resulted in 55 initial clusters. The final preprocessing stage was to 
remove likely doublet artifacts arising from the co-capture of multiple cells in 
one droplet. This step occurred following an initial round of determination of 
cell-type identity as described in the next section. We first searched for the top 
differential markers for each identified cluster/sub-cluster using the FindMarkers() 
function (Supplementary Tables 3 and 4). Then, we defined doublets/multiplets 
as any cluster in which >30% of its cells express at least 5 of the top 10 genes 
specific for the initially identified cell type and any other cell type outside of the 
cell class it is associated with (see below for details on cell classes). These clusters 
were removed from downstream analysis. Furthermore, cell clusters that were not 
represented by at least half of the young and old animals were also excluded. For 
example, although we detected epithelial cells (Epcam+/Krt18+) in our dataset, 
we excluded them from our processing as they were detected only in two of the 
eight young animals but none of the old animals. After exclusions, clustering was 
again performed. Ultimately, we included 37,069 cells representing 38 clusters 
(Supplementary Fig. 4).

Determination of cell-type identity. For each cell type, we used multiple cell-
type-specific/enriched marker genes that have been previously described in the 
literature to determine cell-type identity. These include, but are not limited to 
Pdgfra for OPC57; Cldn11 for OLG57; Npy for OEG14,58; Thbs4 for NSC59–63; Cd44 
for ARP;64; Gja1 for ASC46; Cdk1 for NRP; Sox11 for ImmN65; Syt1 for mNEUR66; 
Baiap3 for NendC67; Ccdc153 for EPC45; Sspo for HypEPC12; Rax for TNC45; Ttr 
for CPC68; Cldn5 for EC69; Kcnj8 for PC69; Acta2 for VSMC69; Alas2 for Hb-VC20,70; 
Slc6a13 for VLMC12,57; Slc47a1 for ABC12; Tmem119 for MG46; Plac8 for MNC71; 
Pf4 for MAC71; Cd209a for DC71,72; S100a9 for NEUT71 (see Fig. 1c,d). We then 
arranged all the identified cell types based on their expression profile, lineage, 
function and anatomical organization into 6 classes of cells (Supplementary Fig. 7a).  
For each class, we re-clustered the subcategorized cell types following the same 
strategy (top 20 PCs with a clustering resolution of 2.0). Only for the neuronal 
lineage, which has an increased complexity in terms of cell subtypes, we used the 
top 40 PCs to yield more separated clusters. The annotation of subclusters was 
performed similarly to identification of the main cell clusters, with additional 
reported cell type/subtype marker genes73–76.

DGE analysis. After initial quality-control preprocessing and determination of 
cellular identities, we used the MAST package (v.1.6.1)77 in R (v.3.3.4) to perform 
DGE analysis. MAST generated P values, FCs and logFC (based on natural log of 
the FCs), using a hurdle model with normalized nUMI as a covariate. It is worth 
mentioning that due to shrinkage in the Bayes approach leveraged by MAST, we 
were able to detect significance in very small changes in transcription but there was 
also an underestimation of FC. This effect is especially noticeable when comparing 
FC between MAST calculations and traditional TPM-based calculations for genes 
with low expression levels. Additionally, the DGE techniques used here have 
more power to assign significance of subtle changes in highly transcribed genes, 
and therefore our results may underrepresent changes in lowly transcribed genes. 
Finally, our ability to establish a baseline level of transcription is proportional 
to the number of cells measured, and thus more subtle changes in abundant 
populations can be deemed significant.

