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Abstract

Phosphorylation is a prominent post-translation modification, which is carried our by
protein kinases impacting a wide range of cellular processes. Kinases are among the most
important groups of cancer drug targets in the 21st century. Aberrant phosphorylation of
kinase substrates can have important downstream effects in signaling pathways and tran-
scription factor regulation. Thus, identifying the functional impact of somatic cancer muta-
tions on kinase binding sites can help decipher oncogenic signaling mechanisms and con-
tribute to drug development. We recently found phospho-signaling sites to be enriched in
cancer driver mutations. Here, we hypothesize that many phosphorylation-related single
nucleotide variants (pSNVs) precisely modify kinase-binding sites and lead to phosphory-
lation network rewiring. Three types of rewiring events can occur: gain-of-signaling muta-
tions introduce new kinase binding sites, loss-of-signaling mutations disrupt kinase binding
at a site, and switch-of-signaling mutations cause a change of specificity from one kinase to
another. We developed the computational pipeline MIMP to identify such rewiring events
systematically. We tested MIMP on the TCGA pan-cancer collection of 250,000 mutations
in >3,000 cancer genomes and 12 tumor types. We found that half of the 16,000 mutations
that lie within phosphosites significantly alter kinase specificity. This effect is apparent in
multiple known cancer genes such as CTNNB1 and TP53 as well as numerous novel can-
cer genes. Furthermore, we validated our predictions computationally with network and
pathway analyses. Our approach provides experimentally testable signaling-associated hy-
potheses about known cancer driver mutations, and helps reveal novel cancer genes with
oncogenic signaling mutations.
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1 Introduction

Cellular signaling networks are complex systems of interacting proteins that are ultimately en-

coded in genomes. Computational analysis of protein-coding genomes shall therefore reveal

blueprints of interaction networks and help interpret disease-associated genetic variants that af-

fect signaling interfaces in proteins (1). Understanding how genetic variation induces changes

in cellular signaling will reveal experimentally testable, mechanistic hypotheses, paving the

way for precision medicine and improved drug target development.

While genomic analysis of interaction networks is generally difficult, a subset of protein–

protein interactions (PPIs) mediated by peptide recognition modules (PRMs) can be feasibly

modeled with computational methods. PRMs serve as adaptors, which bind certain linear mo-

tifs, usually in response to external or internal cues. In particular, protein phosphorylation is a

system of post-translational modifications (PTMs) involving writers (protein kinases), readers

(such as SH3 proteins) and erasers (phosphatases). Protein phosphorylation involves the re-

versible addition of a phosphate group, obtained from an ATP molecule, to serine (S), threonine

(T), or tyrosine (Y) residues. This process can have multiple functional outcomes: it can mod-

ulate proteosomal degradation of proteins; affect the protein’s electrochemical stability, leading

to alternative folding; or inhibit or induce interactions with other proteins. Through such mech-

anisms, phosphorylation signaling is central to cellular processes such as transcription, prolif-

eration, and apoptosis (2–4). As these processes are altered in human diseases, integration of

kinase signaling and disease mutation data will lead to an improved understanding of disease

mechanisms. Protein kinases have also become among the most important groups of cancer

drug targets in the 21st century (5–8) and are one of the largest classes of proteins containing

PRMs, with over 500 members in the human genome (9) and abundant datasets characterizing

their sequence specificity (10–12).
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Functional analysis of somatic mutations in cancer genomes and discovery of driver mu-

tations are some of the most central goals of current cancer research (13). Driver mutations

provide selective advantages to cells and are interesting for biomarker discovery and therapy

development, while passenger mutations are functionally neutral and occur due to instability

of cancer genomes. Each solid tumor is believed to contain two to eight driver mutations and

tenfold more passengers (14), posing a challenge to cancer driver discovery. However, as the

selective advantages of tumor cells such as proliferation, apoptosis, and metabolism are intrinsi-

cally mediated by signaling pathways involving phosphorylation, it is likely that cancer drivers

involve precise modifications of kinase networks. We recently conducted a systematic analy-

sis of phosphorylation-associated single nucleotide variants (pSNVs) in 800 tumor genomes,

and found that phosphosite mutations occur in cancer genes and pathways and are informative

of clinical outcome (15). In an extended analysis of >3,000 cancer genomes, we found that

90% of samples contained 16,000 pSNVs and predicted that 50% of these mutations severely

affect kinase binding sites, including known cancer genes such as TP53 and CTNNB1 (16).

These studies underline the importance of signaling-associated mutations in tumor biology and

encourage further interpretation of cancer mutations in a signaling network context.

Indeed, the concept of single amino acid substitutions affecting kinase–substrate binding

in diseases has been previously explored in small and large scales (17–25). However, due to

a lack of phosphoproteomics data at the time, comprehensive characterization of individual

kinase–substrate relationships was a difficult task. As a result, kinase–substrate specificities

were modeled at the kinase group or family level (9). For example, Ren et al. studied four

kinase groups (18) and Ryu et al. studied six kinase groups and 18 kinase families (19), none of

which models kinase specificity on an individual basis. Other studies explored phosphorylation

data in up to 8,400 proteins (17, 20). These numbers have significantly increased over the past

few years, suggesting that a more comprehensive analysis may unveil unexplored biological

5



hypotheses. More importantly, studies developing a method will, at most, provide a database

containing sites affected by a predefined set of mutations. These include PhosSNP (18) and

PhosphoVariant (19), and are problematic for those wishing to analyze their own data.

