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A rat liver cell atlas reveals
intrahepatic myeloid heterogeneity
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SUMMARY

The large size and vascular accessibility of the laboratory rat (Rattus norvegicus) make it an ideal hepatic
animal model for diseases that require surgical manipulation. Often, the disease susceptibility and out-
comes of inflammatory pathologies vary significantly between strains. This study uses single-cell transcrip-
tomics to better understand the complex cellular network of the rat liver, as well as to unravel the cellular
and molecular sources of inter-strain hepatic variation. We generated single-cell and single-nucleus tran-
scriptomic maps of the livers of healthy Dark Agouti and Lewis rat strains and developed a factor analysis-
based bioinformatics analysis pipeline to study data covariates, such as strain and batch. Using this
approach, we discovered transcriptomic variation within the hepatocyte and myeloid populations that un-
derlie distinct cell states between rat strains. This finding will help provide a reference for future investi-
gations on strain-dependent outcomes of surgical experiment models.

INTRODUCTION

The liver is a multitasking organ that performs a remarkably diverse set of functions including nutrient metabolism, regulation of immune re-
sponses, and protein synthesis. Despite its highly regenerative and tolerogenic nature,? inflammatory end-stage liver diseases such as drug-
induced liver injury, hepatitis infection, hepatocellular carcinoma, and autoimmune hepatitis are common.® Despite the recent advancements
in medical strategies to treat acute liver disease,” ™ the development of therapeutic options is limited by our incomplete understanding of the
cellular landscape of the liver in non-mouse animal models. The liver is composed of multiple cell types with complementary functions,
including hepatocytes, biliary epithelial cells (cholangiocytes), mesenchymal cells (stellate cells and vascular smooth muscle cells [VSMCs]),
myeloid cells, liver sinusoidal endothelial cells (LSECs) and multiple other immune cell populations.” Hepatocytes make up the majority of
liver volume and are involved in metabolism and drug detoxification, among other functions that are often zonated along the hepatic
lobule.®” Myeloid cells are distributed throughout the liver and can adopt pro-inflammatory or anti-inflammatory roles, with phenotypic char-
acteristics of recently recruited monocytic myeloid cells and more tissue-resident Kupffer cell-like populations, respectively.” Current animal
models used to recapitulate and study liver pathology include the porcine, murine, and rat models. A key advantage of the rat model (Rattus
norvegicus) is its large size, which allows for better vascular access for disease models that include surgical interventions such as hepatec-
tomies, %" hepatic ischemia reperfusion-induced injury models, transplant injury,'? and fibrocirrhotic bile duct ligation models."*'*

To date, our understanding of the rat liver has been informed by technologies such as bulk RNA sequencing (RNA-seq), > '® transcriptome
microarrays, ’~*? immunohistology,”*** targeted qPCR,”?*?> and tandem mass spectrometry.'’ These approaches have uncovered the pres-
ence of major expected hepatic populations in the rat liver;'” however, the relatively low resolution and targeted nature of these approaches
do not allow us to have a holistic understanding of how the interaction between diverse hepatic cells shapes the liver environment. Single-cell
RNA sequencing (scRNA-seq) technology is a powerful tool for the unbiased profiling of heterogeneous tissues. While both human’-?~*° and
murine® " livers have been well studied at the single-cell level, the rat liver has remained poorly annotated. Studies using the rat model ">
demonstrate strain-associated differences in the liver and inflammatory disease severity. For example, while both Dark Agouti (DA) and Lewis
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Figure 1. scRNA-seq profiling of rat liver reveals 17 distinct cell populations

(A) Overview of single-cell RNA-seq pipeline, including both the experimental and analysis workflows.

(B) Major steps of the standard and matrix factorization-based single-cell RNA-seq data analysis pipeline.

(C) Viable cell selection for a Lewis rat liver sample (LEW-1) based on library size and mitochondrial transcript proportion shown as an example. High-quality cells
were identified from the single-cell libraries having a minimum library size of 1500 transcripts and a maximum of 40% mitochondrial transcript proportion.

(D) UMAP (uniform manifold approximation and projection for dimension reduction) plot of four rat samples including 2 samples from each Dark agouti (DA) and
Lewis (LEW) rat strains. Cells are colored by the number of expressed genes, with lighter colors indicating higher gene counts.

(E) Bar plot indicating the relative contribution of input samples to each cluster. All samples are represented in each cluster.

(F) UMAP projection of cells labeled based on the input sample indicates that cells from different samples have been well-integrated and clusters represent cell-
type differences rather than sample-specific variations.

(G) UMAP projection of four total liver homogenate rat samples (each point represents a single cell) where cells that share similar transcriptome profiles are
grouped by colors representing unsupervised clustering results. The legend indicates the unique color representing the cell-type annotation of each cluster.
The cluster number is shown within the curved brackets.

(H) Dot plot indicating the relative expression of marker genes in each population. The size of the circle indicates the percentage of cells in each population which
express the marker of interest, and the color represents the average expression value of the marker.

(I) The number of cells in each major cell type population colored by the contribution of each input sample. RBC: red blood cell, PCA: principal-component
analysis, DE: differentially expressed, QC: quality control, Mac: macrophage, Mo: monocyte, Endo: endothelial, Mes: mesenchymal, Hep: hepatocyte.

(LEW) strains are prone to Th1-skewed responses in the joints of treatment-induced autoimmunity models,®” DA rats appear to paradoxically
have similar innate responses as autoimmune-resistant Albino Oxford (AO) rat strains.>®>” In the context of orthotopic transplantation, LEW
recipient liver macrophages are better able to stimulate T cell proliferation in comparison to DA.*® This provides a rationale for single-cell
examination of rat strain-specific differences at baseline.

We developed a single-cell transcriptomic atlas of the healthy liver, based on DA and LEW rats, to provide a reference atlas of the healthy
rat liver. Our combined use of single-cell (sc) and single-nucleus (sn) RNA sequencing (RNA-seq) as well as spatial transcriptomics enabled us
to discover cellular and molecular sources that drive the inter-strain variation and will be helpful for understanding strain-dependent hepatic
disease models and rat liver biology in future studies.

RESULTS
The cellular landscape of the healthy rat liver

We generated a multi-strain single-cell transcriptomic map of the healthy rat liver to help examine the cellular complexity in this model sys-
tem. Single-cell transcriptomes were generated from total liver homogenates (TLHs) of four 1618 week-old healthy male rats following 2-step
collagenase digestion (Figure 1A). Two livers from each of the DA and LEW strains were sampled, and a standard scRNA-seq mapping pipe-
line was applied (Figure 1B). In total, 226,270 single cells were called by the 10x Genomics Cell Ranger software and 23,036 passed additional
quality control filters and were included in the final map (see STAR Methods, Figures 1C, 1D, and S1; Tables S1 and S2). Significant batch
effects were evident while integrating the four rat samples; therefore, the Harmony’ integration method was used to reduce the inter-sample
technical confounding effects. After applying this batch correction, all clusters were represented by all animals, demonstrating that integra-
tion worked well (Figures 1E and 1F). Liver tissue from an additional two pairs of LEW and DA rats were processed for 10x Genomics snRNA-
seq to further inform parenchymal cell identities (Figure 1A). These samples went through standard quality control steps (see STAR Methods;
Figure S2; Table S1) and were batch-corrected using the Harmony integration tool. The resulting map contained 12,497 nuclei. Cell popula-
tions were annotated, based on known marker genes, using top differentially expressed (DE) genes‘H (see STAR Methods; Figures 1G and 1H;
Tables S3 and S4). To resolve the spatial distribution of rat hepatic cell populations, we conducted spatial transcriptomics on two healthy
Wistar rat liver samples using 10x Genomics Visium technology. These samples were then quality controlled in a similar manner to scRNA-
seq data (Figures S3; Table S1).