Pathway analysis. GSEA21 was performed to identify cellular pathways and 
processes associated with aging. Analysis was carried out with the GSEA package 
(v.3.0) (Broad Institute), following the protocol described by Reimand et al.78. 
Briefly, before the analysis, genes for every distinct cell population were ranked 
according to their DGE changes and significance (young versus old). Two 
preranked gene lists were generated for each cell population: (1) with all genes 
transcribed, and (2) without the highly abundant mitochondrially encoding  
genes and ribosomal protein genes. All these preranked gene lists were then used 
as an input, while 5 gene datasets (Hallmark pathways, GO biological processes, 
KEGG, BioCarta, Reactome (v.6.1)) were used as a reference. To calculate  
the P values for each pathway, 1,000 random permutations were performed.  
Only gene sets with P < 0.05 and q < 0.25 were considered as significantly enriched. 
To overcome redundancy and help interpretation of the analysis, we grouped terms 
overrepresenting the same pathway using the Cytoscape software (v.3.5.1) and the 
AutoAnnotate app (v.1.2)79. Pathways belonging to similar biological processes 
were also grouped together for easier navigation/exploration (Supplementary 
Tables 9 and 10). For the expression heatmaps of pathways and processes, the top 
leading edge genes and their raw normalized expression values were determined  
by the Cytoscape software (v.3.5.1) and the EnrichmentMap app (v.3.0)79.  
More specifically, for each gene value (TPM) in a row of expression, the mean  
of the row was subtracted and then divided by the row’s standard deviation.

Intercellular network analysis. Cell–cell interactions were predicted by a 
method similar to that described by Kirouac et al.80. First, a cell communication 
interactome was created, collecting known protein–protein interactions between 
receptor, ligand and extracellular matrix (ECM) proteins. Receptor genes were 
defined based on a set of GO terms (GO: 0043235, receptor complex; GO: 0008305, 
integrin complex; GO: 0072657, protein localized to membrane; GO: 0043113, 
receptor clustering; GO: 0004872, receptor activity; GO: 0009897, external side of 
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plasma membrane) and UniProt (search term: “Receptor [KW-0675]” GO: 0005886 
organism: human). Ligand genes were defined based on a GO term (GO: 0005102, 
receptor binding) and the set of proteins labeled as secreted in the Secretome 
dataset (https://www.proteinatlas.org/humanproteome/secretome)81. ECM genes 
were defined based on a set of GO terms (GO: 0031012, extracellular matrix; GO: 
0005578, proteinacious extracellular matrix; GO: 0005201, extracellular matrix 
structural constituent; GO: 1990430, extracellular matrix protein binding; and GO: 
0035426, extracellular matrix cell signaling). Gene lists were manually curated to 
correct or remove genes that were misclassified. With the curated list of receptors, 
ligands and ECM genes, known protein–protein interactions were collected from 
iRefindex (v.14)82, Pathway Commons (v.8)83 and BioGRID (v.3.4.147)84, keeping 
only those occurring between genes from the different classes (ligand, receptor, 
ECM). This dataset is available at https://baderlab.org/CellCellInteractions. To 
predict cell–cell interactions, the ligand–receptor interaction dataset was filtered 
for genes detected to be expressed at the mRNA transcript level in our cell types. 
To investigate aging-related perturbations in these putative cell–cell interaction 
networks, DGE metrics from the MAST analysis outlined above were used to build 
subnetworks for each set of interactions between cell types. In these networks, 
nodes represent ligands or receptors expressed in the denoted cell type, and edges 
represent protein–protein interactions between them. Nodes were colored to 
represent the magnitude of DGE (logFC as estimated by the MAST model). These 
values were scaled per cell type and summed to determine edge weight. An R Shiny 
application was built to interactively explore the bipartite graphs generated from 
this analysis and is available at http://shiny.baderlab.org/AgingMouseBrain/ and  
on GitHub at https://github.com/BaderLab/AgingMouseBrainCCInx.