To tackle these issues, we developed a systematic pipeline, MIMP, to characterize genetic

missense variants such as cancer mutations that precisely and specifically alter kinase binding

sites in proteins. MIMP makes use of phosphorylation data for over 360 kinases in over 10,500

proteins to comprehensively assess kinase rewiring. We assume that kinase binding to an exper-

imentally determined protein site depends on the presence of several critical amino acids. As

these residues are changed in disease mutations, alterations in kinase binding specificity poten-

tially lead to rewiring (Fig. 1). We tested our approach on a recent large collection of cancer

mutations and discovered cancer genes and pathways with frequent rewiring pSNVs. MIMP is

freely available as an R package from https://github.com/omarwagih/mimp under

the LGPL.
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2 Results

2.1 Construction of high-confidence kinase binding specificity models from
proteomics data

To study phosphorylation networks, we collected 88,253 phosphosites in 10,504 human pro-

teins from four phosphoproteomic databases (10–12, 26). A minority of phosphosites (14%,

12,381) were assigned a binding kinase in earlier experiments, which we used to construct ki-

nase binding specificity models. Many kinases had only a small number of sites. As such, we

only considered kinases with 10 or more available phosphosites (Suppl. Fig. 1). In total, we

generated kinase specificity models for 362 kinases, including 310 ST kinases and 52 Y ki-

nases. Kinase specificity models were established as position weight matrices (PWMs), which

contained a weight representing the likelihood of the kinase binding a particular amino acid for

every position flanking the phosphosites (±7 residues). In order to improve the performance of

our models, we designed an iterative refinement procedure, which discarded sequences used for

PWM construction that did not correspond to the motif’s general pattern (see Methods).

To validate the performance of our kinase models, we carried out a 10-fold cross-validation

analysis, wherein binding models were constructed from a subset of phosphosite sequences and

the remaining sequences were used for classification versus non-target sequences (see Meth-

ods). We computed the area under the receiver operating characteristic (AUC) curve and found

that most of our models (333/362, 92%) performed as satisfactory classifiers of phosphosite

sequences with AUCs >0.75 (Suppl. Fig. 2). We discarded 29 PWMs below that criterion. We

also visually validated our models with that of other studies (26, 27) and found a good corre-

spondence in the case of most models (Suppl. Fig. 3). This analysis provided a comprehensive

set of kinase models for evaluating cancer mutations in a kinase-rewiring context.
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2.2 MIMP—systematic prediction of network-rewiring mutations using
kinase specificity models

We developed the statistical method MIMP to integrate kinase binding models and protein mis-

sense mutations for the prediction of network rewiring events. The method is based on the

assumption that kinase binding specificity is determined by a small number of critical residues

around the central phosphorylatable residue. Systematic analysis of all kinase models in our

datasets confirms our assumption and shows that most specificity information is encoded in the

proximal ±3 residues around the central residue of the phosphorylation site (Fig. 3a). Thus,

we propose that specific and precise disease mutations affecting phosphosite-flanking residues

critically impact binding specificity, potentially altering kinase–substrate interactions (Fig. 1).

Based on this assumption, three types of rewiring events can occur due to disease mutations.

Gain-of-signaling, caused by a single mutation that introduces a new kinase binding site at a

high-affinity position of a potential kinase target site; loss-of-signaling, caused by a single mu-

tation that disrupts kinase binding at a site through mutating a residue critical for affinity; and

switch-of-signaling, occurring if a single mutation causes a specificity change from one kinase

to another, by replacing an amino acid critical for one kinase to that of another kinase (Fig. 1).

Our method is based on the matrix similarity score (MSS) that was previously developed

for studying transcription regulatory motifs (28). Here, the MSS is used to quantify the sim-

ilarity between a given phosphosite sequence and the kinase specificity model, reflecting the

likelihood of the kinase to bind that sequence. The MSS ranges from 0 to 1, where 1 represents

a perfect match and 0 represents no binding. In order for a rewiring event to occur, the MSS

of the wildtype phosphosite must be significantly different from that of the mutant phosphosite.

We defined a confidence interval for the MSS as [α−,α+] using scores of the foreground and

background sequences (see Methods). This helps in establishing gains and losses by allowing

us to filter out dubious predictions, which may fall under either distribution (Fig. 2). There-
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fore, we consider a loss-of-signaling event to occur if the MSS of the wildtype phosphosite is

greater than α+ and its corresponding MSS of the mutant phosphorylation is less than α−, and

vice-versa for a gain-of-signaling event. Switch-of-signaling occurs as a combination of both

events.

2.3 MIMP predicts numerous network-rewiring pSNVs in the TCGA pan-
cancer dataset

We tested our method on the TCGA pan-cancer dataset of 3,185 genomes and 236,367 missense

SNVs from 12 tumor types. We used the collection of 16,891 pSNVs within ±7 residues of

phosphosites identified in our earlier pan-cancer analysis (16) to identify network-rewiring mu-

tations. Our pipeline predicts that 9,545 of these pSNVs (55%) significantly impact 2,143 exper-

imentally validated phsophorylation sites and lead to 53,784 network-rewiring events (14,216

gain-of-signaling events; 39,568 loss-of-signaling events), providing a resource of hypotheses

for functional validation.