Hepatocytes

Hepatocytes, organized in functional units referred to as lobules, make up the majority of the liver volume (Figure 11). Many of their critical
biological functions are zonated based on their spatial organization from the center of the lobule near the central vein (CV) to the outer re-
gions near the portal triad. Data from both sc- and snRNA-seq protocols identify hepatocyte-like clusters, based on their correlation with he-
patocytes of the mouse liver atlas (Figure S4), and expression of hallmark hepatocyte markers without high expression of immune endothelial
and mesenchymal genes (Figures 1G and 2A-2E).

Comparative gene expression analysis of our data to a bulk RNA-seq dataset of laser capture microdissected zonated regions of the
healthy mouse liver lobule® revealed poor zonated marker distribution in the scRNA-seq dataset compared to snRNA-seq (Figure 2C), as
has been observed before.””** To further resolve hepatocyte cluster identity, the datasets were compared with a spatial transcriptomics
map of the rat liver from two Wistar rats. Principal-component analysis (PCA)** of these samples revealed the largest dimension of variation
was related to lobule zonation (Table S5). PC1 and PC2 in both samples indicate clear histological periportal to central venous zonation pat-
terns (Figures 2D and S5). Additionally, key periportal human (Tf, Hmgscs12"*%) and mouse (Ass1, Arg1%?) genes as well as periportal markers
from rat proteomic studies (Gls2, Srd5a1, Orm1*°) are positively enriched in PC1 and PC2. Known pericentral markers (Oat, Sultlel, CypZ2el,
Glul”***% are negatively enriched, reinforcing that these principal components represent zonation patterns™ (Figures S6 and S7; Data

iScience 26, 108213, November 17, 2023 3




¢? CellPress

OPEN ACCESS

Endotheli::l enchymal

Cholangiocytes

Marc 51 Macs

Unknown/High Mito
v Lyz2/C
Mo/Mac

-

g
1

Endothelial /!

UMAP_2

Central \

iched markers N

iScience

Average
gene exp.

Periportal-enriched markers

Zonation
Pericentrally-enriched
Non-monotonic
Periportally-enriched

Hep.group
Hep3 (CV-like 2)
Hep2 (CV-like 1)
Hepo (PP-like 1)
Hep1 (PP-like 2)

Cholangiocytes
Endothelial

Hep 0

Hep 1

Hep 2

Hep 3

Lyz2/Cd74 Mo/Mac
Mesenchymal
Marco/Cd5I Mac
Unknown/High Mito

LN )

0
UMAP_1

Periportal === Pericentral

Mouse hepatocyte layers (Halpern et al., 2017)

I

[}
©

pury

odeH
zdaH
cdeH

/Significant gene overlap
@ Periportally-enriched pathways A
[ ) Pericentrally-enriched pathways *

Fatty acid
biosynthesis

CoA
biosynthesis

Lipogenes
ECM regulation

Lipid
metabolism
UV respol

Xenobiotic
metabolism

evelopmental

Tryptophan pathway

metabolism| Drug

etabolism

AlcoRol
metabolism

4 iScience 26, 108213, November 17, 2023

R value D

L1 I04

0.2 .

Zonation score (PC1)

Pericentral - - Periportal

L2
L3

L4

L5

L6

L7

odaH
ey
gda
gday

04

Pericentral

Steroid response Hormone response

£

Protein secretion

Fatty acid
oxidation

Nutrient response

Gluconeogenesi
regula@g Oxidative metabolism
Glucqse ‘
metabotigm

Hypoxia

Carbohydrale processing
ECM remodeling

Develo pmental
0

Jak-stat pathways

Erk1/2 cascade

@ Mapk cascade

onjeA y

@cAMP pathway

Epithelial development

Organelle organization
ate’ metabolism @
in filamen

Vasoregulation

303°8°893°5°3°5°5°5°5°%°

T—

—

Cell-matrix interaction

(&)

Cellular regulation processes

4

Zonation score (PC1)

Pericentral _ - Periportal

Periportal
0.6
PC1 I 0.4

0.2

anjeA y

pc2 ©

0.2
i

-0.4
Pericentral

odeH
1deH
2dey
gday

0.6

Mesenchymal migration

()

Retinoic acid response

Cytoklne secretion
‘NFa and IL1 signaling
Innate humoral immune [re:
PAMPs response ‘

Acute response
Complement

Viral response

Endocytosis

Leukocy‘te recry

ositive regulation of
immunity



iScience ¢? CellPress
OPEN ACCESS

Figure 2. SnRNA-seq and spatial transcriptomic profiling of the rat liver resolves hepatocyte zonation

Four additional rat liver samples were added and sequenced using snRNA-seq to better characterize hepatocyte and cholangiocyte populations and verify the
strain variations identified based on the scRNA-seq TLH map. (A) UMAP projection of four snRNA-seq samples where cells are colored based on cell-type
annotation.

(B) Heatmap representing the average gene expression of zonated genes based on spatial data within the snRNA-seq clusters.

(C) Pearson correlation between the average gene expression of the genes across snRNA-seq hepatocyte clusters and the nine layers of mouse liver cells was
calculated (see STAR Methods). Mouse liver layer-9 is more periportal and layer 1 is pericentral. Red represents a positive correlation, and blue represents a
negative correlation. (*: p value <0.05, **: p value <0.01, ***: p value <0.001).

(D) Projection of zonation signature scores, captured by PC1, across the spatial transcriptomics spots of two healthy Wistar rat liver cryosections. The top
negatively loaded genes in PC2 (and PC1) of both samples are enriched in pericentral markers, and the top positively loaded genes in PC1 (and PC2) factors
are enriched in periportal markers. Red and blue represent high periportal and pericentral zonation scores, respectively. The two heatmaps represent the
Pearson correlation between the zonation factors PC1 and PC2 and the average expression of snRNA-seq hepatocyte clusters. Both PC1 and PC2 are
positively correlated with PP-like clusters HepO and Hep1 and negatively correlated with CV-like clusters Hep2 and Hep3. The asterisk and triangle symbols
indicate the factors used for pathway enrichment analysis.

(E) Pathway enrichment analysis using GSEA (gene set enrichment analysis) to examine active cellular pathways in periportal and central venous regions of the
healthy rat liver based on spatial PC1 and PC2 loadings visualized as an enrichment map. The pathways enriched in the pericentral and periportal areas are based
on PC2 (asterisk) of liver cryosections-A (left) and PC1 (triangle) of liver cryosections-B (right) respectively. Each circle represents a gene ontology (GO) biological
process term. The size of the circles represents the number of genes in that pathway and blue lines indicate significant gene overlap.