Flow cytometry. For the simultaneous isolation and purification of ASC, EC and 
MG, we developed a multicolor flow cytometry approach. Briefly, dissociated 
cells from each brain were pelleted (220g, 8 min, 4 oC) and resuspended in 1 ml 
of ice-cold labeling buffer (HBSS without calcium and magnesium, 0.1% BSA, 
2 mM EDTA, 5% trehalose, 1% GlutaMAX). Cells were incubated with 100 μl of 
FcR blocking reagent (Miltenyi Biotec no. 130-092-575) for 12 min at 4 oC under 
continuous rotation and then labeled with 3 μg ml–1 of each of the following 
antibodies: APC anti-ACSA-2 (Miltenyi Biotec no. 130-102-315) for ASC; BV786 
anti-CD31 (BD Biosciences no. 740870 and BD Biosciences no.740879) for EC; 
and BV510 anti-CD11b (BD Biosciences no.562950) for MG. Cells were also 
incubated with the following antibodies targeting unwanted cell populations: PE 
anti-CD200 (BioLegend no. 123808) for mNEUR and Alexa Fluor 488 anti-O4 
(R&D Systems no. FAB1326G) for OLG. This step is critical as it helps to exclude 
unwanted cells during sorting, thus minimizing cross-contamination events. After 
12 min of incubation at 4 oC (in dark conditions), cells were washed extensively, 
pelleted and resuspended in ice-cold FACS buffer (HBSS containing calcium and 
magnesium, 0.5% BSA, 5% trehalose, 1% Glutamax) in a volume of 25 ml per brain 
(5 FACS tubes). To exclude cellular debris and dead cells, 15 min before sorting, 
10 μM Calcein Blue AM (BD Biosciences no. 564060) was added to the FACS tubes 
to stain live cells. Calcein+ cells were then sorted with a Moflo Astrios instrument 
(Beckman Coulter) with a 70 μm nozzle at 60 psi. Gates were set manually with 
compensation beads (Life Technologies no. A10497) and appropriate control 
samples, and data were analyzed with FlowJo software (v.10). For the purification 
of EPC, we followed a similar flow cytometry approach using these antibodies: 
APC anti-CD133 (Miltenyi Biotec no. 130-102-197); APC anti-CD133 (eBioscience 
no. 17-1331-81); PE anti-CD24a (BD Biosciences no. 553262); and PE anti-CD24a 
(BioLegend no. 138504). To minimize RNA degradation, sorted cells were collected 
directly in RL buffer (Norgen Biotek no. 48500) supplemented with 10% BME, in 
a 1:1 final ratio (50% lysis buffer: 50% cells in sheath fluid; the PBS-based solution 
that is derived from the flow cytometer). After sorting, cell lysates were snap frozen 
and stored at −80 oC for up to 1 month until further processing.

RNA extraction. Total RNA was extracted from sorted cells with the total RNA 
purification plus Micro kit (Norgen Biotek no. 48500) following the manufacturer’s 
instructions. Before RNA extraction, a chloroform extraction step was included to 
remove myelin debris/lipids, as well as an on-column DNase digestion step (Qiagen 
no. 79254) to remove genomic and mitochondrial DNA. For all samples, RNA 
concentration was determined with a Qubit Fluorometer (Invitrogen), while RNA 
purity and integrity were evaluated with a BioAnalyzer instrument (Agilent).  
After extraction, RNA was immediately stored at −80 oC for no longer than a 
month until further processing.

Bulk RNA sequencing. For the bulk RNA-seq experiments, sorted/purified 
cells from 8 mouse brains (4 young and 4 old) were analyzed. Bulk RNA-seq was 
performed with a modified version of the SCRB-Seq that was originally developed 
for single-cell RNA-seq analysis85. Briefly, polyadenylated RNA, from total RNA 
(7.5–25 ng; RNA integrity number (RIN) values > 6.5) extracted from our FACS-
purified cells, with ERCC Spike-in control Mix A (Ambion) at 10−6 final dilution, 
was converted to cDNA and decorated with universal adapters, sample-specific 
barcodes and UMI with a template-switching reverse transcriptase. Decorated 
cDNA was then pooled, amplified and prepared for multiplexed sequencing 
(NextSeq 500, Illumina) with a modified transposon-based fragmentation 
approach that enriched for 3′ ends and preserved strand information.

