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Significant effort has been invested in network-based gene function prediction algorithms
based on the guilt by association (GBA) principle. Existing approaches for assessing
prediction performance typically compute evaluation metrics, either averaged across all
functions being considered, or strictly from properties of the network. Since the success
of GBA algorithms depends on the specific function being predicted, evaluation metrics
should instead be computed for each function. We describe a novel method for computing
the usefulness of a network by measuring its impact on gene function cross validation
prediction performance across all gene functions. We have implemented this in software
called Network Assessor, and describe its use in the GeneMANIA (GM) quality control
system. Network Assessor is part of the GM command line tools.
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INTRODUCTION
Networks of gene-gene functional interactions (or more generally,
associations) have proven useful to predict gene function (Zhang
et al., 2004; Mostafavi et al., 2008; Peña-Castillo et al., 2008). In
this model, the nodes of the network are genes and the edges rep-
resent specific types of associations between them. For example,
a gene can be connected to other genes that inhibit or promote it,
that encode similar protein domains, that share similar expression
profiles, that are located close together on the same chromosome,
or whose products physically interact with its products.

Various methods exist for predicting function from gene-gene
networks. The most common approach uses some variation of
the guilt by association (GBA) principle (Schwikowski et al., 2000;
Hishigaki et al., 2001; Wu et al., 2002; Vazquez et al., 2003; Deng
et al., 2004; Ye et al., 2005; Sharan et al., 2007; Franceschini et al.,
2013; Zuberi et al., 2013). This assumes the function of a gene can
be inferred from its neighbors in the network by following edges.
Guilt-free approaches also exist, such as using the node degree of
a gene without considering any properties of its neighbors (Gillis
and Pavlidis, 2011). These algorithms use binary classification to
perform predictions for one function at a time. Multi-label clas-
sifiers also exist that can make predictions for multiple functions
simultaneously (Wang et al., 2013; Yu et al., 2013).

Network-based gene function algorithms have demonstrated
strong performance for multifunctional genes (Gillis and Pavlidis,
2011). Algorithms that use binary classification are typically eval-
uated by using cross validation against a gold standard, such as
gene annotations from Gene Ontology (GO) (The Gene Ontology
Consortium, 2000) or FunCat (Ruepp et al., 2004). This pro-
cess involves passing the association networks and a subset of the
genes in a specific GO term as input to a binary classifier, which

implements a particular prediction algorithm. The classifier then
attempts to recover the withheld genes by ranking them based
on the likelihood that they are members of the GO term. From
this ranking, the area under the receiver operating characteris-
tic curve (AUROC) and the area under the precision-recall curve
(AUPR) metrics are computed (Fawcett, 2006). The AUROC and
AUPR values are typically aggregated across GO terms to produce
a mean AUROC and mean AUPR. The input association networks
may need to be integrated into a single graph prior to binary clas-
sification, depending on the prediction algorithm used. A similar
process can be used with multi-label classifiers when evaluating
label-based performance (Tsoumakas et al., 2010).

When the input association networks and gold standard are
held constant, we can use this process to compare the perfor-
mance of different prediction algorithms. However, if we instead
fix the algorithm and gold standard, we can assess the useful-
ness of the input association networks for particular tasks, such
as assigning gene membership to GO terms.

Quantifying the usefulness of specific gene-gene networks for
function prediction is difficult in general. The topology of a net-
work may impact prediction performance differently depending
on the function in question. Sometimes a small fraction of edges
may account for most of the cross validation performance for a
large number of GO terms (Gillis and Pavlidis, 2012). Larger net-
works are more likely to include more of these informative edges,
but it’s also possible for a large network to have only a few of them.
Similarly, a small network can be constructed to contain a large
proportion of such critical or exceptional edges.

The software we present, Network Assessor, was designed for
gene function-specific quantification of the usefulness of associ-
ation networks for prediction tasks. In particular, the software
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quantifies the predictive potential of one or more networks by
reporting the differences in cross validation performance for
each GO term, with and without the network(s) in question.
Although the software provides built-in support for using the lat-
est GO annotations, any annotation set can be used as the gold
standard. Network Assessor has already been used to demon-
strate that genetic interaction networks obtained under differ-
ent experimental conditions provide complementary information
that improves gene function prediction performance (Michaut
and Bader, 2012).