Portal). Pathway enrichment analysis of the PCs was performed to further validate that PC1 and PC2 represent zonation features. Periportal-
biased processes such as immunity, angiogenesis, lipid beta-oxidation, fatty acid catabolism, and gluconeogenesis regulation®*® are found in
the positive side of PC1 while the negative side of PC2 is enriched in pericentrally biased metabolic processes, such as lipogenesis and various
steroid and xenobiotic metabolic processes’ (Figure 2E). Examination of key markers and correlation analysis between PC1 and PC2 of the
spatial transcriptomics data and snRNA-seq hepatocyte clusters shows a clear presence of periportal and pericentral hepatocyte populations
(Figures 2B-2D). These findings suggest that pericentral and periportal programming is well preserved across species.

Mesenchymal cells

The hepatic mesenchymal fraction includes populations such as hepatic stellate cells (HSCs), VSMCs, and fibroblasts (FBs).”” Mesenchymal
cells anatomically reside between sinusoidal endothelial cells and hepatocytes and are involved in vitamin A storage, extracellular matrices
(ECMs) synthesis, maintenance of hepatocyte function,”’ and regulation of sinusoidal circulation.’® These populations also help regulate im-
mune responses during inflammation,’ but upon activation can also be a source of maladaptive extracellular matrix deposition, as in the case
with liver fibrosis.*?

We annotated two clusters in our scRNA-seq map (scClusters 7 and 14) and one cluster (snCluster 24) in our snRNA-seq map, as mesen-
chymal-like based on DE genes including extracellular matrix proteins (Ecm1) and type lll collagen alpha 1 (Col3aT) (Figures 1G, 1H, 2A, and
3A) which are essential to the role of HSCs in extracellular matrix deposition and have previously been described as mesenchymal genes”’*
(expanded markers shown in Figure S8).

To increase resolution, mesenchymal-like clusters were subclustered and correlation analysis was performed with mouse scRNA-seq data
from sorted Pdgfrb+ cells found in Dobie et al., 2019°° (Figures S9A and S9B). ScRNA-seq subclusters that appear to be derived from contam-
inating non-mesenchymal populations (3, 2) and expressing top myeloid (Cdé8, Clec4f) and endothelial (Lyvel, Fam167b) DE genes were
excluded. ScMes-5, scMes-4, and snMes-1 were denoted as FB-like due to correlation with mouse liver FBs (Figures S?C and S9D) and
the expression of mouse FB genes (Dpt, Enpt2, Collal, Col4al, and Gsn™) (Figures SPE and S9F). ScMes-5 expressed additional smooth
muscle genes (Acta2, Fn1, Sparcli, Tagln, and Tme"g'So) (Figures SPE and S9F) but did not correlate strongly with known VSMC clusters,
suggesting this population may be a mixed population with liver FB-like and activated myofibroblast-like cells. Expression of active pathways
in retinol storage in scMes-1, scMes-0, and snMes-0 and positive correlation with mouse HSC clusters (Figures S9C-S9F) suggest that these
clusters predominantly represent quiescent HSC-like populations.***° However, snMes-0 expressed additional myofibroblast-associated
genes (Acta2, Tagln) (Figures S9E and S9F), suggesting there might also be myofibroblast-like cells found within this cluster. Finally,
snMes-2 was not enriched for any particular gene set and is of unknown identity. Interestingly, spatial transcriptomics revealed zonation of
key mesenchymal (Ecm1, Col3a1) and HSC genes (Pth1r, Lrat) to be negatively enriched in PC1/2 and highly concentrated in pericentral areas
(Figure 3B; Data Portal).”®

Endothelial cells
The hepatic endothelium consists of LSECs and vascular endothelium (portal and central venous endothelium). LSECs are a specialized endo-
thelial population that line the hepatic sinusoids and contribute to the regulation of hepatic blood pressure, nutrient uptake, and the main-
tenance of HSC quiescence.”’**? Immunohistochemical staining in mice has described general endothelial cells in the liver as expressing high
levels of Cd37 (Pecam) and Cd103 (Eng), periportal LSECs as expressing high levels of Cd36, with low levels of Lyvel, and central venous
LSECs as expressing high levels of Cd32b and Lyve1.”*>* However, in rats, endothelial zonation has yet to be reported.

We identified two populations of Ptprc™ cells in the scRNA-seq map (scClusters 3 and 11) and two populations in the snRNA-seq map
(snCluster 11 and 30). These populations were annotated as endothelial-enriched based on the expression of Calcrl and Ramp2, which is
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spatial sample. (A) Dot plot indicating the relative expression of marker genes in each population of the snRNA-seq map. The size of the circle indicates the
percentage of cells expressing the marker of interest, and the color represents the average expression value of the marker.
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Figure 3. Continued

Expression values of (B) mesenchymal marker Ecm1 (C) cholangiocyte marker Anxa4 (D) myeloid marker Cd163 (E) non-inflammatory myeloid marker Marco (F)
myeloid marker Cdé8. Red and dark blue indicate higher and lower expression values in each spot, respectively.

(G) Representative spatial distributions of CDé8" cells in the rat liver lobule. Rectangular layers 350 um wide were drawn from the portal tract (layer 1) to the central
vein (layer 10) region. Digital images were scanned at 20X magnification. The scale bar represents 100 pm in the full image and 20 pm in the enhanced area. Each
rectangular layer is referred to as a region of interest (ROI).

(H) Quantification of CD68" cell densities (#CD68+ cells/layer mm2) in the liver lobule for DA and LEW rats. 30 ROls were assessed per strain across three animals.
A higher number of CD68" cells were detected near the periportal area. No significant strain-specific differences in the spatial distribution of CD68 cells were
noted.

(I) Representative spatial distributions of CD163+ cells in the rat liver lobule.

(J) Quantification of CD163+ cell densities (#CD163+ cells/layer mm2) in the liver lobule for DA and LEW rats. The statistical analysis reflects similar strain and
zonation patterns as CD68. Statistical significance was determined using a two-way ANOVA followed by Sidak’s multiple comparisons test. (*: p value <0.05,
**: p value <0.01, ***: p value <0.001,****: p value <0.0001). Data are represented as mean + SEM. Each dot in H and J represents an ROI region (n = 30).
ROI: region of interest, BD: bile duct, CV: central vein, PV: portal vein.

involved in adrenomedullin signaling pathways55 (Figures TH, 2A, 3A, and S10A). ScCluster 3, the most abundant endothelial cell population,
was characterized by enriched expression of Lyve1, Fcgr2b, Sparc, and Stab2 (Figures TH and S10A) with little expression of Viwf (Figure ST0A)
suggesting an LSEC identity. By correlation analysis, both scClusters 3 and 11 were similar to mouse sinusoidal, inflammatory, and cycling
endothelial populations (Figure S4). These clusters did not show differential expression of known zonated endothelial genes such as
Rsp03°® and Clecdg, and both clusters expressed high levels of Fegr2b (known to be enriched in CV LSECs™) and Agp T (known to be enriched
in periportal LSECs™) (Data Portal). Endothelial genes such as LyveT and Vwffound in scCluster 11 were also found snClusters 11 and 30 (Fig-
ure 2A; Data Portal). SnRNA-seq endothelial populations were subclustered for increased resolution, and comparisons were made to our
spatial transcriptomic data (Figure S10B). The resulting subcluster 3 had a stronger expression of PC1-enriched periportal markers (Vwf
and Ltbp4) with little expression of Lyve1,”® while subcluster 1 and 0 expressed higher pericentral-associated genes such as Lyve1, Fcgr2b,
and Bmp2 (Figures S10C and S10D; Data Portal). Further examination of other known periportal markers in our spatial transcriptomics data did
not reveal clear endothelial zonation patterns (Figure S10D; Data Portal), perhaps due to the low capture of endothelial genes by the Visium
spatial transcriptomics platform.**

