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Global Mapping of the Yeast
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A genetic interaction network containing �1000 genes and �4000 interactions
was mapped by crossing mutations in 132 different query genes into a set of
�4700 viable gene yeast deletion mutants and scoring the double mutant
progeny for fitness defects. Network connectivity was predictive of function
because interactions often occurred among functionally related genes, and
similar patterns of interactions tended to identify components of the same
pathway. The genetic network exhibited dense local neighborhoods; therefore,
the position of a gene on a partially mapped network is predictive of other
genetic interactions. Because digenic interactions are common in yeast, similar
networks may underlie the complex genetics associated with inherited phe-
notypes in other organisms.

Gene deletion mutations have been constructed
for each of the �6000 known or predicted genes
(1) in the budding yeast Saccharomyces cerevi-
siae, of which �73% are nonessential (2). Syn-
thetic genetic array (SGA) analysis, an approach
that automates the isolation of yeast double mu-
tants (3), enables large-scale mapping of genetic
interactions. In a typical SGA screen, a mutation
in a query gene of interest is crossed into an array
of viable gene deletion mutants to generate an
output array of double mutants, which can then
be scored for specific phenotypes (3). Synthetic
lethal or sick interactions, in which the combi-
nation of mutations in two genes causes cell
death or reduced fitness, respectively, are of
particular interest because they can identify
genes whose products buffer one another and
impinge on the same essential biological process
(4). To determine the basic principles of genetic
interaction networks, we conducted a large-scale
analysis of synthetic genetic interactions in
yeast. Because many of the genes that control the
essential processes of eukaryotic cells are highly
conserved, we expect that specific elements of
the yeast genetic network and its general prop-
erties are also conserved.

Large-scale genetic network analysis.
We performed 132 SGA screens, focused on
query genes involved in actin-based cell po-
larity, cell wall biosynthesis, microtubule-
based chromosome segregation, and DNA
synthesis and repair. The query mutations
were either deletion alleles of nonessential
genes or conditional (partially functional) al-
leles of essential genes. Each SGA screen
was conducted three times, and putative in-
teractions scored multiple times were then
evaluated by tetrad or random spore analysis.
We also attempted to confirm candidate in-
teractions observed only one time in three
trials (�25% of the total), if the function of
the candidate interactor was either similar to
those found in multiple screens or uncharac-
terized previously. The resulting confirmed
data set, containing �4000 interactions
amongst �1000 genes (5, 6) (table S1),
should contain only few false positives (in-
correct interactions); however, for a given
screen, each round of SGA analysis identified
new interactions and we estimate the frequen-
cy of false negatives (true interactions that
were not identified) to be in the range of 17 to

41% (5) (figs. S1 and S2). The number of
confirmed interactions per query gene varied
from 1 to 146, with an average of 34 inter-
actions per screen. By comparison, yeast pro-
teins tend to show about eight physical inter-
actions in large-scale screens (5) (table S2),
suggesting that the genetic interaction net-
work is at least four times more dense than
the protein-protein interaction network. This
greater density reflects that genetic interac-
tions map functional relations (5), which
transcend physical interactions.

Approximately 20% of the query genes
we attempted (not included in the 132 query
genes listed above) showed no more positives
than would be expected for a wild-type con-
trol query gene and were aborted after the
first SGA screen (5). Assuming that gene
pairs not yet tested by SGA behave similarly
to those analyzed here, the yeast synthetic
genetic network contains on the order of
�100,000 interactions.