Bulk sequencing data analysis. Postsequencing quality control on each of the 
libraries was performed to assess coverage depth, enrichment for messenger  
RNA (exon/intron and exon/intergenic density ratios), fraction of rRNA reads  
and number of detected genes with bespoke scripts. Second sequence reads  
were aligned against the murine genome mm9 with bwa mem (v.0.7.10-r789) 
(http://bio-bwa.sourceforge.net/). Gene expression was estimated based on 
reads mapping near the 3′ end of transcripts with ESAT86, based on the mm9 
Refseq annotation, with flags java -Xmx128G -task score3p -wLen 50 -wExt 
5000 -wOlap 0 -sigTest 0.01 -multimap ignore. Results were summarized as 
counts per million mapped reads, merged across samples, log transformed and 
subjected to hierarchical clustering and visualization. For ERCC quantification, 
reads were mapped against the ERCC sequences by use of STAR (v.2.5.1b)87 
with flags --runMode alignReads --runThreadN 8 --outSAMtype BAM 
SortedByCoordinate --outFilterType BySJout --outFilterMultimapNmax 20 
--outFilterMismatchNmax 999 --alignIntronMin 10 -alignIntronMax 1000000 
--alignMatesGapMax 1000000 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 
--quantMode TranscriptomeSAM. Bam files from STAR were sorted and indexed 
with samtools88, and counts were retrieved from the indices with idxstats. DGE 
analysis89 was performed in R (v.3.2.3) with Bioconductor’s DESeq2 package 
(v.3.7)90. Dataset parameters were estimated with the estimateSizeFactors() and 
estimateDispersions() functions; read counts across conditions were modeled 
based on a negative binomial distribution, and a Wald test was used to test for 
differential expression (nbinomWaldtest(), all packaged into the DESeq() function) 
with the age as a contrast.

Quantitative reverse transcription PCR. For the qRT-PCR experiments, sorted/
purified cells from 19 mouse brains (9 young and 10 old) were analyzed. Briefly, 
RNA samples with RIN values > 6.5 were reverse transcribed into cDNA with the 
iScript cDNA synthesis kit (Bio-Rad no. 170-8891) following the manufacturer’s 
instructions. The resulting cDNA was then processed for qRT-PCR analysis with 
predesigned primers (Integrated DNA Technologies) (Supplementary Table 11)  
and the Fast SYBR Green Master Mix (Life Technologies no. 4385614) in a 
QuantStudio 12 K Flex Real-Time PCR System (Applied Biosystems). Before data 
analysis, we examined the melting curves for each reaction and included only 
those with a single peak at the expected melting temperature. The FC in gene 
expression was determined by the 2-DDCT method91, and all values were normalized 
to the endogenous expression of Vcp; a housekeeping gene that has been proposed 
for calibration in quantitative experiments92. Our scRNA-seq analysis showed that 
in the vast majority of cell populations Vcp levels remain unaltered with aging, in 
contrast to other more commonly used genes. Samples with Vcp Ct values > 29 
were excluded from our analysis. Each sample was repeated in technical duplicates 
on 3–10 biological replicates.

Comparison of gene expression changes across different datasets. Unless stated 
otherwise, heatmaps of logFC were used for the comparison of gene expression 
changes across different datasets (scRNA-seq, FACS/bulk RNA-seq, FACS/qRT-
PCR). Heatmaps are much more informative than Venn diagrams as they display 
gene identity and the degree of expression change. Our independent datasets 
were in a very good agreement with each other, as only a few inconsistencies in 
the expression changes of certain individual genes were observed. These changes 
more likely reflect slight differences in the cell populations identified either 
informatically (for scRNA-seq) or by antibody labeling (for FACS/bulk RNA-seq).  
For example, in our flow cytometry experiments we used anti-ACSA-2 to 
isolate and purify ASC93,94, but a recent study showed that this marker is not 
expressed at the same level by all ASC95. Thus, this marker may slightly enrich 
some subpopulations of ASC more than others. Of note, the existence of diverse 
subpopulations of ASC with distinct region-specific transcriptomic signatures  
has been recently demonstrated12 and verified by our scRNA-seq analysis  
(see Supplementary Fig. 8), while aging-associated gene expression changes in 
different regional ASCs have been also documented7,96,97. Therefore, it is possible 
that informatics-based identification, and FACS-based isolation/purification, 
define cell populations that are very similar, but not identical, to each other, 
potentially contributing to discrepancies when comparative analyses are used.