The majority of predicted kinase-rewiring pSNVs cause loss-of-signaling (7,595/9,545, 61%),

as it is easier for pSNVs disrupting critical residues in binding to affect existing binding sites

than to create novel ones. As a result, switch-of-signaling is the rarest event to occur. Fur-

thermore, only 16 out of 9,545 (0.16%) rewiring pSNVs exist in > 4 of samples. Thus, the

majority of rewiring pSNVs are infrequent, although highly influential in terms of predicted

impact of multiple kinases. This suggests that many cancer mutations are rare, despite being

highly specific to protein sites in signaling systems.

To construct a higher confidence kinase-rewiring network, we selected loss-of-signaling

events where the kinase experimentally matches the binding site lost and gain-of-signaling

events with the best-scoring kinase for mutated binding sites. The resulting dataset contained

1,285 rewiring events (674 gain-of-kinase events; 611 loss-of-kinase events) caused by 751
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rewiring mutations, which were then clustered using Markov clustering (MCL) (29) and visu-

alized as a network of rewiring events (Fig. 4).

2.4 Functional, pathway, and network analyses validate predicted rewiring
mutations in kinase signaling

To computationally validate the rewiring mutations predicted by our pipeline, we carried out

further analyses with complementary datasets. First, we investigated the properties of SNVs

predicted to cause network rewiring. Expectedly, rewiring pSNVs mostly affect residues that

flank ±3 positions from the central site, likely because most information encoding kinase speci-

ficity is accumulated to these residues when averaging across all PWMs we use (Fig. 3b).

In addition, on average, network-rewiring mutations appear to have a stronger functional bias

than cancer mutations. We compared network-rewiring mutations to non-rewiring mutations

using an ensemble of tools (phyloP (30), SIFT (31), PolyPhen2 (32), LRT (33), and Muta-

tionTaster (34)). Each mutation was assigned a value from 0 to 5, representing the number of

tools that deemed it harmful. We found that rewiring mutations significantly enriched for high

harmfulness (p-value < 0.0057; Binomial test) (Fig. 5a).

Next, we investigated the agreement of network-rewiring mutations with expression data,

with the assumption that kinase–substrate interactions are more likely to be biologically valid

if they are also co-expressed. We used the pan-cancer expression data, which measures expres-

sion in the samples where the mutations were studied. For each protein with a network-rewiring

mutation, we counted the number of non-zero expression values of the predicted rewired kinase

in samples containing the mutation. We found that pairs of kinases and network-rewiring mu-

tations were co-expressed in 41,368 out of 43,415 cases (95%), which is a greater overlap than

random chance would provide (Fig. 5b) (p-value = 0; Binomial test). Similarly, we used lo-

calization data to validate predictions: predicted rewired kinases and their target protein were
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considered co-localized if they share at least one experimentally annotated localization. We

found that co-localization occurred for 22,563 out of 37,941 cases (59%), which is significantly

greater than random chance (Fig. 5b) (p-value = 0; Binomial test). This analysis suggests that

many of our predictions are likely to occur in vivo.

Finally, we carried out a pathway enrichment analysis to characterize biological processes

and pathways with rewiring mutations occurring more frequently than expected. This analysis

revealed several functional themes that relate to hallmark cancer processes such as apoptosis,

separation of sister chromatids, and splicing, as well as numerous cancer signaling pathways

(Fig. 5c), validating the functional roles of network-rewiring mutations in cancer biology.

2.5 Cancer-relevant examples of kinase–substrate rewiring
2.5.1 Loss of TP53 phosphorylation by AURKB deregulates TP53 degradation

TP53 is a transcription factor and tumor suppressor that regulates apoptosis and cell cycle arrest.

Mutations in TP53 are highly recurrent in cancer (50%) (35, 36). The phosphorylation site

T284 is highly conserved across species (37) and exists in the DNA-binding domain of TP53.

Phosphorylation of T284 by AURKB leads to negative regulation of TP53 (37). As a result,

downstream pro-apoptotic targets of TP53 (p21, Bax, Puma, NOXA) are not activated (38).

We predict the rewiring mutation TP53-R282W causes loss of AURKB (Fig. 7a), suggesting

aberrant activation of downstream TP53 targets. While this may seem counterintuitive, as it

implies continuous activation of proapoptotic genes, many biological processes rely on TP53

being tightly regulated. For example, germinal center B cells, a vital part of the immune system,

which function to make antibodies against antigens, normally proliferate to maintain regular

function. Suppression of TP53 is therefore crucial for B-cell proliferation (39). Thus, aberrant

activation of TP53 may lead to disruptive effects on the proliferation of B cells.
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2.5.2 Hotspot of mutations β-catenin disable GSK3β phosphorylation, required for degra-
dation

CTNNB1, β-catenin, is a dual-function proto-oncogene, regulating the coordination of cell–cell

adhesion and gene transcription. Mutations and overexpression of β-catenin are associated with

many cancer types. CK1α phosphorylates β-catenin at S45, priming subsequent phosphoryla-

tion by GSK3β at residues 41, 37, and 33 (40, 41). β-catenin that is phosphorylated at residues

37 and 33 is ultimately recognized by the β-TrCP E3–ligase complex, ubiquitylated, and rapidly

degraded by the 26S proteasome (42, 43).