Identification of functionally related
genes by synthetic genetic interactions.
We assessed the relationship between the
large-scale synthetic genetic interaction data
and annotation with Gene Ontology (GO)
functional attributes (7), applying three dif-
ferent computational approaches. First, we
examined 756 specific GO attributes (5) and
found that, in 80 cases, genes sharing the
same attribute interact genetically more often
than expected by chance (P� � 0.05; consid-
ering only tested gene pairs, P� is a P value
corrected for multiple hypothesis testing).
Second, we examined each of 285,390 differ-
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ent GO attribute pairs and found that 1,755
attribute pairs were “bridged” significantly
by genetic interaction (P� � 0.05). Here, a
gene pair “bridges” two GO attributes if one
gene has the first attribute, the other gene has
the second attribute, and neither gene has
both. A network mapping these relationships
revealed four highly connected subnetworks,
containing GO attributes associated with
actin-based functions, secretion, microtubule-
based functions, or DNA synthesis or repair
(Fig. 1). The relative topology of these sub-
networks identifies general functions that
buffer one another; for example, microtu-
bule-based functions buffer both actin-based
and DNA synthesis or repair functions. In the
third computational approach, we examined
whether genetically interacting genes tend to
have similar GO function annotation. We
found that over 12% of genetic interactions
are comprised of genes with an identical GO
annotation (12 times more than expected by
chance; P � 10–296), and over 27% of genetic
interactions are between genes with a similar
or identical GO annotation (an eightfold in-
crease; P � 10–322), which is a conservative
estimate because we defined two GO at-
tributes to be similar only if they were anno-
tated with significantly overlapping sets of
genes (5). In summary, the results of this
large-scale analysis suggest that synthetic ge-
netic relationships frequently coincide with a
known functional relationship between gene
pairs. Thus, the complete genetic network
will represent a global map of functional
relationships between genes.

Overlap of genetic interaction with
other gene pair characteristics. We ex-
plored the relationship between genetic interac-
tions and a variety of other characteristics of
gene or protein pairs (5) (table S3). Synthetic
genetic interactions were significantly more
abundant between genes with the same mutant
phenotype (P � 10–316), between genes encod-
ing proteins with the same subcellular localiza-
tion (P � 10–70), and between genes encoding
proteins within the same protein complex (P �
10–68). Synthetic genetic interactions were also
enriched amongst gene pairs encoding homolo-
gous proteins (P � 10–22), but this accounted for
relatively few (2%) of the observed interactions.

Two-dimensional hierarchical cluster-
ing of genetic interaction profiles. To
organize all genes in the network by their
genetic interaction patterns, we performed two-
dimensional hierarchical clustering analysis
(Fig. 2A). This method clusters the query genes
(vertical axis) according to the overlap of their
interactions with array genes and clusters array
genes (horizontal axis) according to overlap of
their interactions with query genes. Sets of
genes that function within the same pathway or
complex tend to cluster together. Examples of
clustered query genes (Fig. 2B) include actin
patch assembly (ARC40 and ARP2), the chitin

synthase III pathway (BNI4, CHS6, CHS3,
SKT5, CHS7, and CHS5), the prefoldin com-
plex (GIM3, GIM4, GIM5, PAC10, and YKE2),
and sister chromatid cohesion (CTF18, DCC1,
CTF8, and CTF4). Examples of clustered array
genes (Fig. 2B) include components of the pro-
tein kinase C (PKC) mitogen-activated protein
(MAP) kinase signal transduction pathway
(BCK1 and SLT2), the dynein-dynactin spindle
orientation pathway (ARP1, NUM1, DYN1,
PAC11, PAC1, DYN2, JNM1, YMR299c,
NIP100, and BIK1), and the spindle checkpoint
pathway (BFA1, BUB2, BUB1, MAD1, MAD2,
MAD3, and BUB3) (8).

The clustergram highlights particular path-
ways that buffer one another. For example,
query genes involved in the establishment of
sister chromatid cohesion during chromosome
replication, CTF18, DCC1, CTF8, and CTF4
(9), interact similarly with sets of genes encod-
ing components of several different pathways,
including the MAD/BUB spindle checkpoint
pathway, the RAD51 pathway that controls re-
combinational repair of double-strand breaks,
the RAD9 DNA damage checkpoint, and the
TOF1/MRC1 DNA replication checkpoint
pathway. These findings are consistent with a
role of cohesion in establishing spindle tension
during mitosis and in repairing of double-strand
breaks caused by stalled replication forks.