Biliary epithelial cells

Cholangiocytes are liver-specific biliary epithelial cells whose primary function is the production and modification of bile as it flows along the
biliary tract.”” In line with previous literature, cholangiocytes were poorly captured with scRNA-seq and were only detected by our snRNA-seq
map."? SnCluster 29 of the snRNA-seq map was identified as being enriched in the expression of Epcam, Sox9, Anpep, and Anxa4,” resulting
in a total of 108 cholangiocyte-like cells with Anxa4 and Epcam showing a periportal distribution on the spatial transcriptomics map
(Figures 3A and 3C).

Myeloid cells

The liver contains more resident myeloid cells than any other solid organ in the body.*° Tissue-resident myeloid cells exhibit immense pheno-
typic plasticity and can perform a diverse set of functions. Depending on the local immune microenvironment and external stimuli, bone
marrow-derived monocytes can be recruited to the liver, where they participate in both liver injury and tissue repair. In comparison, the pri-
mary function of sessile resident myeloid cells is to clear debris, in addition to mediating the tolerogenic environment of the liver in the steady
state 142

Our single-cell analysis revealed multiple clusters of Cd68" myeloid-enriched cells. Cdé8" myeloid scClusters 5 and 10 were characterized
by enriched expression of Marco, Vsig4, Cd5l, Cd163, and Hmox1 (Figure TH, see extended gene expression in Figure S11). These clusters
appear to be more Kupffer cell-like due to the expression of key genes (Marco, Cd5l, Clec4f) which have been previously described to anno-
tate more tissue-resident myeloid populations.®® Specifically, Vsig4 is a co-inhibitory ligand that has a hepatoprotective role in maintaining
the intrahepatic tolerance required to suppress triggered immune responses®“*® and has been shown to be highly expressed in murine
Kupffer cells (KCs),**“° as well as being a core KC gene in pig and macaque KCs.** These findings may suggest a tolerogenic role of Marco™
Cd5I"Cdé8" cells, which are represented by snCluster 19 of our snRNA-seq map (Figure 3A). Our analysis of scCluster 9 revealed a mixed
cluster of Ptprc+ immune cells enriched for Cd68*myeloid cells (enrichment and subclustering of immune cells are discussed in the following).
ScCluster 9 is enriched in described macrophage and monocyte markers (Cdé8, Cd74, Lyz2, and major histocompatibility complex (MHC)
class 1-related genes) without the expression of Vsig4 and Marco, suggesting that it is enriched for recently recruited macrophage/monocyte
populations. However, ScCluster 9 also contains additional immune populations such as T cells (Cd3e), conventional denditic cells (cDCs)
cDC1s (Clec%a, Xcr1, Batf3, Irf8) (Figure S11), cDC2s (Clec10a, Irf4, Sirpa), and plasmacytoid dendritic cells [pDCs] (Siglech). This macro-
phage/monocyte cluster was represented by snCluster 33 of our snRNA-seq dataset, but due to lower capture of non-myeloid immune cells
by snRNA-seq technologies,*” it contains only a minor Ighm™ B cell population (Figure 3A). To resolve zonation, an examination of key myeloid
markers (Cdé8, Cd163) and key genes of KC-like myeloid cluster genes (Cd5I, Marco, Aif1, Hmox1, Clec4f) in PC1 was performed. The positive
enrichment in PC1 suggests the presence of myeloid cells is skewed toward the periportal areas (Figures 3D-3F; Data Portal). To validate this
enrichment, quantification of immunohistochemistry stainings of Cd163, Cdé8, and Hmox1 was performed using a publicly available
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Figure 4. Varimax PCs capture rat hepatic cell identity signatures and strain-specific differences

(A) Bar plot representing the feature importance scores (mean decrease Gini impurity) of the top 20 features (varimax factors) of the random forest model trained
to predict the strain attributes of the rat hepatic cells. Varimax PC5 and 15 are the most informative features to differentiate cells of each strain from another, which
indicates the two factors have captured strain-related variations within the map.

(B) A correlation heatmap between the average gene expression of each cluster and the loading scores of varimax factors (capturing the contribution of all genes
to a factor). Columns are varimax factors and rows are cell populations. Each cell-type cluster is defined by key marker genes, and dark red or blue indicates that
the expression of a marker gene set is positively or negatively correlated, respectively, with a particular varimax factor. A high absolute correlation value indicates
a match between a varimax factor and a cell-type cluster.

(C) The projection of cells over varimax-1 and 5 indicates that the cells from each strain form distinct clusters over varimax-5.

(D) Boxplot indicating the distribution of varimax-5 score over each strain. Cells from DA and LEW strains represent significantly different varimax-5 scores
(Wilcoxon-test p value <2.2e-16), indicating that varimax-5 has captured strain differences.

(E) The top 10 genes on the top (left table) and bottom (right table) of the varimax-5 loading list mainly contain known hepatocyte markers, indicating that
varimax-5 has captured hepatocyte-specific strain differences. Genes with high positive scores (left table) are associated with the DA strain and genes
indicating negative loading scores (right table) are LEW-related. The absolute loading scores indicate the contribution of each gene to the corresponding factor.
(F) Projection of cells over varimax-1 and 15 indicates that a population of cells from each strain (dotted lines) forms distinct clusters over varimax-15. Annotation of
the selected cells indicates that they are mainly from the Marco+ myeloid cluster 5.

(G) Boxplot indicating the distribution of hepatic cells based on strain over varimax-15. (Wilcoxon-test p value <2.2e-16). The outlier data points (dotted lines) are
mainly myeloid cells.

(H) The top 10 genes with positive (right table) and negative (left table) varimax-15 loading scores are immune-response related. Genes with positive scores (right
table) are associated with the LEW strain, and genes indicating negative loading values (left table) are DA related. The absolute loading scores indicate the
contribution of each gene to the corresponding factor.

(I) Expression pattern of known myeloid marker genes Marco, Vsig4, Cdé8, and Lyz2 over UMAP. Dark green represents high expression values. The distribution
of general myeloid markers (Cdé8, Vsig4) and non-inflammatory myeloid marker (Marco) is consistent with the varimax-15 distribution (Figure 2J).

(J) The UMAP projection of cells colored based on the varimax-15 score shows the enrichment of varimax-15 over Marco™ myeloid population (cluster 5). Darker
colors represent higher values of varimax-15 scores. Data are represented as mean + SEM with each dot representing a single cell. Corrcoef.: correlation

coefficient, Var: varimax PC. varimax PCs are referred to as PCs within the main text.