Network Assessor currently uses the GeneMANIA (GM) algo-
rithm (Mostafavi et al., 2008), which is a fast, real-time network
integrator and binary classifier that uses GBA to infer gene func-
tion. Recent studies have indicated that cross validation perfor-
mance of GBA-based algorithms depends on the GO term being
tested (Gillis and Pavlidis, 2012). Although Network Assessor
uses a GBA-based predictor, it can be readily extended to use
non-GBA algorithms and even multi-label classifiers. Network
Assessor permits term-by-term analysis by providing AUROC and
AUPR metrics for each GO term rather than averaging over all GO
terms.

Network Assessor was originally used to analyze changes in
prediction performance between different releases of the GM web
server (Warde-Farley et al., 2010; Zuberi et al., 2013). The results
of this analysis help identify issues with GM network data, make
parameter decisions and are used to evaluate new networks for
inclusion in the system.

EXPERIMENTAL OBJECTIVES
We designed Network Assessor to quantify the usefulness of
an association network for predicting gene function. However,
directly measuring the predictive potential of an arbitrary net-
work in isolation by simply assessing the degree to which the
association network connects nodes with similar labels is not nec-
essarily informative because of the synergistic nature of network
data. For example, suppose you have two non-overlapping net-
works, A and B, and another network C that overlaps with both A
and B. Predictions that use only A, B, or C in isolation would be
very different from those made using the integration of all three
because the set of reachable neighbors in the latter is much larger.
This difference is significant for predictors based on label propa-
gation (Kato et al., 2009) that utilize indirect connections between
genes. Our approach allows us to measure the impact of adding
(or withholding) network C.

Since prediction performance may vary by GO term, Network
Assessor computes the relative predictive potential of an asso-
ciation network by measuring the impact of adding it to (or
removing it from) a network with known predictive potential for
each GO term. This allows researchers to examine differences in
performance by GO term size and position in the GO hierarchy.

LIMITATIONS OF CURRENT TECHNIQUES
Alternative techniques for quantifying the usefulness of networks
in gene function prediction exist. For instance, identifying which
gene functions follow the GBA principle in a given network
can be accomplished by applying statistics originally developed
for testing spatial clustering in proximity networks (Kleessen
et al., 2013). The degree of global spatial autocorrelation (such as

Moran’s I statistic) indicates whether gene expression correlates
well with gene function. This is useful for investigating which
gene functions follow the GBA principle. In contrast to these
methods, Network Assessor measures the effect on predic-
tion performance of an arbitrary network for all known gene
functions one at a time.

Furthermore, Network Assessor provides a network integra-
tor to allow the evaluation of sets of networks from different
sources. This is critical for organisms with poor annotation cov-
erage. Intra-species transfer of annotations and the integration of
functional interaction networks derived through orthology would
likely improve prediction performance (Klie et al., 2012).

In particular, Network Assessor also permits the analysis of dif-
ferent combinations of networks. It uses GM’s various network
integration algorithms to combine multiple weighted undirected
networks into a single weighted undirected network. For exam-
ple, the default behavior uses the Simultaneous Weights and
Unregularized algorithms (Mostafavi and Morris, 2010) to assign
weights to each network indicating its information content for the
GO term prediction task at hand. This weight is multiplied with
each of that network’s edges during network integration. Weights
can also be assigned equally by network.

Network Assessor makes analysis of association networks more
accessible to both computational and non-computational scien-
tists who otherwise must script their own analysis or do not have
access to automated tools, respectively.

NETWORK ASSESSOR
Network Assessor measures the predictive potential of an associa-
tion network by following a five step process (Figure 1). First, the
set of baseline networks are combined into a weighted, undirected
graph using GM’s “automatic” network integration algorithm
(Zuberi et al., 2013). Specifically, we use the GO Biological Process
(BP)-based Simultaneous Weights algorithm for queries with less
than five genes, and the Unregularized algorithm for five or more
genes (Mostafavi and Morris, 2010). This follows the default
behavior of GM’s network integrator.

Second, this composite network is used during K-fold cross
validation to recover the annotations in the user-provided gold
standard, such as a set of GO terms and the lists of genes they
annotate. Annotated nodes are treated as positive examples and
all others are treated as negative. The GM algorithm is used as the
binary classifier during cross validation and an AUROC/AUPR
statistic is computed for each annotation, for each fold. A per-
fect classifier produces AUROC and AUPR values equal to 1. A
random classifier achieves AUROC equal to 0.5 and AUPR close
to P/(P+N) where P and N are the number of actual positive and
negative examples, respectively (Schrynemackers et al., 2013).