Clustering uncharacterized genes with the
components of defined pathways should en-
able us to predict specific biological func-

tions. For example, the clustering analysis
revealed that the genetic interaction pattern
observed for CSM3 was most similar to that
of the DNA replication checkpoint genes
MRC1 and TOF1 (Fig. 2B), whose products
interact directly with the DNA replication
machinery and facilitate Rad53 activation in
response to replication stress (10). Indeed,
after methyl methanesulfonate (MMS)-
induced DNA damage, csm3� rad9� double
mutants were unable to slow S phase progres-
sion (Fig. 3A), like tof1� rad9� double mu-
tants (11). In addition, like mrc1� rad9�
double mutants (12), csm3� rad9� double
mutants were defective in cell cycle arrest
in response to replication fork stalling and
activation of the Rad53 checkpoint kinase
(Fig. 3B). Moreover, Csm3 has been shown
to bind Tof1 by two-hybrid (13) and co-
immunoprecipitation (14 ) assays. Thus,
Csm3 may function at the level of Mrc1
and Tof1 in the Rad53 DNA replication
checkpoint pathway (10).

The uncharacterized gene YMR299c clus-
ters with the genes encoding the dynein-
dynactin spindle orientation pathway (15),
suggesting it may be a new component of this
pathway. We found that the predicted
YMR299c protein sequence showed weak
similarity to mammalian cytoplasmic dynein
light intermediate chain (fig. S3), and analy-
sis of the YMR299c deletion mutant revealed
a number of phenotypes known to be associ-

Fig. 1. A network of genetically connected gene functions. GO attribute names are colored
according to the legend. Pairs of different GO attributes are linked if they are connected by
genetic interactions significantly, more often than would be expected by chance (P � 0.002)
(table S7). The subsets of GO attributes were clustered using a network layout algorithm (5 ).
Because the P values have been corrected for multiple hypothesis testing by resampling (5 ), it
would be unlikely (P � 0.002) to find any lines in this network if synthetic interaction and GO
annotation were unrelated. A section of the complete map on the left (outlined in red) is
shown in greater detail on the right. Additional views of this map may be found in figs. S9 and
S10. Significance is based on the Fisher’s exact test of association, and the P value is corrected
for multiple hypothesis testing by resampling (29).
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ated with cells defective for dynein-dynactin
function, including exaggerated cytoplasmic
microtubules and a more severe nuclear mi-

gration defect (Fig. 3C). Ymr299c localized
to cortical dots, one or two per cell, that were
motile and colocalized to the tip of cytoplas-

mic microtubules (5) (fig. S4). Thus,
Ymr299c may function as the yeast dynein
light intermediate chain.

Fig. 2. Two-dimensional hierarchical clustering of the synthetic genetic
interactions determined by SGA analysis. (A) Synthetic genetic interac-
tions are represented as red lines. Rows, 132 query genes; columns, 1007
array genes. The cluster trees organize query and array genes that

show similar patterns of genetic interactions. (B) Sections [yellow out-
lines in (A)] are expanded to allow visualization of specific query gene
and array gene clusters. Synthetic genetic interactions are represented as
red squares.
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Predicting protein-protein interactions
from common neighbors in the genetic
interaction network. Although genetically
interacting genes do encode proteins in the
same complex more often than would be ex-
pected by chance (5) (table S3), the predictive
value of this correlation is limited because only
�1% of the gene pairs encode proteins in the
same complex, which presumably reflects that
we are largely mapping interactions amongst
genes in nonessential pathways. However, anal-
ysis of the genetic network and �15,000
protein-protein interactions collected from
large-scale studies and the literature (16) re-
vealed that the number of common neighbors
between two genes in the SGA network corre-
lates with a known protein-protein interaction
between the corresponding gene products. For
example, the CTF8 product is known to affinity-
purify with that of CTF18, and these two genes
are not connected in the genetic network but
share a number of common interactions (Fig.
2B). Whereas only 30 of 4039 genetically inter-
acting gene pairs encode physically-interacting
proteins, 28 of 333 gene pairs with more than
16 common synthetic genetic neighbors en-
code physically interacting proteins, an �11-
fold enrichment. The sensitivity of this pre-
dictive approach is limited by the size of the
genetic network, but the accuracy of the ap-
proach increases with the number of shared
interactions (5) (figs. S5 and S6), suggesting
that its usefulness as a predictor will improve
as the data set grows.