Mutations S33P, S33Y, S33F, S37C, S37F, S37A, S37P, and S45C cause loss of phosphory-

lation by GSK3B at S29, S33, S37, and S41. While these mutations clearly disrupt the phos-

phorylation site itself, they also disrupt neighboring phosphorylation sites. For example, S37C

mutation disrupts the phosphorylation site at S37 directly, while also disrupting S33 through its

flanking region (Fig. 7b). Therefore, this cascade of phosphorylaton is clearly disrupted and

thereby suppresses proteosomal degradation. This explains why high β-catenin levels act as a

biomarker for many cancers. Previous studies have shown that S37C has been associated with

abnormal β-catenin expression (44). Therapeutic targets that remedy the loss of phosphoryla-

tion would recover regular levels of β-catenin.

2.5.3 The role of PKC-ζ in NFE2L2 degradation

Nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2, is a transcription factor,

which, along with the antioxidant response element (ARE), is responsible for antioxidant in-

duction and the expression of several detoxifying genes (45), which are required for maintain-

ing cell survival (46). Normally, NFE2L2 is bound to INrf2 (Keap1) in the cytoplasm, which

maintains low levels of NFE2L2 through proteosomal degradation (45, 47–49). During oxida-

tive stress, NFE2L2 releases itself from INrf2 and translocates to the nucleus, where it activates
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its downstream targets along with ARE.

NFE2L2 S40 is highly conserved across species and lies within the INrf2 interaction do-

main (Nfe2). Phosphorylation of S40 by protein kinase C (PKC) (45, 50–54) is required for

NFE2L2/Keap1 dissociation (55). Additionally, inhibition of PKC was shown to significantly

repress expression of downstream NFE2L2 targets (45). Therefore, phosphorylation of S40 is

crucial for the regulational activity of NFE2L2. We predict a loss of PKC-ζ through the recur-

rent mutation R34G (Fig. 7c), suggesting the loss of function of NFE2L2 through continuous

degradation.

2.5.4 Loss of phosphorylation in CLIP1 may contribute to mitotic block

CLIP1 (CAP-GLY domain containing linker protein 1) has key roles in recruitment of dynactin

to plus ends of microtubules (56), microtubule rescue (57) and mitosis (58–60). CLIP1 is

also required in kinetochore–microtubule attachments (60). CLIP1-depleted cells show mitotic

block due to the lack kinetochore–microtubule attachments (59). Phosphorylation at S1364

by CSNK2A1 is required for CLIP1 to bind to dynactin and localize to kinetochores during

prometaphase (61). CLIP1-S1364A mutants show a loss of ability to bind dynactin and thus

a loss of function (61). However, CLIP1 mutants containing the phosphomimetic substitution

S1364D show only reduced binding with dynactin upon CSNK2A1 inhibition, suggesting that

S1364 may not be the only site phosphorylated by CSNK2A1 (61).

S1009, upstream of S1364, is known from mass-spectrometry experiments to be phospho-

rylatable during mitosis (62,63), but has no experimentally validated kinases. We predict phos-

phorylation of CSNK2A1 at S1009. More interestingly, we could predict a loss of CSNK2A1

through the mutation CLIP1-E1012K (Fig. 7d). Thus, we hypothesize that S1009 is a novel

CSNK2A1 target and CLIP1-E1012K causes a loss of signaling, contributing to further reduced

CLIP1–dynactin binding, which in turn causes mitotic block.
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3 Methods

3.1 Data collection
3.1.1 Protein sequences and mutation data

The pan-cancer mutation dataset and their corresponding set of 18,671 protein sequences were

obtained from Reimand et al. (16). The mutation dataset contained a total of 236,367 mis-

sense mutations in 3,185 samples for 12 tumour types: bladder urothelial carcinoma (blca),

breast invasive carcinoma (brca), colon and rectum adenocarcinoma (coadread), glioblastoma

multiforme (gbm), head and neck squamous cell carcinoma (hnsc), kidney renal clear cell car-

cinoma (kirc), acute myeloid leukemia (laml), lung adenocarcinoma (luad), lung squamous cell

carcinoma (lusc), ovarian serous cystadenocarcinoma (ov) and uterine corpus endometrioid car-

cinoma (ucec).

3.1.2 Phosphosites

A total of 88,253 experimentally validated phosphosites used in this study were consolidated

from four online databases (PhosphoSitePlus (10), PhosphoELM (11), HPRD (12), and Phos-

phoNetworks (26)), after filtering for duplicates and excluding phosphosites with no annotated

literature reference. Phosphosites were mapped exactly to protein sequences and the ±7 flank-

ing residues were retained.

3.1.3 Expression, localization and pathway data

Expression data for 3,468 samples in 17,461 proteins was obtained from Synapse (syn1695373).

Expression data for samples not existing in the pan-cancer mutations (354, 10%) was discarded.