Next, Steps 1 and 2 are repeated using the subject (i.e.,
non-baseline) networks. Typically, this comprises the baseline
networks with the association network(s) of interest added (or
removed, if the association network is part of the baseline).

Finally, the percentage differences of the AUROC and AUPR
values are computed for each annotation. The results are sorted by
these differences to highlight which annotations perform better
or worse when predictions are made with or without the associ-
ation network of interest. This method is a generalization of the
leave-one-out analysis that we described in (Costanzo et al., 2010)
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FIGURE 1 | Schematic diagram of the Network Assessor workflow. The green arrows indicate the first round of cross validation. Red arrows are second
round. AUROC/AUPR statistics are computed for each node label (e.g., GO term) for each round of cross validation. Dashed lines indicate alternative options.

to measure the contribution of individual genetic interaction
datasets to our understanding of functional relationships in
yeast.

The results produced by Network Assessor are reported as a
table in tab-delimited text format. Although we describe in this
protocol how to use Network Assessor with gene-gene associ-
ations to validate against GO annotations, Network Assessor is
generic enough to be used directly with any type of network data
and gold standard.

Network Assessor is bundled with over 1800 GM networks
for eight different model organisms. However, it is possible to
use any organism and networks by using the Id Importer tool
documented at http://pages.genemania.org/tools/.

MATERIALS
Prerequisites
• Familiarity with the Windows, Mac OS X, or Linux command

line.

Reagents
• An association network in tab-delimited format. The first

two columns are the identifiers of the interactors. These can
be a mix of gene symbols, UniProt accessions/IDs, Ensembl
Gene/Protein IDs, RefSeq mRNA/Protein IDs, TAIR IDs or
Entrez Gene IDs. Optionally, a third column can be added
to indicate the weight of the interaction. Here is an example
weighted network with two interactions. “<TAB>” denotes a
tab character, which must not be surrounded by spaces in the
network file:

BRCA1<TAB>RAD50<TAB>0.25
BRCA1<TAB>MRE11A<TAB>0.34

Equipment
• A computer with at least 8 GB of RAM and an internet

connection.

Equipment setup
The following software is required:

• Windows XP 64-bit, Mac OS 10.6 or Ubuntu Linux 8.04 64-bit
(or equivalent) or later.

• Java 1.6 64-bit or later.
• GM command line tools version 3.3 or later (http://pages.

genemania.org/tools/).

Procedure
Steps 1–3: Set up the command line environment.

1. Create a new directory for storing the results of your work.
2. Copy the GM command line tools JAR file into this directory.

In later steps, we will assume this file is called genemania.jar.
Also copy your association data into this directory.

3. In your shell, set the current directory to the working directory
you just created.

Steps 4–10: Install baseline association data for your organism of
choice.

4. Run the following command in your shell to list the available
baseline data sets (The full documentation for this command
and the ones below is available at http://pages.genemania.org/
tools):

java -jar genemania.jar DataAdmin list

The following shows the output of this command:

Data Set ID Total Size Database Version
2013-10-15 9351.08 MB 15 October 2013
2013-10-15-core 2059.38 MB 15 October 2013
2013-10-15-open_license 9324.49 MB 15

October 2013
2012-08-02 5994.14 MB 19 July 2012
2012-08-02-core 1764.09 MB 19 July 2012
2012-08-02-open_license 5963.38 MB 19

July 2012
...
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5. Note the “Data Set ID” (first column) of the data you wish
to install. The latest release as of this writing is “2013-10-15”
which corresponds to database version 15-Oct-2013.