The small world of genetic interac-
tions. The yeast synthetic genetic network ex-
hibits two properties shared by networks as
diverse as the World Wide Web and protein-
protein interaction maps (17, 18). First, the con-
nectivity distribution of array genes follows a
power-law distribution (Fig. 4A), containing
many genes with few interactions and a few

genes with many interactions. Highly connected
“hub genes” are likely to be more important for
fitness than less connected genes, because ran-
dom mutations in organisms lacking these genes
would be more likely to be associated with a
fitness defect. Indeed, hubs associated with con-
served genes may be potential targets for anti-
cancer drugs because cancer cells often carry a
large mutation load and thus may be killed pref-
erentially (19). The top five array gene hubs
include four components of the prefoldin com-
plex, GIM3, GIM5, PAC10, and GIM4, which
functions as a chaperone for actin and tubulin
and thereby buffers many cellular processes (4).

Second, the genetic network appears to be an
example of a small-world network in which
the length of the shortest path between a
pair of vertices tends to be small (i.e., the
network has a short characteristic path
length) and local neighborhoods tend to be
densely connected (20). The observed ge-
netic network has a short characteristic path
length of 3.3, which is similar to that of
random graphs with the same degree distri-
bution [3.2 (5)], as expected for a small-
world network (17, 18). The topology of the
genetic network also exhibits dense local
neighborhoods because the immediate
neighbors of a gene, its genetic interaction
partners, tend to interact with one another.
The dense neighborhood characteristic of
small-world networks is of particular inter-
est because it can be exploited to predict
interactions, as has been shown previously
for protein-protein interactions (21).

To examine neighborhood density of ge-
netic interactions in more detail, we tested
extensively whether the genetic network
neighbors of three query genes tended to
interact with one another. We examined 2561
unique pairs of genes with the property that
each genetically interact with the same query

gene, SGS1, RAD27 or BIM1, by using a spot
assay version of random spore analysis (5)
(fig. S7). In total, 24, 18, and 18% of the
tested interactions were confirmed positive
for the SGS1, RAD27, and BIM1 network
neighbors, respectively (Fig. 4B; table S4),
which is highly enriched compared with that
observed (�1%) for the average query gene
against all SGA-tested gene pairs.

Higher order genetic interactions. Giv-
en the relatively large number of synthetic dou-
ble mutant combinations, we were interested in
the frequency of higher order synthetic genetic
interactions. To test for triple mutant genetic
interactions, we performed SGA analysis with a
query strain carrying deletion mutations in both
BNI1 and BIM1 (table S5). Although a total of
171 genetic interactions were identified in the
BIM1 BNI1 double mutant screen, tetrad anal-
ysis revealed only four triple mutants with syn-
thetic genetic fitness defects not attributable to a
double mutant interaction. Triple mutants were
also identified when a BNI1 KRE1 double mu-
tant query was tested for triple mutant interac-
tions (table S6). In total, 156 genetic interac-
tions were identified in the BNI1 KRE1 double
mutant screen, 29 of which showed triple mu-
tant effects. For the special case of paralogs, in
which the genes are highly similar and the
products are functionally redundant, we antici-
pated that each single-mutant query strain
would show fewer pairwise synthetic genetic
interactions, whereas a double mutant query
strain would identify many triple mutant inter-
actions. Indeed, this was the case for a query
strain carrying deletion alleles of the paralogs
CLN1 and CLN2, which encode similar G1

cyclins; a total of 34 SGA interactions were
identified, and tetrad analysis revealed that all
were triple mutant effects (22). On the basis of
this limited collection of screens, it appears that
the rate of synthetic interaction among gene

Fig. 3. (A) CSM3 is re-
quired for checkpoint ac-
tivation in response to
replication blocks. Loga-
rithmically growing cul-
tures were arrested in G1
and released into the cell
cycle in the presence of
0.035% MMS. At the in-
dicated times (min) after
release, cell samples
were taken and the cell
cycle distribution was
analyzed by flow cytom-
etry. The positions of
cells with a 1C and 2C
DNA content are indicat-
ed. (B) Cell extracts de-
rived from the MMS-
treated cells were ana-
lyzed by immunoblotting
to detect the activated
(phosphorylated) form of Rad53 (Rad53-P). (C) ymr299c� exhibits ab-
normal cytoplasmic microtubules and defects in mitotic spindle position-
ing similar to dyn1� and arp1�. Cells were stained with anti-

body to tubulin and DAPI (4�,6�-diamidino-2-phenylindole); the percent-
age of cells with microtubule orientation defects was scored in large-
budded cells (5) (fig. S4).
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triplets is substantial but less than that of gene
pairs. However, there are 2000-fold more gene
triplets than gene pairs in S. cerevisiae, so the
total number of trigenic interactions may out-
number that of digenic interactions.