Localization data for 15,372 proteins was obtained from UniProt (64). Since localization data

exists as a hierarchy, only the top level localization term was retained. For example, CDK1 is

annotated the following hierarchy of terms: “cytoplasm”, “cytoskeleton”, “microtubule orga-
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nizing center”, “centrosome”. Only “cytoplasm” is retained.

Functional gene lists for pathway and protein complexes were obtained from g:Profiler (65),

and contained a total of 5,753 annotations from Reactome (66) and CORUM (67) in 4,580

proteins.

3.2 Pathway analysis

To test for enrichment of mutations in pathways and complexes, we mapped rewiring mutations

to their respective pathways and carried out one-tailed Poisson tests. Resulting p-values were

subject to multiple testing correction using the false discovery rate method (FDR). We consid-

ered pathways significantly enriched for network-rewiring mutations if FDR < 0.01. Pathways

enriched with one mutation were discarded. Results were visualized using the Cytoscape (68)

plugin, Enrichment Map (69). Clusters in the Enrichment Map output were defined by manual

inspection.

3.3 Kinase specificity models

To model kinase specificities, we employed the PWM, which is often used to model specificities

of linear motifs in biological sequences (70). A single PWM is constructed for each kinase

using binding sites annotated it. Let S be a set of n binding sites of a kinase, each of length

l, s1, · · · , sn, where sk = sk1, · · · , skl and skj represents one of the 20 amino acids. A PWM

M20×l with weights pij as the relative frequency of each amino acid i at a particular position j

is constructed as follows.

pij =
1

n

n∑
k=1

fi(skj) + ε fi(q) =

{
1, if i = q.

0, otherwise.
(1)

Where ε is an insignificant value to avoid any infinite values when computing the log of

frequencies.

15



Given a potential phosphosite q of an interaction partner also of length l, q1, · · · , ql, the

relative frequencies pij are used to compute a score for the likelihood of binding. We adapted

the MSS, originally developed in the MATCH algorithm (28) for DNA sequences. The MSS

uses the information content of each position as well as normalization against the highest and

lowest relative frequencies per position in the PWM to provide a score ranging from 0 to 1,

where 0 represents no binding and 1 represents a perfect match. The MSS defined as:

MSS =
Current−Min

Max−Min

Current =
l∑

j=1

I(j)pqj ,j

Min =
l∑

j=1

I(j)pmin
j

Max =
l∑

j=1

I(j)pmax
j

I(j) = −
∑
i

pi,jlog(
pi,j
pb

)

(2)

Such that qj represents the amino acid at position j of the query sequence, pmin
j and pmax

j

represent the minimum and maximum relative frequency at position j of the PWM, respectively,

and pb is the background frequency of a particular amino acid in the proteome.

Since kinases are typically known to target either an ST or a Y, but not both, scores for

sequences with a central residue not matching that of the kinase are not scored. For example, a

sequence with the central residue Y would not be scored against the PWM of CDK2, a known

ST kinase. PWMs were constructed for kinases with 10 or more binding sites. Kinases with

fewer than 10 binding sites do not provide sufficient variability for informed predictions.
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3.3.1 Refining kinase specificity models

To refine our kinase specificity models, we employ a iterative method that discards sequences

that did not correspond to the motif’s general pattern. Here, the set of positive sequences, S+

is defined as the binding sequences of a particular kinase. The negative set of sequences, S−,

is defined as all sites in the proteome with a center of ST or Y and does not exist in any experi-

mental data. While some of the negative sequences may indeed be unexplored phosphorylation

sites, not many negative phosphorylation sites exist in the literature, making this the best ap-

proximation for a negative set.

The S+ set is used to construct the initial PWM, M0, which is used to score the S+ and S−

set. The distribution of S− scores is used to define a threshold α as the score at the 90th per-

centile. Sequences in S+ which have a score below α are discarded. The remaining sequences

are used to construct a new PWM, M1. This process was repeated until there were no further

sequences to discard (i.e. all sequence achieved a score greater than α), or, when discarding

sequences, result in a retained set of less than 10 sequences.

3.3.2 Performance

To assess the performance of our PWMs, 10-fold cross-validation experiments was carried out.

Here, S+ was randomly split into 10 equal groups, g1, · · · , g10. The first group, g1, was used as

the test set. The remaining groups, g2, · · · g10, were used to construct the PWM that was used to

score the test set and the negative set, S−. Receiver operator (ROC) curves were then computed

by representing the rate of true positives (TPR) versus the rate of false positives (FPR) as the

cutoff varied.

TP =
TP

TP + FN
FPR =

FP

FP + TN
(3)

This was repeated such that each group was used once as a test set. The area under the ROC
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curve (AUC) was computed for each iteration and averaged after 10 runs. The average AUC

provides an unbiased proxy of the PWM’s prediction power.

3.4 Rewiring
3.4.1 Assessing the impact of mutations on phosphorylation binding

For a pSNV occurring in phosphosite, we score the wildtype and mutant phosphosite (i.e. the

wildtype with the pSNV) against PWM M . Let the MSS of the wildtype and mutant be MSSwt

and MSSmt, respectively. We score S+ and S− using M , which form the foreground and

background distributions of scores, respectively. We define thresholds α− and α+ as the scores

at the 90th and 10th percentiles of the background and foreground distributions, respectively, and

consider a rewiring event to occur if MSSwt > α+ and MSSmt < α− (loss of signaling) or

vice-versa (gain of signaling).