RNAscope in situ hybridization. RNAscope fluorescent in situ hybridization 
was performed on fresh-frozen brain tissue from 16 mice (8 young and 8 old). 
For sample preparation, mice were CO2 anesthetized, and brains were rapidly 
extracted and embedded in OCT (Tissue Tek) on dry ice, and then stored at −80 °C 
until further processing. We collected 14-μm cryostat sections and RNAscope 
hybridizations were carried out according to the manufacturer’s instructions, 
using the RNAscope Multiplex Fluorescent Manual Assay kit (Advanced Cell 
Diagnostics). Briefly, thawed sections were dehydrated in sequential incubations 
with ethanol, followed by 30-min Protease IV treatment and washing in  
1× PBS. Appropriate combinations of hybridization probes were incubated for 
2 h at 40 °C, followed by four amplification steps, 4,6-diamidino-2-phenylindole 
(DAPI) counterstaining, and mounting with Prolong Gold mounting medium 
(Thermo Fisher Scientific no. P36930). Brain regions were selected considering the 
high expression levels of the examined genes, according to the Allen Brain Atlas98.  
For single-probe analysis, probes against Rpl6 (ACD no. 300031), Malat1 (ACD 
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no. 313391) and Meg3 (ACD no. 527201) were tested and labeled with the 
fluorophore Atto-550 nm. For each mouse, 3–4 bregma-matched sections were 
imaged. Images (4 per brain section) were acquired with a Zeiss LSM 880 Confocal 
Microscope with identical settings across young and old sections and represented 
as maximum intensity projections of acquired confocal z stacks. Analysis was 
done with the CellProfiler software (v.3)99 with the following specifications for 
different target probes: Malat1/Meg3: only puncta with a diameter between 4 and 
8 pixels that were located within the nuclei were quantified; Rpl6: only puncta with 
a diameter between 4 and 8 pixels that were located within the perinuclear space 
(within 70 pixels of the DAPI-positive nuclei) were quantified. For dual-probe 
analysis, RNAscope was performed as described above, but here imaging settings 
were kept identical across all young and old brain sections and all probes tested. 
Probes against Cd9 (ACD no. 430631), Rps23 (ACD no. 571741), Pdgfra (ACD 
no. 480661-C3) and Itgam (ACD no. 311491-C3) were tested. Target probes (Cd9, 
Rps23) were labeled by fluorophore Atto-550nm, while cell-type markers (Pdgfra, 
Itgam) were labeled by fluorophore Alexa-488nm. An empty channel (Atto-647) 
was collected for every image processed to account for autofluorescence from 
lipofuscin granules largely associated in the aged brain with MG100. In our imaging 
we observed that lipofuscin autofluorescence mainly interfered with Alexa-488 
channel. Imaging analysis was performed as above with the following specifications 
for target probes (Cd9, Rps23): only puncta with a diameter between 6 and 15 
pixels that were located within an OPC’s or MG’s perinuclear space (within 70 
pixels of the DAPI-positive nuclei) were quantified. OPC and MG were defined as 
cells that contained at least two Pdgfra+ or Itgam+ puncta, respectively (diameter 
6–15 pixels). It is important to note that due to the high degree of homology 
among ribosomal protein genes, certain pseudogenes and predicted mouse genes, 
probes designed against Rpl6 and Rps23, may also cross-detect off-targets, based 
on the specificity criteria provided by the vendor: the Rpl6 probe may cross-detect 
Gm13397 and Gm6807; the Rps23 probe may cross-detect Gm8624, Gm3189, 
Gm10689, Rps23-ps1 and Rps23-ps2.