Population genetics of yeast synthetic
genetic interactions. Because inbred labora-
tory yeast strains carrying defined mutations dis-
play an extensive number of synthetic genetic
interactions, we anticipate that similar interac-
tions may also occur in outbred strains, which
carry different alleles of genes due to the accu-
mulation of mutations within the population.
Indeed, synthetic genetic interactions may play
an important role in determining the genetic
basis of phenotypic variation because mutations
are protected from selection if they display a
deleterious phenotype only in combination with
a mutant allele at a second locus. Phillips and
Johnson (23) have established a theoretical
framework for synthetic genetic interactions,
which indicates that a conservative equilibrium
frequency estimate for synthetic genetic combi-
nations in diploids can be of the order of 1 in

1000 carrier gametes. Thus, the frequency of
double mutant zygotes that would be homozy-
gous for a synthetic genetic gene pair is the
product of the gamete frequencies, 1 in
1,000,000 for a given synthetic mutant pair.
Nevertheless, the genomic load of synthetic ge-
netic effects has remained a mystery because the
number of mutated genes that can accumulate
within a population and the number of synthetic
lethal interactions per gene have remained un-
known for any organism. For yeast, we now
know that the growth rate of close to 50%
(�2500) of homozygous diploid gene deletion
mutants is normal under six different environ-
mental conditions (2). This surprisingly large
fraction of apparently benign mutations indicates
that thousands of mutated genes may have the
potential to accumulate within the diploid cells
of a natural yeast population as single homozy-
gous mutations in diploids. Given that �2500
loci are buffered individually from selection
when null and that a substantial fraction of these,
perhaps 10 to 50% as a conservative estimate,
may participate in synthetic genetic interactions

with �30 other loci, then on the order of 0.8 to
4% of the zygotes formed in yeast populations
would have a synthetic double mutant phenotype
(5). Because the potential for creating synthetic
double mutant combinations should increase
with gene number, the genomic load of synthetic
effects may be even higher in humans.

Synthetic genetic interactions and
complex human disease. Knowledge of the
yeast genetic interaction network may be rele-
vant to our understanding of complex human
diseases (24, 25 ), the genetic bases of which
are difficult to map. An exemplary case is
cystic fibrosis where a primary “Mendelian”
defect in the CFTR (cystic fibrosis trans-
membrane conductance regulator)–encoded
chloride channel is modified by at least sev-
en other genes, many enhancing the severity
of the pulmonary phenotype (26, 27). Thus,
the CFTR interactions resemble those ob-
served with the query genes in an SGA screen
(fig. S8) with the difference being that genetic
saturation is difficult to achieve in humans.
More generally, many of the human diseases
considered to be simple Mendelian single gene
effects may be sensitive to modifying muta-
tions (polymorphisms) in many genes.

A pure synthetic interaction amongst dis-
ease genes, where the individual mutant
genes have no phenotype but the combination
of two mutant alleles leads to the disease, is
referred to as a digenic disease. For example,
mutations in two genes, ROM1 (encoding the
retinal outer segment membrane protein 1)
and RDS (retinal degeneration slow), are
asymptomatic singly, but together cause ret-
initis pigmentosa (28). The synthetic or di-
genic interactions observed for a given gene
can extend to multiple interacting partners.
For example, Bardet-Biedl syndrome, a reti-
nitis pigmentosa variant, results from combi-
nations of mutant alleles in two genes from as
many as six, such as BBS2 and BBS4 or BBS2
and BBS6 (26, 28). Because asymptomatic
mutations can accumulate in the population
and probably have the potential to interact
with a large number of different genes, di-
genic effects may underlie many common
diseases that are familial but not Mendelian
in their inheritance. For complex heteroge-
neous human disease syndromes such as
glaucoma, type II diabetes, lupus erythema-
tosus, schizophrenia, Alzheimer’s disease,
and retinitis pigmentosa, a component of the
genetic basis of the disease may be similar to
the synthetic effects we see within a dense
local neighborhood of the yeast genetic inter-
action map (Fig. 4B), where multiple pairs of
genes have the potential to combine and com-
promise cellular fitness through a related
mechanism. Mapping the expected dense net-
work of digenic interactions in humans will
be challenging; however, because elements
of the genetic networks derived from model
organisms are likely to be conserved, there