3.5 Implementation of MIMP

MIMP was implemented as a freely-available R package with pre-computed kinase specificity

models to allow users to analyze their data for network-rewiring events. MIMP requires two

mandatory input files: mutation data containing single amino acid substitutions and the protein

sequence data in FASTA format. The third input file is an optional file and is the phosphoryla-

tion data containing positions of the phosphorylated residues in the protein. If phosphorylation

data is not supplied, MIMP will use all residues containing an S, T, or Y as probable phos-

phorylation sites. Users can also adjust the percentile values, which determine the α+ and α−

thresholds.

Users obtain results are returned in a table object containing rewiring pSNVs and their

impact on the binding sites. This includes the position of the phosphosite affected, wildtype

and mutant binding sites, scores before and after the mutation, etc. Users can chose to visually
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display this table in their browser (Fig. 8). This allows for easier navigation of the results

(through sorting columns, filtering rows, etc.), as well as visual inspection of the motifs of

rewired kinases.

Instructions on how to install MIMP along with documentation and sample data can be

obtained from https://github.com/omarwagih/mimp.
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4 Discussion

Mutation data, particularly those recurrent in samples of cancer types, are of interest since

they are found to be enriched in binding interfaces (15, 71, 72), which can ultimately impact

physical protein binding, namely kinase phosphorylation, which acts as one the largest and most

important regulatory mechanisms in eukaryotic cells. Thus, the identification of such mutations

offers us a step forward in pinpointing and interpreting driver mutations. Despite this, the extent

to which these mutations impact kinase binding is yet to be studied comprehensively.

To explore this, we developed a computational method, MIMP, which measures the impact

of mutations existing around the flanking regions of phosphorylation sites. Our method assumes

that the phosphorylation event, through any additional required cellular machinery, occurs in the

tumor sample but also that other conditions of cellular context are fulfilled, both the kinase and

the substrate are active in the cell (i.e. expressed), and that they are in the same sub-cellular

compartment. Using genetic variation data from the TCAG pan-cancer dataset, we identified

a network of gain and loss of kinase events and identified rewiring mutations in key cancer

proteins, such as TP53, CTNNB1, and NFE2L2, as well as potential novel cancer proteins such

as CLIP1. We show that mutations responsible for these events are enriched in key cancer

themes and have a significant functional bias.

A major limitation to this type of analysis lies within the kinase–substrate predictions. To

date, there still remains a relatively sparse number of experimentally validated phosphorylation

sites, making computational prediction a challenging task for the majority of kinases. Cur-

rently, 300/501 (60%) of all kinases have at least one and less than 30 experimentally validated

phosphorylation sites. This can be due to a number of factors. Firstly, the collection of phos-

phorylation sites requires curators to successfully extract them from scientific literature, which

means that keeping up is an ongoing challenge. Secondly, there is a large bias towards the num-

20



ber of substrates available for well-studied kinases, whereas others are neglected. Lastly, some

kinases interact with their substrate with a low affinity or in a transient manner, making their

detection difficult. The 333 PWMs with satisfactory prediction power utilized in this study only

represent a fraction of known kinases (64%) and for some kinases with low substrate counts,

may not represent its global specificity. Furthermore, this analysis is limited for a majority of

other kinases with little to no substrate data.

Most databases storing phosphorylation sites do not annotate the context in which they are

phosphorylated (e.g. different tissues or conditions). Additionally, many kinase–substrate re-

lationships can be due to a secondary effect, through the regulation of the kinase of interest

on a downstream kinase. These issues raise a relatively large number of potential false posi-

tives or sequences, which do not match the known motif of the kinase and further overburdens

computational predictors. MIMP attempts to overcome some of these issues by refining kinase

specificities. This enriches prominent residues in substrate data, likely responsible for binding.

MIMP is also maintained through annual updates of the latest phosphorylation data.

Our future direction includes effort to further improve kinase–substrate predictions through

the use of phosphorylation data from closely related model organisms as well as incorporating

genomic context into our prediction pipeline to allow for more biologically relevant predic-

tions. While we applied MIMP of the pan-cancer pSNVs on to phosphorylation, the same

principal applies to any motif-based interactions and PTMs (textite.g. transcription factor bind-

ing, SH3/SH2 domains, PDZ domains, and WW domains) with any disease-related mutations.

Interestingly, interplay exists amongst many of such interactions and PTMs (73). Thus, we

plan to utilize MIMP to carry out a comprehensive analysis of the mutational impact on linear-

motif-based binding interfaces. We hope this will allow us to better understand how function

of proteins is altered through PTMs in different disease conditions, either directly or indirectly

and pave the way for personalized medicine.

21



References

1. Reimand, J., Hui, S., Jain, S., Law, B., and Bader, G. D. Domain-mediated protein interac-

tion prediction: From genome to network. FEBS Lett. 586(17), 2751–2763 (2012).

2. Whitmarsh, A. J. and Davis, R. J. Regulation of transcription factor function by phospho-

rylation. Cell. Mol. Life Sci. 57(8-9), 1172–1183 (2000).