Immunohistochemistry. For immunohistochemistry experiments, 14 mouse 
brains (7 young and 7 old) were processed. For preparation of free-floating 
tissue sections, mice were perfused intracardially with 1× PBS followed by 4% 
paraformaldehyde; brains were removed and embedded in 3% agarose, and serial 
30-µm-thick coronal sections were cut in a vibrating microtome and were kept in 
1× PBS with 0.1% sodium azide at 4 °C until staining. For preparation of fresh-
frozen tissue sections (used only to show the co-expression of IL33 and OLIG2), 
mice were CO2 anesthetized, brains were rapidly extracted and embedded in 
OCT, and serial 14-μm-thick coronal sections were cut in a cryostat and then 
fixed in 4% paraformaldehyde before staining. Immunostaining was performed 
with standard procedures. Briefly, sections were washed thoroughly in 1× PBS 
and incubated in a permeabilization/blocking solution (10% normal goat serum 
(or 10% donkey serum, or 2% horse serum), 0.25% Triton X-100, 1× PBS) for 
1 h at room temperature. Sections were then incubated overnight at 4 °C with the 
following primary antibodies in blocking solution (typically at 1:100 dilution):  
goat polyclonal anti-SPARC (R&D Systems no. AF942), rabbit polyclonal anti-
IBA1 (Wako no. 019-19741), goat polyclonal anti-IL33 (R&D Systems no. AF3626) 
and mouse monoclonal anti-OLIG2 (Millipore no. MABN50). Alexa Fluor 
secondary antibodies (Invitrogen) were used for detection of primary antibodies 
in 1% normal goat (or donkey serum or horse serum), 1× PBS for 1–2 h at room 
temperature. Hoechst 33342 was used to label nuclei. Imaging was performed 
with a Zeiss ELYRA super-resolution confocal microscope (free-floating tissue 
sections) or a Zeiss LSM 880 confocal microscope (fresh-frozen tissue sections) at 
×20 and ×40 magnifications. Images were visualized with Zeiss Zen software (blue 
edition; v.2.6). For each mouse, 3–4 bregma-matched sections were imaged. Images 
were represented as maximum intensity projections of acquired confocal z stacks. 
Analysis was done wtih Image J software (v.1.49).

Statistics and reproducibility. No statistical methods were used to predetermine 
sample sizes; our samples sizes were determined iteratively. No randomization was 
performed. Data collection and analysis were not performed blind to the conditions 
of the experiments. All statistical analyses were performed with R (v.3.3.4) or 
GraphPad Prism (v.7.04). Unless otherwise stated, to generate P values for cell 
counts and other metrics/variables, we used the Mann–Whitney U-test101. All P 
values were modified to a FDR of 5% with the Benjamin–Hochberg precedure102. 
For validation of gene expression changes by qRT-PCR, immunohistochemistry, 
and RNAscope in situ hybridization assays, data distribution was assumed to be 
normal for each analysis, but this was not formally tested.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw single-cell RNA sequencing data are available through NCBI’s Gene 
Expression Omnibus (GEO) under the accession number GSE129788. The 
processed datasets can be readily viewed, explored and downloaded through our 
web-based interactive viewers at https://portals.broadinstitute.org/single_cell/
study/aging-mouse-brain and http://shiny.baderlab.org/AgingMouseBrain/.

Code availability
The code used to perform analysis of the sequencing data was an adaptation of 
standard R packages, such as Seurat and MAST, as described in the Methods 
section. The code used for the ligand–receptor interaction analyses is available on 
GitHub at https://github.com/BaderLab/AgingMouseBrainCCInx. More detailed 
information is available upon request.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Single-cell RNA-seq data were acquired using the Cell Ranger software (version 1.2). 
RNAscope ISH and IHC images were acquired using the Zeiss Zen image software (version 2.6). 
qRT-PCR data were acquired using QuantStudio 12K FLlex Real-Time PCR software (version 1.2.2).

Data analysis Single-cell RNA-seq data were analyzed in R Studio (version 3.3.4) using the packages Seurat (version 2.3) and MAST (version 1.6.1). 
Bulk RNA-seq data were analyzed in R Studio (version 3.2.3) using the package DESeq2 (version 3.7). 
Processed single cell RNA-seq datasets were analyzed in GSEA software (version 3.0) and in Cytoscape software (version 3.5.1) using the 
AutoAnnotate app (version 1.2) and the EnrichmentMap app (version 3.0.)  
RNAscope ISH images were analyzed in CellProfiler software (version 3). 
IHC images were analyzed in Image J software (version 1.49). 
FACS data were analyzed in FlowJo software (version 10). 
qRT-PCR data were analyzed in GraphPad Prism software (version 7.04). 
 