Fig. 4. (A) The degree distribution of SGA array genes not also used as query genes. The number
of genes with each degree (number of interaction partners) is shown on linear and log-log (inset)
scales. The fit to a straight line in the log-log plot indicates a power-law degree distribution, a
characteristic of a “scale-free” network. An analysis of the degree distribution of the query genes
is included in the supplementary material (5) (fig. S11). (B) The topology of the genetic network
of neighborhood of three query genes (SGS1, RAD27, and BIM1). Genes are represented as nodes
and synthetic genetic interactions are represented as edges connecting the nodes. The nodes are
colored according to a defined subset of GO functional annotations (table S8). 95% of the nodes
were tested for synthetic genetic interactions against each other.
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exists potential for predicting candidate ge-
netic interactions from large-scale functional
genomics information.
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REPORTS
Probing Two-Electron Dynamics

of an Atom
S. N. Pisharody and R. R. Jones*

Coherent short-pulse laser excitation has been used to control the approximate
energy and relative proximity of two valence electrons within the same alkaline-
earth atom, thereby providing insight into the dynamical evolution of a
three-body Coulomb system. Our time-domain experiments enable direct
experimental study of the electron dynamics at the classical limit of a
two-electron atom. As an example, we look at the mechanism of autoion-
ization for one two-electron configuration class and find that the doubly
excited atom decays through a single violent electron-electron collision
rather than a gradual exchange of energy between the electrons.

While the hydrogen atom problem has a general
solution in both quantum and classical physics,
the addition of a second electron makes the
helium atom a complex three-body problem
that has no known general solution in either
theory (1). Motion in large regions of the
two-electron parameter-space is classically
chaotic (2), and the failure of the old quan-
tum theory to treat the problem accurately
played a central role in its abandonment in
favor of Schrödinger’s wave mechanics (3–
6 ). In classical physics terms, angular
momentum and energy are not separately
conserved for the two electrons as they

continuously collide with each other and
the nucleus. Doubly excited configurations,
where neither electron is in the ground state
and the combined energy of the two elec-
trons is greater than the ionization potential
of the atom, exist transiently as long as
neither electron has the requisite energy to
escape. Eventually, however, the atom au-
toionizes, whereby one electron acquires
sufficient energy to leave the nucleus and
the remaining electron is left in the ground
or excited state of the ion. The lifetime of
the doubly excited atom and the final con-
figuration of the bound and free electrons
depend critically on the initial positions and
momenta of the two electrons, as these ulti-
mately determine the frequency and nature of
collisions that result in autoionization.

In the absence of a general solution, a
common theoretical procedure has been to

consider the stability of particular electron
configurations, or modes, at specific energies
(3–14). In the classical limit, at energies near
the double-ionization threshold, this molecu-
lar analog approach becomes particularly dif-
ficult because of the diverging number of
ways the two electrons can share their total
energy and angular momentum. Interestingly,
modes that intuitively appear stable (e.g.,
symmetrical planar orbits) can be quite un-
stable, while others (e.g., two electrons on the
same side of the nucleus) that appear fragile
are remarkably robust (1, 13, 14).

Experimentally, the extreme classical limit
where both electrons have nearly identical bind-
ing energies remains effectively unexplored. As
a result of the high density of these double
Rydberg states and their short autoionization
lifetimes, individual resonances cannot be re-
solved spectroscopically (15–18). However, by
exploiting the tools of coherent optical control,
the problem can now be approached in the time
domain. Electronic wave packets with specifi-
cally tailored probability distributions can be
routinely produced in highly excited single-
electron Rydberg atoms (19, 20) and can be
used to investigate the electron dynamics at the
classical limit of a two-electron atom.

We prepare two electrons within the same
atom in distinguishable, spatially separated
configurations with well-defined radial posi-
tions and momenta (21). The electrons evolve
as concentric radially breathing shells (22),
interact through their mutual Coulomb repul-
sion, and eventually autoionize to form a free
electron and a highly excited ion. We mea-
sure the final distribution of ion-binding en-
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