QuPath-based image analysis protocol.?®®” This analysis confirms the periportal-biased nature of non-inflammatory myeloid cells
(Figures 3G-3J and S12).

Varimax PCA analysis uncovers biological sources of variation between rat strains

To better understand strain-specific differences in our map, we applied varimax PCA,**“%*? a matrix factorization method, to separate DA and
LEW signals (principal components, or factors) in the data from other signals for further interpretation (Figure 1B, Figure 4, Table S5). To iden-
tify factors that can explain strain-specific differences, we used a random forest to predict strain labels from the factors identified per cell and
discovered the factors most important for the strain label classification (Figure 4A). We also identified principal components that explain cell-
type signals using correlation analysis (Figures 4B and S13). The resulting factors were interpreted using pathway and gene set enrichment
analysis (see STAR Methods). Using this approach, two main strain-specific factors (varimax PC5 and 15) were identified (Figures 4A and S14)
within the scRNA-seq TLH map. The strongest strain-specific signal is observed with varimax PC5, which affects all cells in the data (Figures 4C
and 4D). Genes with the strongest association with this factor are hepatocyte markers (Apoc1, Fabp1, and Cytochrome p450 genes), suggest-
ing that this factor mainly represents strain variations within the hepatocyte populations (Figure 4E). The global association of this factor with
all cells in the scRNA-seq dataset is likely a cell-dissociation procedure artifact caused by fragile hepatocytes leaking RNA into the cell ho-
mogenate before sequencing (Figure $15).** DA strain-associated genes in this factor are enriched in nuclear receptors, such as Hnf4a, Pparg,
and Esr1 (Table S6) (Figure S$16). Pparg promotes de novo lipogenesis and fat accumulation in hepatocytes.”>’" This hepatocyte-specific
strain signal was confirmed in the snRNA-seq dataset (Figure S17; Table S5). The second-strongest strain-specific signal is varimax PC15,
which is mainly associated with myeloid populations of both rat strains (Figures 4F and 4G), as confirmed by the genes with the strongest
association with this factor (Figure 4H), the expression pattern of Marco, Visg4, Cdé8, and Lyz2 marker genes (Figure 4l), and the correlation
with myeloid cells in our map (Figure 4J).

Comparing the expression level of the top varimax PC15 genes in the myeloid cells of the two strains confirms the strain-specificity of this
factor (Figures 5A-5C). Pathway analysis identified higher activation of lymphocyte-mediated immune responses, lymphocyte migration and
chemotaxis, response to interferon, and allograft rejection pathways in LEW compared to DA Marco-enriched myeloid cells (Cluster 5) (Fig-
ure 5D; Table S7). This factor is enriched in myeloid and T cell differentiation transcription factors (TFs) (Figures 5E and 5F). LEW-enriched TFs
include Irf8, Irf1, Spil, Poubf1, Stat4, and Stat5a, which are mostly inflammatory process-associated genes present in chronic diseases like
rheumatoid arthritis’*"* (Figure 5F). Irf1, Irf, and Spi1 (PU.1) work cooperatively to shape the chromatin landscape to polarize macrophages
for inflammatory responses, while Stat4 deficiency leads to repolarization toward alternatively activated macrophages.’””* The DA-specific
TFs include PPAR-y, Nucks1, Runx1, Mitf, and Gatal, which have been described more broadly in the literature’>’>"/ (Figures 5E and S18;
Table Sé). For example, PPARy is associated with M2-like macrophage polarization, Nucks1 and Runx1 are implicated in immunomodulation,
and Gatal and Mitf are associated with cell fate and differentiation.”®™'

No strong myeloid-specific strain-related varimax factors were discovered using the snRNA-seq map, which can be explained by the lower
representation of non-inflammatory myeloid cells within the snRNA-seq map (276 cells) compared to the scRNA-seq TLH map (1,668 cells).

iScience 26, 108213, November 17, 2023 9




¢? CellPress

OPEN ACCESS

Varimax 15

Varimax 15

=)

Ly6al Cd163
B B
00 05 10 15 20 00 05 10 15 20 25
LEW _-~7 77~
Macrophages \
2 ! 2
) 2
> >
g, g,
§ &
> >
2 2
Macrophages
S o =) o © °
Varimax 1 Varimax 1
B Itgal 1118
B ]
00 04 08 12 16
LEW _ -«
2 2
w wn
2 Ly 2
> >
E 0 go
5 i 227N =
> \ DA Macrophages \‘ §
\\ 1
2 .o Pid 2
° © ° = . )
Varimax 1 Varimax 1
C  Expression of top 20 strain-specific genes in macrophage
population of each strain
Average Expression
IOA
DA . ) e @ o ® o 0.0
-0.4
Percent Expressed
-0
LEW{e o @ 0@ * © @ o o . 20
® 40
® 60
@ 80
PV I PR OGP RF AT L LD LT DR
F 5 & T KSR G Kl & G R &
o\:&@’*\&&"@/ MR R Gl
3 L &€ &
K
E
Enriched TFs in DA macrophages
(based on Varimax-15) Higher - jog10(p.ad))
significance 20
20 i 15
© 10
=)
§ Lower
& significance 2
°
2
1]
=
he]
S
=]
-
o]
ie)
1
0
~ |l = — N
- X25Lc-3Ts0lpElFS RIS
53S9 osSZErEsLSZERD
T2 s a|F S|W ¥ T T
10 iScience 26, 108213, November 17, 2023

iScience

Response to type 1

Hmox1 Siglech
T Bl
0 ! 2 000 025 050 075 100
2 2 &
@ "
3
0 g0
&
s
1 2
° © °
Varimax 1
Ccl3
0.0
2
w
v ©
. - - é
. > E 0
it~ =
4 o
e e >
2
> I’ ° S © S
Varimax 1 Varimax 1
D

interferon Lymphocyte Ha”Tgtcggﬂgraﬂ
chemotaxis and ! PID CXCR3 pathway
migration @ @
Response to Cytokine

interferon-beta

@ Lymphocyte

mediated
T-helper type-1
immune response

®

immune-respose

production

Matrix
Lymphocyte !
migration metalloproteinases
Regulation of @
lyase activity
Hallmark ATP biosynthesis
interferon
response

s @

Significant gene
overlap

Up-regulated pathways in Lewis
macrophages (Total homogenate map)

Enriched TFs in LEW macrophage
(based on Varimax-15) Higher - 15510(p.ad))
significance o
0
20 i15
e 10
©
715 Lower
o significance 2
el
2
%’ 10
k<)
L
S
> 5 S
ks
| ]
0
= < o e < =z O
- O ©® m o - - X S I v X O
5oEzEBR3esBERRSZ
S - 20N = 8 o o Z |l xc Z




iScience ¢? CellPress
OPEN ACCESS

Figure 5. Strain-specific differences are found in intrahepatic myeloid cells

(A) Expression pattern of the top DA-enriched genes (Lyéal, Cd163, Hmox1, Siglecb) over PC15 and 1. LEW and DA myeloid cells have been marked with dotted
circles. Dark green indicates higher expression values. Comparison with Figure 2F confirms that the selected genes have higher expression in the DA strain
compared to LEW.