The code used for the ligand-receptor interaction analyses is available on GitHub at: 
https://github.com/BaderLab/AgingMouseBrainCCInx

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The raw sequencing data are available through NCBI’s Gene Expression Omnibus (GEO) under the accession number: GSE129788. 
 
The processed datasets can be viewed, explored and downloaded through the Broad’s Single Cell Data Portal at: 
https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain 
The intercellular communication network is available for exploration and download at: 
http://shiny.baderlab.org/AgingMouseBrain/

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Samples sizes for each experiment are clearly delineated in the manuscript. 
No statistical methods were used to predetermine sample sizes; our sample sizes were determined iteratively. 
For the single cell RNA-seq the total number of young and old animals, as well as, the number of single cells analyzed was set to ensure that 
multiple animals contributed to each reported cell population and to allow the comparison of young and old cell types. 
Same rationale was followed for all the validation experiments.

Data exclusions All exclusion criteria are established during exploratory data analysis and are delineated in the relevant sections of the Methods. 
In brief, for scRNA-seq experiments, data from poor quality cells and outliers (having greater than 30% mitochondrial RNA, less than 200 
UMIs, less than 250 nGenes, greater than 30,000 UMIs, greater than 6,000 nGenes), from good quality cells (derived from less than half of the 
young and old animals), and from doublets/multiplets were excluded from the analysis. For qRT-PCR experiments, samples with Vcp Ct values 
greater than 29 were excluded from the analysis. For FISH and IHC experiments, no images were excluded.

Replication Findings that are highlighted in the manuscript were successfully reproduced using independent methodologies (FACS/bulk RNA-seq, FACS/
qRT-PCR, RNAscope ISH, and IHC).

Randomization No randomization was used as there was no treatment in our study. However, young and old mice were randomly assigned to the different 
sets of experiments (single cell RNA-seq, FACS/bulk RNA-seq, FACS/qRT-PCR, RNAscope ISH, and IHC).

Blinding Blinding was not possible, as knowledge of the experimental conditions was required during the data collection and analyses. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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ChIP-seq
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MRI-based neuroimaging
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Antibodies
Antibodies used For FACS (all the following antibodies used at a final concentration 3ug/ml): 

 
APC anti-ACSA-2 (Miltenyi Biotec #130-102-315) 
https://www.miltenyibiotec.com/US-en/products/macs-flow-cytometry/antibodies/primary-antibodies/anti-acsa-2-antibodies-
mouse-ih3-18a3-1-10.html 
 
BV786 anti-CD31 (BD Biosciences #740870) 
http://www.bdbiosciences.com/us/reagents/research/antibodies-buffers/immunology-reagents/anti-mouse-antibodies/cell-
surface-antigens/bv786-rat-anti-mouse-cd31-mec-133/p/740870 
 
BV786 anti-CD31 (BD Biosciences #740879) 
https://www.bdbiosciences.com/us/reagents/research/antibodies-buffers/immunology-reagents/anti-mouse-antibodies/cell-
surface-antigens/bv786-rat-anti-mouse-cd31-390/p/740879 
 
BV510 anti-CD11b (BD Biosciences #562950) 
https://www.bdbiosciences.com/eu/applications/research/stem-cell-research/mesenchymal-stem-cell-markers-bone-marrow/
mouse/negative-markers/bv510-rat-anti-cd11b-m170/p/562950 
 
PE anti-CD200 (BioLegend #123808) 
https://www.biolegend.com/en-us/products/pe-anti-mouse-cd200-ox2-antibody-4424 
 
Alexa Fluor 488 anti-O4 (R&D Systems #FAB1326G) 
https://www.rndsystems.com/products/oligodendrocyte-marker-o4-alexa-fluor-488-conjugated-antibody-o4_fab1326g 
 