6. Run the following command to download the base data set.
This should take no more than a few seconds using a 3 Mbit/s
connection.

java -jar genemania.jar DataAdmin \\
install 2013-10-15

7. Run the following command to list the available organisms for
the selected data set:

java -jar genemania.jar DataAdmin \\
list-data

Here is an example of the output:

Data ID Description Status
1 A. thaliana Arabidopsis (2494 MB)
2 C. elegans Worm (282 MB)
3 D. melanogaster Fly (792 MB)
4 H. sapiens Human (2361 MB)
5 M. musculus Mouse (2137 MB)
6 S. cerevisiae Baker’s yeast (458 MB)
7 R. norvegicus Rat (576 MB)
8 D. rerio Zebrafish (248 MB)

8. Note the “Data ID” (first column)” of the organism you wish
to install. For example, human data is “4.”

9. Run the following command to install the organism-specific
baseline data set. Human data takes approximately 60 min to
download and install using a 3 Mbit/s connection. In general
it takes 10–70 min depending on the organism selected.

java -jar genemania.jar DataAdmin \\
install-data gmdata-2013-10-15 4

Note: \\ indicates a line continuation and should not be
included in the command.

Step 10: Download a gold standard for cross validation.

10. Run the following command to download the latest GO
annotations and save it to a file. You can choose a particular
GO branch, such as “bp” for biological process, “cc” for cel-
lular component, or “mf” for molecular function, or “all” for
everything. In the following example, the GO terms for tax-
onomy ID 9606 from the “bp” branch will be saved in the file
“go-terms.txt.” By default, this command will download the
annotations from the European Bioinformatics Institute GO
MySQL server. It takes about 8 min on a 3 Mbit/s connection.

java -jar genemania.jar \\
ValidationSetMaker \\
--organism 9606 --branch bp \\
--query go-terms.txt

Here are the taxonomy IDs of the organisms currently avail-
able in GM:

Organism Taxonomy ID

A. thaliana 3702
C. elegans 6239
D. melanogaster 7227
H. sapiens 9606
M. musculus 10090
S. cerevisiae 4932
R. norvegicus 10116

Step 11: Import the association data you want to analyze into your
data set.

11. Run the following command to install your association data.
This assumes your association data is stored in a file called
“network.txt,” is for the organism with taxonomy ID 9606
(human), and will be saved with the name “network1” and
categorized into group “group1.”

java --Xmx6G --jar genemania.jar \\
NetworkImporter \\
--data gmdata-2013-10-15 \\
--organism 9606 \\
--name "network1" --group "group1" \\
--filename network.txt

Step 12: Use Network Assessor to analyze the association data you
imported.

12. To specify all GM networks as a baseline, use “coexp,
coloc,gi,path,pi,predict,spd.” To measure the
impact of your network in isolation not including the base-
line networks, use “network1” for the “–network” parame-
ter. To measure the impact of your network added to the
baseline, use “coexp,coloc,gi,path,pi,predict,spd,network1”
instead. The following example will assess your network in
isolation, using 5-fold cross validation on four simultane-
ous processing threads with GO terms containing between
3 and 10 annotations, inclusive, and store the results in
“go-terms.result.txt”:

java --Xmx6G -jar genemania.jar \\
NetworkAssessor \\
--data gmdata-2013-10-15 \\
--auto-negatives \\
--baseline "coexp,coloc,gi,path, \\
pi, predict,spd" --seed 1 \\
--threads 4 --networks "network1" \\
--organism 9606 --folds 5 --min 3 \\
--max 10 --query go-terms.txt \\
--outfile go-terms. result.txt

Cross validation is a highly-parallelizable process since each
annotation in the validation set is assessed independently.
Network Assessor can automatically distribute the work
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across all cores of a multi-core system by specifying the num-
ber of threads to use. You can also partition “go-terms.txt”
into multiple files and process each file on a different
cluster node. Since Network Assessor is a memory- and
computation-intensive program, ensure that at least 6 GB of
RAM are free prior to starting the assessment. It takes an eight
core 2.53 GHz Intel Xeon E5540 system approximately 24 s
per line in “go-terms.txt” on average for the 15-Oct-2013 full
human data set using eight processing threads. Since human
is our largest dataset, using another organism or a subset of
the networks will allow faster cross validation times. On a 10-
node cluster of similar nodes, assessing the network against
1000 GO terms would take around 40 min of real time (6.6 h
of CPU time).
The “–min 3” and “–max 10” parameters instruct Network
Assessor to only consider GO terms with at least 3 and no
more than 10 annotations. This is important because binary
classification algorithms generally perform worse with small
GO terms. Using ranges 3–10 and 11–300 will give similarly
sized partitions when used with the current GO database (see
below for further explanation).
The “–threads” parameter should be set to the number of
physical cores on your computer. For example, use “4” for a
single quad core processor. For a dual-processor system with
eight cores each, use “16.”
Using the same non-zero “–seed” ensures the results of dif-
ferent runs of Network Assessor are reproducible, as long as
all parameters and inputs are the same. Otherwise Network
Assessor will have slightly different results due to how the
folds are randomized. Specifying a seed will guarantee the K-
folds of the baseline and subject data sets are partitioned the
same way.
Here is a sample of the first four columns of Network
Assessor’s output:

QUERY BASELINE-AUC- SUBJECT-AUC- %ERR-AUC-

ROC ROC ROC

GO:0000046 0.498133458 0.548483434 0.101077
GO:0000117 0.471654812 0.516121807 0.094279
GO:0000114 0.461791463 0.503638908 0.09062

The first column indicates the GO term used in the assess-
ment. The second column is the mean AUROC of the baseline
networks across the K-folds. The third is the mean AUROC
of the subject networks, which in this example is the new net-
work in isolation. Finally, the fourth column shows the %
improvement in subject AUROC compared to the baseline,
computed as follows:

%ERRAUROC = SUBJECTAUROC

BASELINEAUROC
− 1

In addition to these, the actual output file has similar
columns for the AUPR and precision-at-10% recall statistics.
If you run into any issues or have any questions, you can get
in touch with the GM team at http://pages.genemania.org/
contact/.

NETWORK ASSESSOR AND GeneMANIA QUALITY CONTROL
The dataset used by the GM gene function prediction server
is updated on a regular basis. It performs real-time predic-
tions for eight model organisms using over 530 million gene-
gene functional associations organized into over 1800 net-
works. These associations are the edges of networks, which are
weighted, undirected graphs, and come from numerous indepen-
dent third-party sources. For example, co-expression networks
are derived from gene expression profiles from GEO (Barrett
et al., 2013); protein and genetic interactions from BioGRID
(Chatr-Aryamontri et al., 2013); protein interactions inferred
through orthology from I2D (Brown and Jurisica, 2007); path-
way interactions from Pathway Commons (Cerami et al., 2011);
and protein interactions from iRefIndex (Razick et al., 2008).
Shared protein domain associations are derived from InterPro
(Hunter et al., 2012) and PFAM (Punta et al., 2012). Identifiers
and their metadata are sourced from Ensembl (Flicek et al.,
2013).

Data imported from third parties can change without notice so
each GM release reflects the state of those sources at a fixed point
in time. For example, in an older data update, R6 (19-July-2012),
cross validation results indicated a general drop in performance
relative to the previous release, R5 (21-Dec-2011). This prompted
further investigation, through which we discovered GM no longer
recognized 10% (2344) of the human gene symbols that R5
supported. This was due to changes within Ensembl between R5

Table 1 | Median AUROC and AUPR for all networks in R6 and R8, as

well as the default networks of each, respectively (bold indicates

higher number per comparison).

R6 R8 R6 (default) R8 (default)

GO TERM SIZE = 3–10

Median AUROC 0.650 0.694 0.627 0.684

95% CI ±0.316 ±0.311 ±0.334 ±0.329

versus R6 (p-value) *4.74 × 10−82 *1.41 × 10−27

versus R8 (p-value) *8.11 × 10−10

GO TERM SIZE = 11–300

Median AUROC 0.871 0.890 0.857 0.882

95% CI ±0.217 ±0.195 ±0.246 ±0.212

versus R6 (p-value) *9.96 × 10−258 *5.68 × 10−129

versus R8 (p-value) *4.53 × 10−35

GO TERM SIZE = 3–10

Median AUPR 0.012 0.019 0.019 0.026

95% CI ±0.349 ±0.409 ±0.343 ±0.408

versus R6 (p-value) *1.35 × 10−28 *1.34 × 10−18

versus R8 (p-value) *5.19 × 10−19

GO TERM SIZE = 11–300

Median AUPR 0.185 0.220 0.181 0.215

95% CI ±0.412 ±0.528 ±0.415 ±0.529

versus R6 (p-value) *8.45 × 10−256 4.62 × 10−1

versus R8 (p-value) 3.56 × 10−2

The Wilcoxon rank sum test was performed on the following pairs conditions:

R6 versus R8, R6 versus R6 (default), and R8 versus R8 (default). The p-values

for these tests are listed with statistically significant values (p < 0.01) marked

with an asterisk.
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and R6 beyond our control as well as the conservative nature of
GM’s identifier mapping process. For instance, if a gene symbol is
found to map to multiple distinct genes, that symbol is dropped to
avoid ambiguity. When considering all identifiers that GM recog-
nizes (>273,000), including Uniprot IDs and synonyms, the net
loss was 3% (8196).