(B) Expression pattern of the top LEW-enriched genes (ltgal, 1118, Ccl3, Timp2) over varimax-15 and 1. Comparison with Figure 2F confirms that the selected genes
have higher expression in the LEW strain compared to DA.

(C) Dot plot indicating the relative expression of strain-related genes within the myeloid fraction (clusters 5, 10, 9) of each strain. The top 10 genes with positive
(LEW-associated) and negative (DA-associated) varimax-15 loading scores have been selected. The size of the circle indicates the percentage of cells in each
population expressing the marker, and its color shows the average expression value.

(D) Pathway enrichment analysis using GSEA (gene set enrichment analysis) to examine active cellular pathways in LEW vs. DA myeloid cells based on varimax-15
loadings visualized as an enrichment map. Each circle represents a gene ontology (GO) biological process term. The size of the circles represents the number of
genes in that pathway, and blue lines indicate significant gene overlap. Since PC15 is positively correlated with the LEW strain and negatively correlated with DA,
red circles represent activated pathways in LEW and blue indicates upregulated pathways in DA. No pathway was significantly upregulated in DA.
Transcriptional factor (TF) binding site-based gene set enrichment analysis using gProfiler on the ChEA ChlIP-Seq database identifies TFs which may be activated
in (E) DA and (F) LEW myeloid cells. TFs are sorted based on their enrichment significance calculated as —log10(adjusted p value). Dark purple indicates higher
significance. Purple boxes highlight TFs which are uniquely enriched in that strain.

However, we were able to validate the myeloid-specific strain factor identified in the scRNA-seq TLH map. We selected the top 10 PC15-asso-
ciated genes and calculated their enrichment within the myeloid cells of the snRNA-seq map. In line with our scRNA-seq results, varimax PC15
signatures show strain differences within the myeloid cells of the snRNA-seq samples (Figures S19A-S19F). We also evaluated the DE genes
between DA and LEW within the myeloid population of the snRNA-seq samples using a generalized linear mixed model considering cova-
riates, like sample and strain.®” The most DE genes include the top strain-related genes identified by the varimax analysis approach (ltgal, RT1-
A1, Timp2, Lilrb3l, RT1-T24-3) along with some expected ambient-RNA transcripts (Figure S19G). These results suggest that the baseline he-
patic microenvironment in the LEW rat is more pro-inflammatory compared to the DA strain and highlight myeloid cells as potential drivers of
the enriched inflammatory pathway activation in LEW rats. We then considered whether myeloid cell frequency in the DA and LEW livers may
be influencing the inflammatory status of LEW rats. Alterations in cell-type frequencies in scRNA-seq data are confounded by sample-specific
dissociation efficiency. Therefore, we employed immunohistochemistry to compare the frequency of CD68" cells between the two strains.
However, quantification of CD68 staining showed no significant difference in the frequency of CD68" cells in LEW vs. DA (Figures 3G and
3H). These results suggest that the variations in inflammatory potential are not likely caused by differences in the frequency of intrahepatic
CD68" cells.

Immune enrichment maps rat lymphocyte and myeloid populations at higher resolution

Our scRNA-seq TLH map and snRNA-seq map contained hepatocyte-derived ambient RNA, as expected’ (Figure 520), which interfered with
immune cell marker identification and resulting immune cell annotation. To provide a more detailed resource of rat hepaticimmune cells, two
additional immune-enriched samples were mapped (Figure 6A). These samples underwent additional washing steps and red blood cell
depletion to reduce the hepatocyte-released ambient RNA (Figure S20). The percentage of cells annotated as hepatocytes decreased
from 71.14% in the scRNA-seq TLH map to 49.11% in the immune-enriched map. The general immune cell marker, Ptprc, was expressed
in 24% of the total cells in the immune-enriched map compared to 4% within the initial map (Figures 6B and 6C). Unfortunately, the
scRNA-seq TLH and immune-enriched maps could not be integrated computationally, presumably due to the technical differences in their
generation (Figures S21A-S21C). The varimax-based pipeline was also ineffective to deconvolute the sources of variation in the merged data-
set of both sets of samples (Figure S21D). Consequently, the immune-enriched samples were analyzed separately. In total, 3,830 (1,161 +
2,669) single cells from the DA and LEW samples were integrated into the immune-enriched map after quality control (see STAR Methods;
Figure S22). Similar to the TLH map, the immune-enriched samples were batch-corrected and the final clusters represent cells from both DA
and LEW rats (Figures 6D and 6E). The clusters were annotated based on the same approaches used for the initial samples (Extended results;
Table S8).

The immune-enriched map has captured a more diverse set of liver-resident immune cells (Figures 6A and 6F), enabling a more detailed
description of these cell populations (Figure 6G) compared to the scRNA-seq TLH and snRNA-seq maps. A comparison of the scRNA-seq TLH
and immune-enriched maps using correlation analysis confirmed that the immune-enriched map provides a higher resolution of lymphocytes
and myeloid cells (Figure 6H). As a refinement to the immune annotations in the TLH map, individual populations of Cd3* T cells (clusters 10),
natural killer (NK)-like cells (cluster 7), B cells (cluster 12), and pDCs (cluster 17) were identified (described in the following) in the immune-en-
riched map (Figures 6G and 6H). Cluster 10 was characterized by enriched expression of Cd3" T cell markers (Cd3g, Cd3e, Cd3d, Coro1a)
(Figure S23). Cluster 12 identified a subset of cells enriched for B cell genes Cd19, Ms4a1 (Cd20), Iighm, Cd74, Cd79b, and Fcmr, with no
expression of Ighd or Ighg, suggesting that this cluster might be Cd19*Cd20"IgM*IgD" immature B cells®* (Figure S24). The correlation heat-
map (Figure 6l) indicated high gene expression similarity with the mouse® B cell populations, supporting that this is a B cell population. En-
riched gene expression in cluster 17 correlates with both monocyte-like macrophages (Cd74 and Tyrobp), and pDCs (Siglech,® Ptprcap,®”
and Ptcra®) (Figure S25). When comparing the expression of this cluster to the mouse liver cell atlas, we see a high correlation with pDCs
(Figure él), suggesting that the predominant cellular population of this cluster may be pDC enriched.? Cluster 11 displays a correlation
with monocytic macrophages and dendritic cells and similar DE genes as scCluster 9 suggesting it is a mixture of recently recruited immune
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Figure 6. An immune-enriched scRNA-seq rat liver map provides a higher resolution of lymphocytes and myeloid populations

(A) UMAP projection of immune-enriched samples where cells that share similar transcriptome profiles are grouped by colors representing unsupervised cell
clustering results. As opposed to the total liver homogenate map, B cells and plasmacytoid dendritic cells (pDCs) have been well-captured in the immune-
enriched map, and Cd3+ and NK-like cells form distinct populations. The legend indicates the unique color representing the cell-type annotation of each
cluster. The cluster number is shown within the curved brackets.

(B) Expression distribution of Ptprc, a general immune cells marker, over UMAP projection of total liver homogenate cells.

(C) Ptprc expression over UMAP projection of immune-enriched map's cells. Comparison with Figure 4B indicates that the immune-enriched map provides a
better representation of the immune population compared to the total liver homogenate map.