BV605 anti-CD140a (BD Biosciences #740380) 
https://www.bdbiosciences.com/us/reagents/research/antibodies-buffers/immunology-reagents/anti-mouse-antibodies/cell-
surface-antigens/bv605-rat-anti-mouse-cd140a-apa5/p/740380 
 
APC anti-CD133 (Miltenyi Biotec #130-102-197) 
https://www.miltenyibiotec.com/US-en/products/macs-flow-cytometry/antibodies/primary-antibodies/anti-prominin-1-
antibodies-mouse-mb9-3g8-1-10.html#apc:30-ug-in-1-ml 
 
APC anti-CD133 (eBioscience #17-1331-81) 
https://www.thermofisher.com/antibody/product/CD133-Prominin-1-Antibody-clone-13A4-Monoclonal/17-1331-81 
 
PE anti-CD24a (BD Biosciences #553262) 
http://www.bdbiosciences.com/us/applications/research/stem-cell-research/cancer-research/mouse/pe-rat-anti-mouse-cd24-
m169/p/553262 
 
PE anti-CD24a (BioLegend #138504) 
https://www.biolegend.com/en-us/products/pe-anti-mouse-cd24-antibody-6617 
 
For IHC (all primary antibodies used at 1:100 dilution): 
 
anti-SPARC (R&D Systems #AF942) 
https://www.rndsystems.com/products/mouse-sparc-antibody_af942 
 
anti-IBA1 (Wako #019-19741) 
https://labchem-wako.fujifilm.com/us/category/01213.html 
 
anti-IL33 (R&D Systems#AF3626) 
https://www.rndsystems.com/products/mouse-il-33-antibody_af3626 
 
anti-OLIG2 (Millipore #MABN50) 
http://www.emdmillipore.com/US/en/product/Anti-Olig2-Antibody-clone-211F1.1,MM_NF-MABN50 
 
For IHC (all secondary antibodies used at 1:250 dilution): 
 
anti-rabbit-Alexa Fluor 488 (Invitrogen #A21206) 
https://www.thermofisher.com/antibody/product/Donkey-anti-Rabbit-IgG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-
Polyclonal/A-21206 
 
anti-mouse-Alexa Fluor 546 (Invitrogen #A10036) 
https://www.thermofisher.com/antibody/product/Donkey-anti-Mouse-IgG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-
Polyclonal/A10036 
 
anti-goat-Alexa Fluor 488 (Invitrogen #A11055) 
https://www.thermofisher.com/antibody/product/Donkey-anti-Goat-IgG-H-L-Cross-Adsorbed-Secondary-Antibody-Polyclonal/
A-11055 
 
anti-goat-Alexa Fluor 546 (Invitrogen #A11056) 
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https://www.thermofisher.com/antibody/product/Donkey-anti-Goat-IgG-H-L-Cross-Adsorbed-Secondary-Antibody-Polyclonal/
A-11056

Validation All the above are well characterized commercial antibodies. For each one, the specificity has been tested by the manufacturer 
and verified independently by previous published studies. Validation profiles and relevant citations can be found in the links 
provided.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For all the experiments, only male C57BL/6J mice (JAX #000664) were used. Young mice were at 2-3 months of age, and old male 
mice at 21-22 months of age.

Wild animals This study did not contain wild animals.

Field-collected samples This study did not contain field-collected samples.

Ethics oversight All experimental procedures were approved in advance by the Animal Care and Use Committee of Harvard University (AEP 
#10-23) and are in compliance with federal and state laws.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation For the flow cytometry experiments, we used single cell suspensions derived from either young or old mouse brains.

Instrument Moflo Astrios instrument (Beckman Coulter).

Software Data were analyzed using the FlowJo software (version 10).

Cell population abundance ACSA-2+ astrocytes: 500,000 cells/brain 
CD11b+ microglia: 130,000 cells/brain 
CD31+ endothelial cells: 30,000 cells/brain 
CD24a+/CD133+ ependymocytes: 30,000 cells/brain

Gating strategy Gates were set manually by using compensation beads (Life Technologies #A10497) and appropriate control samples.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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