The set of recognized identifiers determines which associations
are imported from the third-party sources. If at least one inter-
actor in an association is not recognized, that association is not
imported, so the loss of gene symbols led to a loss in interac-
tions, including those that might indirectly connect two genes
with retained identifiers. These changes affected prediction per-
formance. We corrected this issue in the latest release, R8, which
addresses the identifier mapping issues introduced in R6 and now
outperforms both that and R5.

Default networks
The GM dataset is represented as a collection of weighted, undi-
rected graphs. The human dataset contains 164 million edges
organized into 395 networks. Of these edges, 156 million are co-
expression. To ensure responsiveness and high availability for the
GM web server, it is not practical to always use all association

networks for each prediction. Instead, GM uses a semi-manually
curated subset of networks by default. This includes all the net-
works described above except predicted interactions that are not
inferred through orthology, and select co-expression networks.
To determine which co-expression networks to include, all the
default networks and all co-expression networks are combined
using the GO BP-based Simultaneous Weights algorithm, which
assigns each network a weight. The top 20 co-expression net-
works with the highest weights are selected for membership in
the default set. This results in only 6.8 million co-expression edges
retained. The number of edges across all default networks is 13.7
million, which is about 8% of the total.

Assessment of default networks
Network Assessor was used to assess the predictive potential of
default networks of R6 in isolation vs. all networks in R6 using
human data. The same was done for R8. Five fold cross valida-
tion was used in each case against GO BP annotations that were
downloaded on 18-Jul-2013 from the European Bioinformatics
Institute GO MySQL database mirror. Following the work of
Mostafavi and Morris (2010), GO terms were grouped based on
the number of genes annotated by each term since GO terms

FIGURE 2 | Cumulative distributions of AUROC and AUPR of GO BP

terms containing 3–10 annotations, and 11–300 from human

network data from R6 and R8. The “(default)” suffix indicates only

the networks selected by default on the web server were used from
the data set. The lack of the suffix indicates all available networks
were used.
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with fewer annotations tend to exhibit worse prediction perfor-
mance. This resulted in two partitions with similar sizes: 3–10
annotations (n = 3239) and 11–300 (n = 3271). These results are
summarized in Table 1. In general, the full set of networks con-
sistently performs better than the default set; except for AUPR
on GO terms containing 3–10 annotations, where both the R6
and R8 defaults have higher AUPR than the full. This is likely
due to overfitting since each network is assigned a weight by the
integration algorithm, and the full set of networks contains more
than twice as many networks as the default set. Performance also
increased for all measures in R8 compared to R6.

Figure 2 shows the cumulative distributions of the AUROC
and AUPR of GO BP terms containing 3–10 annotations (n =
3239), and 11–300 (n = 3271).

Network Assessor was also used to analyze the relative pre-
dictive potential of default networks, as well as other key
types of networks by measuring the degree to which predic-
tion performance decreases when they are removed. Table 2
shows the AUROC and AUPR of GO BP terms containing 3–
10 annotations, and 11–300 for R8 with default, co-expression,
co-localization, genetic interaction, pathway, physical (protein)
interaction, predicted, and shared protein domain networks
removed, respectively. Median AUROC dropped by at least 4%
when default or co-expression networks were removed. Median
AUPR dropped by at least 14% when default, physical inter-
action, or shared protein domain networks were removed for

terms containing 3–10 annotations. Median AUPR increased
by almost 30% when co-expression networks were left out for
the same terms. This is likely due to overfitting, which has
been observed for smaller GO terms (Mostafavi et al., 2008).
Median AUPR also increased by 3.4% when genetic interac-
tion networks were left out for the same terms. In general,
AUPR dropped by at least 15% when default networks were
removed. AUPR also dropped substantially when predicted net-
works, most of which are derived through orthology from yeast,
worm, fly, mouse, rat, were removed. This agrees with Klie
et al. (2012) about the importance of intra-species transfer of
annotations.