3. Ruvolo, P. P., Deng, X., and May, W. S. Phosphorylation of Bcl2 and regulation of apopto-

sis. Leukemia 15(4), 515–522 (2001).

4. Joshi, K., Banasavadi-Siddegowda, Y., Mo, X., Kim, S.-H., Mao, P., Kig, C., Nardini, D.,

Sobol, R. W., Chow, L. M. L., Kornblum, H. I., Waclaw, R., Beullens, M., and Nakano,

I. MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem

cells. Stem Cells 31(6), 1051–1063 (2013).

5. Mendelsohn, J. and Baselga, J. The EGF receptor family as targets for cancer therapy.

Oncogene 19(56), 6550–6565 (2000).

6. Sawyers, C. L. Rational therapeutic intervention in cancer: kinases as drug targets. Curr.

Opin. Genet. Dev. 12(1), 111–115 (2002).

7. Santarpia, L., Lippman, S. M., and El-Naggar, A. K. Targeting the MAPK-RAS-RAF

signaling pathway in cancer therapy. Expert Opin. Ther. Targets 16(1), 103–119 (2012).

8. Sheppard, K., Kinross, K. M., Solomon, B., Pearson, R. B., and Phillips, W. A. Targeting

PI3 kinase/AKT/mTOR signaling in cancer. Crit. Rev. Oncog. 17(1), 69–95 (2012).

9. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. The protein

kinase complement of the human genome. Science 298(5600), 1912–1934 (2002).

22



10. Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B.,

Latham, V., and Sullivan, M. PhosphoSitePlus: a comprehensive resource for investigating

the structure and function of experimentally determined post-translational modifications in

man and mouse. Nucleic Acids Res. 40(Database issue), D261–D270 (2012).

11. Diella, F., Cameron, S., Gemnd, C., Linding, R., Via, A., Kuster, B., Sicheritz-Pontn, T.,

Blom, N., and Gibson, T. J. Phospho.ELM: a database of experimentally verified phospho-

rylation sites in eukaryotic proteins. BMC Bioinformatics 5, 79 (2004).

12. Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan,

S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., Balakrishnan, L., Marimuthu,

A., Banerjee, S., Somanathan, D. S., Sebastian, A., Rani, S., Ray, S., Harrys Kishore, C. J.,

Kanth, S., Ahmed, M., Kashyap, M. K., Mohmood, R., Ramachandra, Y. L., Krishna, V.,

Rahiman, B. A., Mohan, S., Ranganathan, P., Ramabadran, S., Chaerkady, R., and Pandey,

A. Human Protein Reference Database–2009 update. Nucleic Acids Res. 37(Database

issue), D767–D772 (2009).

13. Gonzalez-Perez, A., Mustonen, V., Reva, B., Ritchie, G. R. S., Creixell, P., Karchin, R.,

Vazquez, M., Fink, J. L., Kassahn, K. S., Pearson, J. V., Bader, G. D., Boutros, P. C.,

Muthuswamy, L., Ouellette, B. F. F., Reimand, J., Linding, R., Shibata, T., Valencia, A.,

Butler, A., Dronov, S., Flicek, P., Shannon, N. B., Carter, H., Ding, L., Sander, C., Stuart,

J. M., Stein, L. D., Lopez-Bigas, N., , I. C. G. C. M. P., and of the Bioinformatics Analyses

Working Group, C. S. Computational approaches to identify functional genetic variants in

cancer genomes. Nat. Methods 10(8), 723–729 (2013).

14. Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, Jr, L. A., and Kinzler,

K. W. Cancer genome landscapes. Science 339(6127), 1546–1558 (2013).

23



15. Reimand, J. and Bader, G. D. Systematic analysis of somatic mutations in phosphorylation

signaling predicts novel cancer drivers. Mol. Syst. Biol. 9, 637 (2013).

16. Reimand, J., Wagih, O., and Bader, G. D. The mutational landscape of phosphorylation

signaling in cancer. Sci. Rep. 3, 2651 (2013).

17. Radivojac, P., Baenziger, P. H., Kann, M. G., Mort, M. E., Hahn, M. W., and Mooney, S. D.

Gain and loss of phosphorylation sites in human cancer. Bioinformatics 24(16), i241–i247

(2008).

18. Ren, J., Jiang, C., Gao, X., Liu, Z., Yuan, Z., Jin, C., Wen, L., Zhang, Z., Xue, Y., and

Yao, X. PhosSNP for systematic analysis of genetic polymorphisms that influence protein

phosphorylation. Mol. Cell. Proteomics 9(4), 623–634 (2010).

19. Ryu, G., Song, P., Kim, K., Oh, K., Park, K., and Kim, J. H. Genome-wide analysis to

predict protein sequence variations that change phosphorylation sites or their corresponding

kinases. Nucleic Acids Res. 37(4), 1297–1307 (2009).

20. Li, S., Iakoucheva, L. M., Mooney, S. D., and Radivojac, P. Loss of post-translational

modification sites in disease. Pac. Symp. Biocomput. 1, 337–347 (2010).

21. Savas, S., Taylor, I. W., Wrana, J. L., and Ozcelik, H. Functional nonsynonymous sin-

gle nucleotide polymorphisms from the TGF-beta protein interaction network. Physiol.

Genomics 29(2), 109–117 (2007).