(D) Bar plot indicating the relative contribution of input samples to each cell population. Both samples have been represented in each of the clusters (cell types).
(E) Labeling UMAP projection of cells based on the input sample indicates that cells from different samples have been well-integrated and clusters represent cell-
type differences rather than sample-specific variations.

(F) The number of cells in each major population colored by the contribution of each input sample.

(G) Dot plot indicating the relative expression of marker genes in each population. The size of the circle indicates the percentage of cells in each population which
express the marker of interest.

(H) Comparison of total liver homogenate and immune-enriched rat liver maps. Rows and columns of the correlation heatmap represent the clusters within total
liver homogenate and immune-enriched maps, respectively. The color of the heatmap cells indicates Pearson correlation values between the cluster average
gene expressions. The top 500 highly variable genes in each map were used for correlation calculation. The dotted box indicates that the total liver
homogenate map's cluster 9 has a high correlation with B cells, pDCs, myeloid cells, and Cd3+ cell population of the immune-enriched map, confirming that
immune-enriched map provides a higher resolution of lymphocytes and myeloid cells. Non-immune cell types of the two maps are consistent.

(I) Comparison of rat healthy liver immune-enriched map and mouse healthy liver map [https://pubmed.ncbi.nlm.nih.gov/33106666/]. The rows and columns of
the correlation heatmap represent the rat and mouse clusters, respectively. The color of the heatmap cells indicates Pearson correlation values between the
cluster average gene expressions. The one-to-one orthologs in the top 2,000 highly variable genes of the two maps were used for correlation calculation (see
STAR Methods). The comparison indicates a high consistency between the gene expression pattern of hepatic cell types between rats and mice.

populations (Figure 526). DE genes in cluster 7 include Tbx21 [aka T-bet], Ncr1, Prf1, Nkg7, Ccl5, Cd8a, Gzmk, Kird1, and Cd7, with low expres-
sion of Cd3d, suggesting it is an NK-like population’?4# (Figure 527). The expression of top genes in this cluster correlated with the NK cell
population in the mouse dataset (Figure 6l) reinforcing that this cluster is an NK-enriched cluster. The Ptprc' clusters of the immune-enriched
map were subclustered for further evaluation (Figures 528-5S33; Table S9). Upon subclustering of the Ptprc” clusters, cDCs (cDC1: Clec%a,
Xcr1, Batf3; cDC2: Clec10a, Tmem176b%"%%), which were mixed with other immune populations in the TLH, formed a separate subcluster indi-
cating a higher resolution result (Figures 525, S26, and S33). Analysis of subcluster 5 (77 cells) (Figure S33) revealed enriched expression of
recently recruited monocyte/macrophage markers Cst3 and Cd74, as well as cross-presenting DC markers Xcr1, Clec9a, and Tlr3.7” When
looking at expression of these DC markers in our uniform manifold approximation and projections (UMAPs), we see that a subpopulation
on the right side of this subcluster had enriched expression of cDC1 genes (Xcr1, Clec9a®) and the subpopulation on the left is enriched
in cDC2 markers (Clec10a,> Tmem176b°%”%%), suggesting that this subcluster may contain a mixture of cDC1- and cDC2-like cells.

Comparison of previously published mouse liver data with the rat single-cell atlas indicates high consistency of the majority of the cell types
between these two species (Figure 6l). We also attempted to determine if we could capture the strain-specific factors identified based on the
TLH scRNA-seq map (Figure S34) in the scRNA-seq immune-enriched map. Similar to the snRNA-seq validation, we selected the top 10 genes
which represented each factor and evaluated their enrichment pattern within the immune-enriched map. In line with our previous predictions,
both varimax PC5 and 15 signatures show strain differences within the immune-enriched samples and are specific to hepatocyte and myeloid
populations, respectively. Using immunohistochemistry, we then examined if the presence of infiltrating T cells (CD3, CD8) correlates with the
differences in inflammatory potential. A periportal-biased presence of T cells was detected, but no significant frequency differences between
strains were observed (Figure S12). In summary, the immune-enriched map represents a more detailed evaluation of the immune landscape of
the healthy rat liver and provides additional information on B cells, DCs, Cd3" T cells, and NK-like populations in comparison to the TLH
scRNA-seq map.

Validation of computationally inferred strain-specific inflammatory differences

To functionally validate the computationally identified strain-specific differences in the inflammatory potential of hepatic myeloid cells, we
performed ex vivo LPS stimulations followed by intracellular cytokine staining. In these assays, we LPS-stimulated fresh non-parenchymal
cells separated by differential centrifugation from flushed, enzymatically dissociated LEW and DA rat livers. We examined cytokine secre-
tion from tissue-resident myeloid cells via intracellular cytokine staining for tumor necrosis factor alpha (TNFa) (see STAR Methods; Fig-
ure S35). We found a higher frequency of LEW intrahepatic myeloid cells (CD45*CDé68"CD11b") secreting TNFa. in response to LPS stim-
ulation compared to DA liver-resident myeloid cells (Figures 7A-7C), which suggests, in agreement with the computational findings
(Figures 5C-5F), that the inflammatory potential of the hepatic myeloid cells in LEW rats (% TNFa. positive = 35.25 + 3.18 (SEM)) is higher
than that of DA rats (%TNFa positive = 22.25 + 1.45 (SEM)). However, despite the overall higher per-cell TNFa response in LEW myeloid
cells, the overall difference in the TNFa." mean fluorescence intensity (MFI) did not reach significance (Figure 7D). In the computational
analysis, the higher inflammatory potential of LEW liver myeloid cells was accompanied by the relative enriched expression of ltgal tran-
scripts (Figure 4H), which corresponds to the protein Integrin Subunit Alpha L (ITGAL). ITGAL is a component of Lymphocyte function-asso-
ciated antigen 1 (LFA-1), the expression of which is associated with inflammation and several autoimmune conditions.”’ Further examina-
tion of the post-stimulation intracellular cytokine data revealed that the strain-specific pro-inflammatory differences rested primarily within
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Figure 7. The inflammatory potential of myeloid cells found in LEW rats is greater than that found in DA rats

Myeloid cell inflammatory potential was evaluated after lipopolysaccharide (LPS) stimulation of freshly isolated liver-resident non-parenchymal cells. LPS-induced
TNFa secretion was measured via intracellular cytokine staining (ICS). The non-parenchymal liver cell dissociate was obtained via a gentle enzymatic perfusion
process and differential centrifugation. The resulting cells were plated in 12 well plates for 3.5 h before being stimulated for 6 h under a concentration of 1 ng/mL
of LPS in the presence of 1:1000 concentration of Monensin and Brefeldin.

(A) Flow cytometry plots showing the gating strategy for macrophages.

(B) Percentage of TNFa." secreting CD68*CD11b™ myeloid cells in the unstimulated control and stimulated conditions of Dark Agouti and Lewis macrophages.
(C) Summary graphs of Lewis versus Dark Agouti total TNFa as a percentage of CD68"CD11b"myeloid, (D) and of the mean fluorescence intensity (MFI) of Lewis
vs. Dark Agouti TNFa.