In Figure 3, the AUROC of most of the GO BP terms dropped
when default networks were removed. The drop in AUPR was
even more pronounced, regardless of the number of annota-
tions in the GO term. This indicates an overall loss of precision
and sensitivity when predictions were made without the default
networks. The same analysis was performed for GO molecular
function terms with similar results, which agrees with the findings
of Mostafavi and Morris (2010).

CONCLUSION
Network Assessor has proven useful for measuring the impact
of the changes that occur in the third-party sources from which
the GM prediction web server derives its training data and
can be used by others for similar analysis with custom data.

Table 2 | Median AUROC and AUPR for R8 when all networks are used (All) compared to when default (-default), co-expression (-coexp),

co-localization (-coloc), genetic interaction (-gi), pathway (-path), physical (protein) interaction (-pi), predicted (-predict), and shared protein

domain (-spd) networks are removed, respectively.

All -default -coexp -coloc -gi -path -pi -predict -spd

R8

Total edges 1.64 × 108 1.50 × 108 6.94 × 106 1.63 × 108 1.59 × 108 1.64 × 108 1.63 × 108 1.63 × 108 1.63 × 108

Edges removed from all 0 1.37 × 107 1.57 × 108 4.87 × 105 4.85 × 106 1.16 × 105 2.75 × 105 1.99 × 105 1.02 × 106

R8: GO TERM SIZE = 3–10

Median AUROC 0.694 0.685 0.675 0.694 0.695 0.692 0.694 0.694 0.688
95% CI ±0.311 ±0.309 ±0.332 ±0.311 ±0.310 ±0.311 ±0.309 ±0.310 ±0.313
% difference from all −1.3% −2.8% −0.1% 0.1% −0.4% −0.1% −0.1% −0.9%
versus all(p-value) *2.17 × 10−3 *1.43 × 10−23 *5.04 × 10−67 *4.23 × 10−109 *1.46 × 10−4 *5.86 × 10−13 *4.05 × 10−17 7.05 × 10−1

R8: GO TERM SIZE = 11–300

Median AUROC 0.890 0.866 0.864 0.889 0.890 0.887 0.887 0.890 0.880
95% CI ±0.195 ±0.206 ±0.224 ±0.196 ±0.195 ±0.197 ±0.199 ±0.196 ±0.199
% difference from all −2.8% −2.9% −0.1% 0.0% −0.3% −0.4% 0.0% −1.1%
versus all(p-value) *0 *6.91 × 10−183 1.91 × 10−1 *8.24 × 10−20 *1.54 × 10−22 *1.01 × 10−27 8.83 × 10−1 *1.88 × 10−219

R8: GO TERM SIZE = 3–10

Median AUPR 0.019 0.011 0.025 0.019 0.020 0.019 0.016 0.018 0.017
95% CI ±0.409 ±0.377 ±0.406 ±0.409 ±0.408 ±0.407 ±0.392 ±0.411 ±0.404
% difference from all −44.8% 29.8% 0.0% 3.4% −4.0% −16.4% −4.8% −14.0%
versus all(p-value) *2.43 × 10−9 *5.94 × 10−15 *6.98 × 10−61 *5.10 × 10−83 *8.71 × 10−13 *1.97 × 10−11 *3.40 × 10−24 *1.82 × 10−4

R8: GO TERM SIZE = 11–300

Median AUPR 0.220 0.186 0.209 0.219 0.220 0.218 0.206 0.218 0.215
95% CI ±0.528 ±0.527 ±0.530 ±0.528 ±0.528 ±0.525 ±0.528 ±0.528 ±0.527
% difference from all −15.6% −5.0% −0.4% 0.1% −0.6% −6.2% −0.9% −2.2%
versus all(p-value) *1.14 × 10−181 *4.89 × 10−9 3.20 × 10−1 *3.63 × 10−38 *3.92 × 10−16 *1.20 × 10−43 *3.40 × 10−24 *1.82 × 10−4

The number of edges removed for each analysis is also listed, as well as total edges used during assessment. The Wilcoxon rank sum test was used to compute

the listed p-values, where significant values (p < 0.01) are marked with an asterisk.
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FIGURE 3 | AUROC and AUPR performance of each GO term. X-axis denotes performance using all networks from R8 while the Y-axis is R8 without default
networks. GO terms containing 90 genes or more consistently performed better using all networks from R8.

Network Assessor is open-source and is part of the GM project.
Code is available on request, although migration to GitHub is
planned.
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