22. Riaño-Pachón, D. M., Kleessen, S., Neigenfind, J., Durek, P., Weber, E., Engelsberger,

W. R., Walther, D., Selbig, J., Schulze, W. X., and Kersten, B. Proteome-wide survey of

phosphorylation patterns affected by nuclear DNA polymorphisms in Arabidopsis thaliana.

BMC Genomics 11, 411 (2010).

24



23. Savas, S. and Ozcelik, H. Phosphorylation states of cell cycle and DNA repair proteins can

be altered by the nsSNPs. BMC Cancer 5, 107 (2005).

24. Cho, S., Savas, S., and Ozcelik, H. Genetic variation and the mitogen-activated protein

kinase (MAPK) signaling pathway. OMICS. 10(1), 66–81 (2006).

25. Hendriks, W. J. A. J. and Pulido, R. Protein tyrosine phosphatase variants in human hered-

itary disorders and disease susceptibilities. Biochim. Biophys. Acta. 1832(10), 1673–1696

(2013).

26. Newman, R. H., Hu, J., Rho, H.-S., Xie, Z., Woodard, C., Neiswinger, J., Cooper, C.,

Shirley, M., Clark, H. M., Hu, S., Hwang, W., Jeong, J. S., Wu, G., Lin, J., Gao, X.,

Ni, Q., Goel, R., Xia, S., Ji, H., Dalby, K. N., Birnbaum, M. J., Cole, P. A., Knapp, S.,

Ryazanov, A. G., Zack, D. J., Blackshaw, S., Pawson, T., Gingras, A.-C., Desiderio, S.,

Pandey, A., Turk, B. E., Zhang, J., Zhu, H., and Qian, J. Construction of human activity-

based phosphorylation networks. Mol. Syst. Biol. 9, 655 (2013).

27. Miller, M. L., Jensen, L. J., Diella, F., Jrgensen, C., Tinti, M., Li, L., Hsiung, M., Parker,

S. A., Bordeaux, J., Sicheritz-Ponten, T., Olhovsky, M., Pasculescu, A., Alexander, J.,

Knapp, S., Blom, N., Bork, P., Li, S., Cesareni, G., Pawson, T., Turk, B. E., Yaffe, M. B.,

Brunak, S., and Linding, R. Linear motif atlas for phosphorylation-dependent signaling.

Sci. Signal. 1(35), ra2 (2008).

28. Kel, A. E., Gssling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O. V., and Wingender,

E. MATCH: A tool for searching transcription factor binding sites in DNA sequences.

Nucleic Acids Res. 31(13), 3576–3579 (2003).

29. Enright, A. J., Van Dongen, S., and Ouzounis, C. A. An efficient algorithm for large-scale

detection of protein families. Nucleic Acids Res. 30(7), 1575–1584 (2002).

25



30. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R., and Siepel, A. Detection of nonneutral

substitution rates on mammalian phylogenies. Genome Res. 20(1), 110–121 (2010).

31. Ng, P. C. and Henikoff, S. SIFT: Predicting amino acid changes that affect protein function.

Nucleic Acids Res. 31(13), 3812–3814 (2003).

32. Adzhubei, I., Jordan, D. M., and Sunyaev, S. R. Predicting functional effect of human

missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. Chapter 7, Unit7 20

(2013).

33. Chun, S. and Fay, J. C. Identification of deleterious mutations within three human genomes.

Genome Res. 19(9), 1553–1561 (2009).

34. Schwarz, J. M., Rdelsperger, C., Schuelke, M., and Seelow, D. MutationTaster evaluates

disease-causing potential of sequence alterations. Nat. Methods 7(8), 575–576 (2010).

35. Vogelstein, B., Lane, D., and Levine, A. J. Surfing the p53 network. Nature 408(6810),

307–310 (2000).

36. Vousden, K. H. and Lu, X. Live or let die: the cell’s response to p53. Nat. Rev. Cancer

2(8), 594–604 (2002).

37. Wu, L., Ma, C. A., Zhao, Y., and Jain, A. Aurora B interacts with NIR-p53, leading to

p53 phosphorylation in its DNA-binding domain and subsequent functional suppression. J.

Biol. Chem. 286(3), 2236–2244 (2011).

38. Vousden, K. H. and Prives, C. Blinded by the Light: The Growing Complexity of p53. Cell

137(3), 413–431 (2009).

39. MacLennan, I. C. Germinal centers. Annu Rev Immunol 12, 117–139 (1994).

26



40. Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., Zhang, Z., Lin, X., and He,

X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell

108(6), 837–847 (2002).

41. Yost, C., Torres, M., Miller, J. R., Huang, E., Kimelman, D., and Moon, R. T. The axis-

inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xeno-

pus embryos by glycogen synthase kinase 3. Genes Dev. 10(12), 1443–1454 (1996).

42. Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. beta-catenin is a target for

the ubiquitin-proteasome pathway. EMBO J. 16(13), 3797–3804 (1997).

43. Kitagawa, M., Hatakeyama, S., Shirane, M., Matsumoto, M., Ishida, N., Hattori, K.,

Nakamichi, I., Kikuchi, A., Nakayama, K., and Nakayama, K. An F-box protein, FWD1,

mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J. 18(9), 2401–2410

(1999).
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