(E) Representative flow cytometry plot of TNFa. secretion patterns based on ITGAL subpopulations. (F) and summary graph ITGAL expressing CD68"CD11b*
myeloid subpopulations. Plotted are the values from all 4 experimental replicates. Statistical significance for ICS was determined using a non-parametric 2
tailed Mann-Whitney test. (n = 4) (G) Cytometric bead array (LEGENDplex) was performed to quantify the level of cytokines (TNFa, 11-18, CXCL1) on culture
supernatants of enriched CD68" myeloid cells after 24 h of stimulation in various LPS concentration conditions (0, 0.05, 0.1, 1, 10 ng/mL). Three technical
replicates were used per animal. Statistical significance of the CBA was determined using a two-way ANOVA and Sidak’s multiple comparisons test (n = 3)
Data are represented as mean + SEM with each dot representing a single animal. (*: p value <0.05, **: p value <0.01, ***: p value <0.001,****: p value
<0.0001) DA: dark agouti, LEW: lewis, SSC-A: side scatter area, FSC-A: forward scatter area.

ITGAL" myeloid cells, reflecting bioinformatic analysis that the LEW liver possesses a more inflammatory CD68" CD11b" myeloid popu-
lation (Figures 5, 7E, and 7F). We also observe a lack of strain-specific differences in the frequency of either CD68"ITGAL" or CD68"
myeloid cells in the flow cytometry analysis (Figure S36). This finding is consistent with previous studies showing that DA liver myeloid cells
exhibit less inflammatory characteristics, and a muted ability to stimulate T cell proliferation in comparison to LEW myeloid cells in mixed
lymphocyte alloreaction assays.”” To expand on the characterization of myeloid function in these strains, CD68" magnetic bead-based
myeloid cell purification was performed on three pairs of LEW and DA rat liver TLH cell suspensions (Figures S37 and S38). The pro-inflam-
matory cytokine production of these cells in response to a series of LPS concentrations was then measured via a multiplexed rat cytometric
bead array (CBA). Although hepatic myeloid cells from both strains displayed a dose-dependent cytokine response to LPS stimulation (Fig-
ure S39), LEW myeloid cells secreted significantly more interleukin-18 (IL-18), a LEW-enriched gene in varimax PC15 (Figure 5B), compared
to DA myeloid cells (Figure 7G). Moreover, inflammatory cytokines (IL-6, IL-1a, GM-CSF, CXCL1) that are regulated by TFs positively en-
riched in varimax PC15, such as PU.1,”>7* Irf8, Irf1,7> C/EBP-8,">"" and Stat4’®?” (Figures 5E and 5F), are also elevated in the stimulated
LEW versus DA myeloid cells (Figures 7G and S39). Examination of these strain-specific inflammatory potential differences may serve as a
point of focus for further investigation of the mechanisms behind immune-regulated hepatic disease susceptibility such as hepatic
neoplasia, and liver transplant rejection.

DISCUSSION

In this study, we used a multi-platform approach to create a multi-strain atlas of the healthy rat liver. This resource helps identify rat hepatic
cell types and serves as a useful baseline for hypothesis generation or to identify cellular alterations in liver disease models. We identified
key immune and parenchymal populations in the healthy rat liver and their marker genes and examined their zonation tendencies within
hepatic lobules. We also identified in silico strain-specific differences in hepatic myeloid populations isolated from DA and LEW rats, find-
ings which we validate using ex vivo assays. This study illustrates cellular and molecular sources that may contribute to strain differences
and highlights the potential role of myeloid cells in contributing to the baseline inflammatory state in the LEW model liver compared to the
DA liver.

Tissue dissociation is a major challenge in single-cell studies of the liver, as different cell types respond differently to dissociation protocol
conditions.** We mitigated this challenge by using a combination of multiple dissociation conditions, multiple single-cell mapping technol-
ogies (scRNA-seq and snRNA-seq), and spatial transcriptomics to capture populations not well represented by either technology individually.
This combined approach enabled us to better capture the diverse set of liver cell types and their zonation signatures.

Matrix factorization methods, such as varimax-rotated and standard PCA, enabled us to identify cellular identity and strain-related differ-
ences within our scRNA-seq dataset, in addition to identifying lobule zonation signatures within the spatial transcriptomics data. We found
that myeloid cells from LEW livers have higher inflammatory potential than those from DA livers. We demonstrated this at the transcriptional
level via scRNA-seq and confirmed this with snRNA-seq, an approach which is more resistant to dissociation-induced biases. These findings
were functionally verified in vitro through intracellular cytokine staining and via the measurement of secreted cytokines following LPS stim-
ulation of DA and LEW myeloid cells. We speculate that there is a baseline higher inflammatory milieu in the LEW rats that drives the
strain-specific differences in these animals.

To examine the relevance of these identified strain differences, future rat liver atlasing efforts should include disease states such as fibrosis,
ischemia reperfusion injury, or transplant rejection. Longitudinal atlasing of the liver microenvironment in these scenarios will provide valuable
insights into disease-promoting populations, potentially leading to new targets to limit hepatic inflammation. Our data support the notion
that reprogramming hepatic myeloid cells may be an attractive avenue to target and modulate inflammation in the rat liver."™ Taken
together, our transcriptomic maps of the rat liver microenvironment contribute to our understanding of the cellular basis of the rat liver func-
tion in addition to uncovering hepatic differences between rat strains. They also provide a framework to investigate new therapeutic options in
this model animal, which can be ultimately transferred to humans to cure and prevent hepatic inflammation.
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Limitations of the study

We recognize several limitations in our study. First, increasing the scRNA-seq datasets’ sample size could provide higher statistical power. We
opted to use an independent snRNA-seq dataset to increase the robustness of our findings. Compared to the former, snRNA-seq is less
prone to dissociation-sensitive bias and can better capture sensitive parenchymal populations such as cholangiocytes. Rat studies are gener-
ally limited by a lack of immunological tools available, which limits the scope of in vitro validation strategies. This issue can be improved upon
by testing and optimizing tools from other model systems for cross-reactivity and producing rat-specific antibodies. As well, ambient RNAis a
major technical issue for studying liver tissues using sc/snRNA-seq technologies and can mask liver biological signals. This background noise
was prominent in rats compared to humans, possibly due to the smaller vasculature, leading to more challenging tissue dissociation. As a
result, we relied on factorization approaches, such as varimax PCA, to identify and separate biological and technical signals. Current compu-
tational methods for ambient RNA removal are limited'®" and were unable to remove the technical contamination while preserving the bio-
logical signal. Improvements in ambient RNA removal methods in the future will be beneficial to liver single-cell studies. We annotate the key
DE genes expressed in each cluster and acknowledge that contamination by additional populations cannot always be excluded. Refinement
of cell population and strain variation annotation, including rare cell populations, is of interest for future studies. Single-cell-resolution spatial
transcriptomics methods will be useful for this. The integration of single-cell sequencing assay for transposase-accessible chromatin (scATAC-
seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), which can capture epigenomics, transcriptomics, and
protein expression, will also lead to more refined annotations of rare cell populations. Our map only includes male samples. The inclusion of
female samples will be important to understand sex-related differences in the liver.
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